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Abstract—Automatic extraction of roads from images of com-
plex urban areas is a very difficult task due to the occlusions and
shadows of contextual objects, and complicated road structures.
As light detection and ranging (LiDAR) data explicitly contain
direct 3-D information of the urban scene and are less affected
by occlusions and shadows, they are a good data source for road
detection. This paper proposes to use multiple features to detect
road centerlines from the remaining ground points after filtering.
The main idea of our method is to effectively detect smooth geo-
metric primitives of potential road centerlines and to separate the
connected nonroad features (parking lots and bare grounds) from
the roads. The method consists of three major steps, i.e., spatial
clustering based on multiple features using an adaptive mean shift
to detect the center points of roads, stick tensor voting to enhance
the salient linear features, and a weighted Hough transform to
extract the arc primitives of the road centerlines. In short, we
denote our method as Mean shift, Tensor voting, Hough transform
(MTH). We evaluated the method using the Vaihingen and Toronto
data sets from the International Society for Photogrammetry
and Remote Sensing Test Project on Urban Classification and
3-D Building Reconstruction. The completeness of the extracted
road network on the Vaihingen data and the Toronto data are
81.7% and 72.3 %, respectively, and the correctness are 88.4% and
89.2%, respectively, yielding the best performance compared with
template matching and phase-coded disk methods.

Index Terms—Feature extraction, light detection and ranging
(LiDAR), pattern recognition, remote sensing, road detection.

I. INTRODUCTION

UTOMATIC extraction of roads from remotely sensed
data has been an open problem in remote sensing. Mena
[1] and Quackenbush [2] reviewed different road extraction
methods and the remote sensing data used, including multi-
and hyperspectral imagery, synthetic aperture radar imagery,

Manuscript received November 15, 2013; revised February 13, 2014;
accepted March 13, 2014. Date of publication April 21, 2014. This work was
supported in part by the National Basic Research Program of China under Grant
2012CB719904 and in part by the National Natural Science Foundation of
China under Grant 41171292 and Grant 41322010.

X. Hu, J. Zhang, and Y. Zhang are with the School of Remote Sensing and
Information Engineering, Wuhan University, Wuhan 430079, China (e-mail:
huxy @whu.edu.cn; jqgz@whu.edu.cn; zhangyj@whu.edu.cn).

Y. Li is with the School of Civil Engineering and Architecture, Nanchang
University, Nanchang 330031, China (e-mail: ejinn@ncu.edu.cn).

J. Shan is with the School of Remote Sensing and Information Engineering,
Wuhan University, Wuhan 430079, China and also with the Lyles School of
Civil Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
shanj@whu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2014.2312793

and light detection and ranging (LiDAR) data. Compared with
road extraction in rural open or suburban areas [3], [4], complex
urban scenes pose a much more difficult task. There are a
number of critical issues to deal with for road extraction in
urban scenes from passive remote sensing imagery. First, the
occlusion of the road surface by buildings and trees makes
object detection a more “ill-posed” problem due to incomplete
information. Second, shadows cast by tall objects increase the
spectral variance and decrease the radiometric homogeneity
along the roads [5]. Third, complex road patterns and contextual
objects, such as buildings, trees, and vehicles on the roads,
complicate the selection of spectral and spatial features used
for road detection. Finally, similar radiometry between roads
and other impervious objects, such as buildings and parking lots
[6], may lead to their misclassification as roads [7].

Airborne LiDAR data are produced by laser ranging to obtain
3-D geographic positions of the ground. This property makes it
a better data source for road extraction in urban scenes. First, it
is much easier to separate buildings from roads, although their
radiometry is similar. The elevation information from LiDAR
data can be also used to separate grass-covered land and rough
bare earth from road areas. Second, due to its relatively narrow
scanning angle (typically 20°—40° [8]), LiDAR is often free of
serious occlusion of the road surface. Third, as an active sensing
technology, there is no shadow effect in LiDAR data. Fourth,
the intensity of LiDAR points can be used as an additional
useful feature for road extraction because road surfaces have
similar reflectance. Finally, water often presents as no-data
areas in LiDAR data due to its absorption of laser light. This
allows for the easier detection of ribbon-like ground features,
such as rivers and creeks.

However, compared with imagery, LIDAR data lack spectral
information, which creates difficulties for reliable object recog-
nition. Moreover, due to the irregular distribution of LiDAR
points, more effort is needed to extract accurate break lines or
features, such as the edges of roads. Because of these shortcom-
ings of LiDAR data for object extraction, researchers have inte-
grated the processing of LiDAR data with imagery [9]-[11] or
existing geodatabases [12], [13] for road extraction. Although
the combined use of different data sources is theoretically better
than using a single source, there are still drawbacks. First, it is
either costly or even impossible to obtain different types of data
for many applications. It is also difficult to precisely coregister
different data sources. Second, when combining different data
or using object cues from multiple sources, it needs a proper
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fusion methodology to achieve an optimal outcome. As a result,
exploring LiDAR data independent from other data sources is
necessary for road extraction over complex urban scenes.

Road extraction from LiDAR data has been a focus of
research since the late 1990s. Road detection in forest areas
was used to generate break lines to enhance the quality of
a digital terrain model [14]. Due to the aforementioned ad-
vantages, LiDAR data are increasingly used to extract roads
in urban environments. Height and intensity were two major
features used for classification or clustering [15], [17], [18] and
segmentation [16]. To separate low bare ground and parking
lots from roads, the buffered clustering approach [17] and a
threshold of the maximum width of roads [8] were used to
improve the correctness of road extraction. To form a vector
road network, road centerlines must be detected by vectorizing,
such as the phase-coded disk (PCD) approach [19].

In urban environments, it is relatively easy to filter out
nonroad and tall objects, including buildings and trees, with
reported algorithms [20]-[22]. The remaining problems then
are as follows: 1) how can we effectively separate road areas
from connected nonroad features, such as parking lots, low
grassland, and bare ground; 2) how can we use multiple height
and intensity features to achieve the aforementioned goal;
3) how can the processing be made less parameter sensitive and
more robust to “noise” (e.g., holes in the filtered data caused
by cars and trees) and to variations in the road pattern and
width; and 4) how can smooth geometric primitives of roads be
produced in the vector form? This paper addresses these four
major research questions.

The remainder of this paper is structured as follows.
Section II presents an overview of the proposed method and
describes the three major processing steps after filtering. These
steps include spatial clustering based on multiple features using
an adaptive mean shift to detect the center points of roads,
stick tensor voting for enhancing salient linear features, and
a weighted Hough transform for extracting the arc primitives
of road centerlines. Section III uses the Vaihingen and Toronto
data sets from the International Society for Photogrammetry
and Remote Sensing (ISPRS) Test Project on Urban Classi-
fication and 3-D Building Reconstruction [23] to validate the
method. We compare the performance of the method with that
of the template matching [24] and PCD [19] algorithms. Finally,
Section IV offers the concluding remarks and discusses on
future improvement to our method.

II. ROAD CENTERLINE DETECTION BASED
ON MULTIPLE FEATURES

A. Overview

Fig. 1 shows the workflow of the proposed method. The
initial step, i.e., filtering, is to classify the point clouds into
ground and nonground classes. We adopted the multidirectional
ground filtering algorithm [25] for this purpose. It combines the
elevation differences and slopes of neighboring points in vari-
ous directions to filter the ground points. The subsequent steps
include: 1) spatial clustering using an adaptive mean shift to de-
tect the center points of roads; 2) stick tensor voting to enhance
the salient linear features; and 3) the Hough transform to detect
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Fig. 1. Workflow of the proposed road centerline detection method.

the arc primitives of the road centerlines. In short and to reflect
its key implementation steps, the proposed method is denoted
by Mean shift, Tensor voting, Hough Transform (MTH).

B. Adaptive Mean Shift for Spatial Clustering to Detect the
Center Points of Roads

After filtering, the remaining points are ground points, which
may be roads, bare ground, parking lots, low grassland, etc.
A desired property for road extraction from LiDAR points is
the ability to separate nonroad areas from road areas and to
make the detection robust to the existing connected nonroad
areas. For this purpose, several important road features should
be used, including the ribbon-like shape constraint, the smooth-
ness of the surface, and the consistency of reflectance. This
would further lead to the road center points, which are defined
as points located at the center of the ribbon areas with a local
smooth surface and consistent intensity. We also expect such
algorithm to be insensitive to the variation in the road width
and the “holes” left by the filtered cars and trees.

We now develop a spatial clustering algorithm based on
a mean shift to directly distinguish the center points of the
ribbon roads from ground points without rasterization. The
mean shift procedure was proposed by Fukunaga and Hostetler
[26] and has been widely used in image processing and pattern
recognition [27]. When a uniform kernel is used, each point
x iteratively shifts to the average m(z) of all points in its
neighborhood until a stable m(z) is reached. m(x) is given by

m(z) :% Z

z;eN(x

T (D
)

where N () is a set of neighbor points of x, and n is the number
of points within N (z).

Fig. 2 illustrates how the mean shift works to find the center
points of the road (ribbon). With the mean shift, the points
converge to the mode point (pg), as shown in Fig. 2(a). If the
clustering window size is equal to the width of the road, all the
points spatially distributed as a ribbon-like road are clustered to
the centerline, as shown in Fig. 2(b) and (c). At the same time,
the nonroad points, such as vegetation points with different
features, will be separated, as shown in Fig. 2(d). Fig. 2(e)
illustrates the shift vectors formed by connecting the initial
point (pe) and its final position (pg) after the shifting.
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Fig. 2. Detection of road center points by the mean shift. (a) Mean shift
clustering. (b) Clustering points into the road centerline. (c) Road points after
clustering. (d) Separating the nonroad points from the ground points by con-
verging them into their mode point based on distinct features, e.g., reflectance
intensity and surface roughness. (e) Shift vectors shown as line segments.
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Fig. 3. Mean shift clustering for the detection of road center points with holes
in the area. (a) Road points with holes. (b) Clustered mode points by the mean
shift.

Fig. 3(a) shows the road points with several holes left by
the filtered vehicles. Fig. 3(b) is the clustering result by the
mean shift with the window size set as the road width. This
demonstrates that the mean shift is an appropriate approach for
detecting the center points of ribbon roads, even when roads are
occulted by cars and trees.
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Fig. 4. Road center point detection with an adaptive window size in mean
shift clustering.

To utilize the intensity and the local surface roughness to
separate nonroad features, a feature vector of each point is
constructed as P; (z;, y;, 2i, 1;, Si), where (z;, y;, z;) are the
coordinates of a LiDAR point P;, I; is its intensity, and S; is
the smoothness of the local surface at P;, i.e.,

n

Si =Y (2; —%)/n )

j=1

where z;; is the elevation of a point within the clustering

window, and Z; is the average elevation of all the points in this

window.

As the road width may vary, we propose mean shift clustering
with an adaptive window size. As shown in Fig. 4, it can be
summarized in three main steps.

Step 1) Set two arrays w[k] and wq[k], k=1,2,3,...,n (n <
5 will satisfy the need for most of the data); w[k]
stores the window sizes used to calculate the local point
density, which is defined as w[k] = ery,, ¢ = 2k + 1;
and wy[k] stores the window size used to cluster points,
which is given by wg[k] = kry,, where r,, is the mini-
mum road width.

Step 2) Cluster the ground points one by one with the adaptive
window size. The uniform kernel is used in the mean
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Fig.5. Two local regions in the Vaihingen data. (a) Ground points color coded
by elevation. (b) Intensity image of the ground points. (c) Results of the road
center point detection.

shift procedure. Calculate the local density of point 7,
which is defined as D[i] = n;/(w[k] x w[k]), where
n; is the number of points in the window with size
wlk]. Compare D[i] and T', and if D[{] < T or k > n,
cluster point ¢ with window size wg[k], and then, record
the new coordinates and shift the direction of point
i; otherwise, recalculate D[i] by w[k + 1]. T is the
threshold of density, which is given by T' = k/c.

Step 3) Continue the aforementioned process until all the ground
points are processed.

The advantages of this algorithm are as follows. First, it
provides a data-driven method that does not require a prior road
model and is suitable for all types of ribbon roads. Second,
it is insensitive to the holes left by vehicles and trees on
roads. Third, it is straightforward to use multiple features,
such as both intensity and surface smoothness, to distinguish
road and nonroad points. To demonstrate this, Fig. 5 presents
two examples of the road center point detection results from
the ISPRS Vaihingen data set [23]. Here, large areas of bare
ground or grass (as shown in the circled areas) become scattered
points. These points can be removed by further detection of
salient linear structures (the road centerlines). Fig. 6 shows the
clustering results for the entire test data sets of the Vaihingen
and Toronto areas.

C. Stick Tensor Voting to Enhance Linear Saliency

With the mean shift, the ribbon road points in the LiDAR
data are clustered to their center locations, demonstrating the
linear patterns from which the road centerlines can be extracted.
However, as shown in Fig. 5, there are still large numbers of
scattered points of parking lots and grass areas, which interfere
with the subsequent extraction of road centerlines. To detect the
correct road center points, we use tensor voting [28] to enhance
their linear saliency and reduce the saliency of the nonroad
scattering points.

An important advantage of using tensor voting is its ability
to detect linear features from the data points with only one
parameter, i.e., the size of voting fields. Tensor voting is a
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Fig. 6. Detection of road center points for the two test data sets. The ground
points (black) in the (a) Vaihingen data and the (b) Toronto data. The detected
road center points for the (c) Vaihingen data and the (d) Toronto data.

powerful method of perceptual grouping, which comprises the
following three steps.
1) A point with a tangent or normal direction, or no direc-
tion, is expressed in the form of a tensor. Assuming the
points are in a 2-D space, the tensor is computed by

T=0M—-X)T1e] +\(T12] +2273)

cos? 0 cos fsin 0

= 3)

sin @ cos 6 sin’ @

where A\; and My (\; > )g) are the eigenvalues, @

and @ are the corresponding eigenvectors, and 6 is the
normal direction computed by the shift vector at the mean
shift stage. €1 @7 describes a stick, whereas (€,¢7 +
?2?5) describes a plate. f Ay =1 and A =0, T is a
stick tensor with strong directionality, which is beneficial
to enhance the linear saliency. This way, we treat each
point as a virtual stick that has a normal direction for
tensor voting.

2) Each input site (tensor 1") collects all the votes from its
neighborhood points through a predefined tensor field
and, finally, changes into a new tensor. The tensor field
used here is the same as that in [28]. The size of this field
is a function of the scale of voting o, as described in [28].

3) The linear saliency factor S of each point is calcula-
ted by

Sr=XM—X “)

where Sp represents the saliency of the linear feature
passing through a point. The greater the value, the more
likely that the point is a road point and not a point of a
parking lot, as shown in Fig. 7.
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Fig. 7. Saliency images after stick tensor voting, in which the darker pixels
indicate a larger Sp. (a) Clustered road center points by the mean shift.
(b) Linear saliency of (a) after stick tensor voting. (c) Saliency image of the
Vaihingen data. (d) Saliency image of the Toronto data.

D. Weighted Hough Transform for the Extraction
of Arc Primitives

We use arcs to represent the road primitives for two reasons:
1) arcs are suitable for delineating the smooth parts of a road
centerline, and connecting the subsequent arcs makes a com-
plete road map; and 2) arcs are suitable for a grouping algorithm
to form a road network, whether the road is straight or curved. A
straight road could be considered an arc with an infinite radius,
whereas a curved road may be composed of several arcs with
different radii.

The Hough transform [29] is a method for estimating the
parameters of a shape from its discrete points by voting and is
relatively less affected by noise. The technique we used groups
the points into the vector arc primitives of roads by considering
the linear saliency of a point in the voting process and, thus,
improves the reliability of the extraction results. The weight of
each point for voting is given by

Sk

“e ™ Max(Sr)

3)
where Max(Sr) is the global maxima of the saliency factors
obtained from the tensor voting step. There are four main
iterative steps in the arc extraction as follows.

1) Find point P, with the current maximal saliency fac-
tor Max(Sr). For a given saliency threshold Ts, if
Max(SF) > Ts, go to step 2; otherwise, the algorithm
terminates, and all the points are ignored.

2) Extract a circle passing through point P}, by the Hough
transform. According to the equation of a circle, i.e.,
(x —20)% + (y — yo)? = r?, there are three unknown
parameters, i.e., the circle’s center (zo, yo) and radius 7.
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Fig. 9. Example of the detection of arc primitives. (a) Clustered center points.
(b) Saliency image by tensor voting. (c) Detected arc by the Hough transform.

However, point P}, is considered a point on the circle;
therefore, only two parameters need to be calculated
to determine this circle, i.e., radius r and the direction
angle 6 between point Py and the center of the circle,
as illustrated in Fig. 8. The two parameters are obtained
at the local maxima in the accumulator space, where
r € (50 m, 10000 m), and the steps of  and ¢ are 50 m
and 2°, respectively.

3) Achieve the two endpoints of the arc primitives on the
detected circle. The process is implemented by the group-
ing points that are close to the circle, starting from P
with a small gap. Then, remove these points to reduce the
interference to the detection of the remaining arcs (see
Fig. 9).

4) Continue the aforementioned process until all the points
are processed.

III. EXPERIMENTS AND EVALUATION

An experimental study has been carried out in order to
validate our method. The Vaihingen and Toronto data were
provided by the ISPRS Test Project on Urban Classification
and 3-D Building Reconstruction [23]. The LiDAR data for
Vaihingen were captured by a Leica ALS50 system, and the
point density is 4 points/m?. The LiDAR data for Toronto were
acquired by Optech, Inc., and the point density is approximately
6 points/m? [23]. Vaihingen is a typical European town, and
Toronto is a developed North American city with dense high-
rise buildings. Accordingly, these data sets provide a good
sample to test the feature extraction methods in complex urban
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Fig. 10. Extracted road primitives for (left) Vaihingen and (right) Toronto.
(a) and (b) Detected road primitives by our method. (c) and (d) Reference road
map digitized manually. (e) and (f) Primitives detected by template matching.
(g) and (h) Primitives detected by the PCD method.

scenes. The two data sets contain various types of roads with
different widths and many other man-made and natural objects,
such as buildings, trees, parking lots, and grassland. Much of
the road surface is covered by vehicles and the shadows of
surrounding tall objects.

The arc primitives of the roads extracted by our method
are shown in Fig. 10(a) and (b). Fig. 10(c) and (d) presents
the road maps that were manually digitized from the data. We
used these road maps as references to evaluate the extraction
results, and we compared our method with two other methods
of road detection, i.e., template matching [24] and the PCD
approach [19].
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TABLE 1
PARAMETERS OF THE PROPOSED METHOD
Vaihingen  Toronto
Minimal width of roads(meters) 5 7
Clustering window size of intensity 30 30
Clustering window size of elevation(meters) 0.5 0.5
Clustering window size of smoothness(meters) 0.05 0.05
The scale of voting © 9 9
The threshold of saliency factor S 200 200
TABLE II
PARAMETERS OF THE TEMPLATE MATCHING METHOD
Vaihingen Toronto
Average width of roads (pixels) 20 25
Minimal width of roads (pixels) 10 10
Maximal width of roads (pixels) 25 30
Average gray of roads 200 200
Smooth scale 3.0 3.0
Scale of morphological dilating (pixels) 2 2
TABLE III
PARAMETERS OF THE PCD ALGORITHM
Vaihingen Toronto
Intensity threshold 70 30
Radius of phase disk(pixels) 25 10
Scale of morphological closing (pixels) 2 2

Template matching is a method of detecting road center
points based on the analysis of the road profile [24]. To carry
out this approach, raster images first need to be generated. An
intensity image of the filtered ground points was created for
template matching. The pixel size is selected as 0.8 m, and its
value is determined by

o { 255 — I;7—=°5—, i — ground points ©)
gi = 0, 1 — nonground points
where Ip,.x and I,,;, are the global maximum and minimum
intensities of the ground points. Fig. 10(e) and (f) show the

extraction results by template matching.

For the PCD algorithm, the same raster image is first created.
An intensity threshold is then used to separate the road points
from the ground points. The resultant binary image witha 0.75-m
pixel size is convolved with a PCD, yielding two images, i.e.,
a magnitude image and a phase image. Road centerlines are
extracted by tracing the ridge of the magnitude image, and the
direction of the lines can be retrieved from the phase image
[19]. The extraction results are shown in Fig. 10(g) and (h).

All the methods need to set a number of parameters. They
are chosen by evaluating the data over the test areas and by trial
and error. The final selections for the three methods are listed
in Tables I-III, respectively. In our method, the minimal width
of roads is set as 5 and 7 m, respectively, for Vaihingen and
Toronto. The clustering window size (30, unitless) of intensity
is used to separate the road points from other objects with
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TABLE IV
QUALITY OF THE THREE METHODS FOR ROAD PRIMITIVE EXTRACTION
_ MTH ™ PCD

Quality
metrics

Vaih. Toro. Vaih. Toro. Vaih. Toro.
i 5203.6  12162.6 | 6050.1  7112.3 | 5684.5  9322.4
Pos.(m)
False 18442 50529 | 61643  7665.6 | 50050 91128
Pos.(m)
Ealss 45435 42912 | 3697.0 9341.6 | 4062.6  713L5
Neg.(m)
Completen- (RE 73.9 62.1 432 58.3 56.7
ess %
COZ""““"SS 7.8 70.6 495 48.1 532 50.6
Overall
Qualitys | 449 56.5 379 29.5 38.5 36.5

different materials, particularly vegetation, which is chosen
to cluster points with homogenous intensity and tolerate the
noise of intensity. The clustering window size of elevation is
chosen as 0.5 m considering the typical slope of urban roads,
whereas the smoothness tolerance is set as 0.05 m. The scale
of voting o corresponds to the size of the tensor field. A
smaller scale is beneficial to preserve details, whereas a larger
scale is robust to noise and beneficial to bridge gaps but at a
heavier computational cost. The threshold of saliency factor
S is determined based on the saliency factors of the nonroad
points. As for the parameters of the other two methods, they
were set by trial and error or equivalently set to the parameters
of our method, e.g., the minimal width in meters or in pixels.
To make a fair comparison, we tuned the parameters to produce
the best results.

A number of observations can be noted when evaluating the
results in Fig. 10. The primitives extracted by our method are
more connected or less fragmented than those of the other two
methods. This is likely due to the use of the Hough transform
that utilizes the embedded piecewise circular assumption and
is therefore able to bridge the small gaps between the extracted
road center points along the road direction. Another observation
to note is that our approach yields “cleaner” results than the
other two methods in the sense that there are less isolated and
small road primitives. This is the effect of the tensor voting step,
where scale parameter ¢ is used to control the level of details
of the extracted road primitives. Our study has tuned this pa-
rameter according to the nature of the scene and the resolution
of the input data with the focus on arteries in urban scenes.
Finally, our extracted road primitives are apparently smoother
than the primitives from the other two methods. This is not only
aesthetic but more realistic for an urban area. Such an effect is
contributed by the use of tensor voting to enhance the linear
resilience and the subsequent Hough transform that accommo-
dates road primitives of varying curvatures and lengths.

Table IV summarizes the quality metrics [30] for the road
primitives extracted by the three methods. The evaluation is ref-
erenced to the manually digitized roads. The true positive and
the false positive are, respectively, the correctly and wrongly
extracted roads, whereas the false negative refers to the missed
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Fig. 11.  Extracted main road networks of the (a) Vaihingen data and a (b) part
of the Toronto data.

roads, all measured in meters. The relative quality metrics are
defined as

TP
t =———— x 100
correctness TP+ P X %
lets TP x 100%
completeness = —mm—
P TP + FN °
TP
lity = ——— x1 . 7
quality = 75N < 100% M

Notably, our method achieves the best qualities among the
three methods. This is more apparent when looking at a correct-
ness of over 70% for both data sets. As a result of introducing
tensor voting and the Hough transform, they can help select
points on the roads and fit them to a predefined road model
(a straight line or a circle). It is interesting to note that the
completeness (53.4%) of our method for the Vaihingen data set
is not as good as those of the other two methods. Since many
intersections in the data set are so close to each other, the road
segments between intersections with no salient linear features
are ignored. However, the length of the wrongly extracted
roads extracted by our method is significantly less than those
extracted by the other two methods, which is very beneficial to
road networks grouping.

Finally, the root-mean-square error of the results [30] for the
Vaihingen data and the Toronto data are, respectively, 1.16 and
1.25 m. This is as expected since it is about the point ground
spacing of the two input LiDAR data sets, i.e., sqrt(4)/2 =
1.0 m (for Vaihingen) and sqrt(6)/2 = 1.2 m (for Toronto).
This level of accuracy is similar to an early study for building
extraction and regulation by Sampath and Shan [31]. This
demonstrates that our effort reaches the best accuracy the input
data sets can provide.

The final road networks are formed by connecting the ex-
tracted road primitives. A hierarchical grouping strategy [32]
was adopted for this purpose. In this process, the gaps between
the primitives are bridged, and the isolated primitives are
grouped into complete and connected roads. Short lines that
are likely not meaningful roads are removed. Fig. 11 demon-
strates the extracted networks of main roads with our approach,
whereas Table V lists the quality metrics for all three meth-
ods. The quality of the extracted main road networks exhibits
a noticeable improvement compared with Table IV for road
primitives. This demonstrates the necessity of the final grouping



HU et al.: ROAD CENTERLINE EXTRACTION IN COMPLEX URBAN SCENES FROM LiDAR DATA

TABLE V
QUALITY OF THE THREE METHODS FOR ROAD EXTRACTION
AFTER PRIMITIVE GROUPING

_ MTH ™ PCD
Quality
metrics . y

Vaih.  Toro. Vaih.  Toro. Vaih. Toro.

True 7960.5 11898.2 17020.5 11194.5 [ 6508.5 10239
Pos.(m)
L 1040.6 14427 [2707.5 2769 | 14754 47295
Pos.(m)
False 1786.6 45557 |[2726.5 52593 32386 62148
Neg.(m)
Complete-

. 81.7 723 72.0 68.0 66.8 622
ness %
Comectne-1 g8 4 892 |[722 802 815 684
ss %
Overall
Quality% 73.8 66.5 56.4 58.2 58.0 483

for road primitives. Such positive effect is observed for all three
methods. A reliable road extraction method should make an
effort in bridging the gaps between road primitives, removing
false alarms, and cleaning its results. Moreover, our method
apparently presents a better outcome than template matching
and the PCD method for both data sets. The completeness of the
road network extraction on the Vaihingen data and the Toronto
data are 81.7% and 72.3%, respectively, and the correctness
are 88.4% and 89.2%, respectively. This, in turn, implies that
finding quality road primitives is an important prerequisite for
a successful road network extractor, and the proposed method
did contribute to this end.

IV. DI1SCUSSION AND CONCLUSION

This paper has proposed a multistep and multifeature-based
method (the MTH) for the automatic detection of roads from
the LiDAR data in complex urban scenes. The initial step is to
classify the LiDAR points as ground and nonground classes.
Three steps are then carried out on the ground points to detect
the arc primitives of roads. First, the center points of roads
are detected using an adaptive mean shift. Second, the salient
linear features are enhanced using stick tensor voting. Finally,
the arc primitives of the road centerlines are extracted using
a weighted Hough transform. The major contribution of this
paper is that the proposed sequential processing method makes
full use of the salient features of the roads in the LiDAR
data on urban scenes. Specifically, the mean shift algorithm
integrates the surface smoothness, the ribbon-like shape, and
the consistent reflectance of the roads into a data-driven model;
the shift vector is then used to enhance the linear saliency by
tensor voting, in which a point is treated as a virtual stick with
direction; and finally, the saliency factors are used in a weighted
Hough transform to iteratively detect the salient arc primitives
of roads. The experimental results in the ISPRS test data sets
show that our method can effectively detect roads in complex
urban scenes with varying road widths and noise, such as the
holes left by cars on the road. As a result, it produces better road
primitives than the template matching and PCD algorithms. It
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is shown that good road primitives are necessary for generating
a complete road network. Our method can provide a quality
input for the subsequent hierarchical grouping for the final road
network generation.

As the experiments revealed, there are problems in our
method that still need to be resolved. One problem is the heavy
computational cost in the tensor voting step. For the Vaihingen
data, the template matching and PCD algorithms take 1.5 and
1.2 min, respectively, whereas our method needs 97 min. The
computer we used is a personal computer with a 2-GHz central
processing unit. However, due to the graphic-processing-unit
computing, the highly parallel local computing of tensor voting
and the mean shift can hopefully be greatly accelerated. The
other problem is the recognition of the contextual objects of
roads, such as lane markings, road junction patterns, vehicles,
and road edges. High-resolution imagery can certainly provide
useful cues to diagnose the extracted road primitives and im-
prove the quality of the extraction. However, there are still many
issues in the integration of high-resolution images with the
LiDAR points for road extraction that need to be addressed. For
instance, how can multiple cues be detected from the complex
images? Furthermore, how should we handle cues that have
very complex semantic and spatial relations? Our experiments
suggest that a feasible way might be to first extract the major
salient roads from the LiDAR points and, then, use images to
complete and correct the initial results. This aims to form the
basis of our future work to ultimately develop an operational
system of automatic road extraction for complex urban scenes.
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