Hardware-Agnostic Compact Difference Schemes in C++/Kokkos
for High-Order CFD

Sana Nazir* and Jonathan Poggie'
Purdue University School of Aeronautics & Astronautics , West Lafayette, IN, 47901

A hardware-agnostic implementation of compact finite difference schemes is presented using
the Kokkos programming model, targeting both CPUs (OpenMP) and GPUs (CUDA, HIP)
without code duplication. The parallel cyclic reduction (PCR) algorithm achieves significant
speedup over the sequential Thomas algorithm on GPUs for large three dimensional grids. For
time dependent problems, naive plane by plane execution incurs substantial kernel launch and
memory initialization overhead. This is mitigated through a fully batched execution that solves
transverse tridiagonal systems simultaneously, yielding up to two orders of magnitude speedup
in GPU execution time. The results highlight the necessity of algorithm level redesign when
porting legacy Fortran solvers to accelerator architectures. Cross platform numerical solutions
agree within machine precision across all CPU and GPU backends, indicating deterministic
solver behavior. Comprehensive validation through method of manufactured solutions confirms
design order spatial convergence (rates approaching 6.0 for sixth order schemes) and fourth
order temporal accuracy with RK4 integration across heat equation, Burgers equation, and
isentropic vortex test cases. Long time stability analysis with the isentropic Shu vortex reveals
4th order schemes survive 2 to 5 additional convection periods compared to 6th order schemes
before aliasing induced failure. This confirms known filtering requirements for extended
simulations. The resulting framework provides verified, performance-portable building blocks
for CFD applications requiring high-order accuracy and sustained numerical integrity across
evolving compiler and hardware architectures. All development and debugging were performed
locally using the OpenMP backend, with total GPU usage limited to fewer than 100 node-hours.

I. Nomenclature

a;, b, c; = Tridiagonal matrix coefficients d; = Right-hand side of tridiagonal system
a = Thermal diffusivity % = Kinematic viscosity

At = Time step size Ax,Ay,Az = Grid spacings

d = Number of spatial dimensions u = Scalar solution variable

Viu = Laplacian of u Unum = Numerical solution

Uexact = Exact (manufactured) solution Lo = Maximum absolute error norm

L, = Discrete L, error norm Ly rel = Relative L, error norm

E = Discrete total energy Nx,Ny,N, = Grid points in each direction

C4,C6 = Fourth- and sixth-order compact schemes AC4,AC6 = Asymmetric compact schemes

CR = Cyclic Reduction solver PCR = Parallel Cyclic Reduction solver
Thomas = Sequential tridiagonal solver RKA4 = Fourth-order Runge—Kutta scheme
CPU = Central Processing Unit GPU = Graphics Processing Unit

CUDA = NVIDIA GPU programming model HIP = AMD GPU programming model
OpenMP = Shared-memory CPU parallelism Kokkos = Performance-portable C++ framework
X, 9,2 = Physical coordinates é&nl = Computational coordinates

OMP - 64 = OpenMP with 64 threads

*PhD Student, School of Aeronautics & Astronautics, AIAA Student Member
TProfessor, School of Aeronautics and Astronautics, AIAA Associate Fellow

II. Introduction

ompAcT finite difference schemes achieve high spectral-like accuracy using narrower stencils compared to explicit
Cschemes of equivalent order [[1]]. This property makes them particularly attractive for turbulence resolving
computational fluid dynamics (CFD) on structured grids, where capturing fine scale structures with minimal numerical
dissipation is critical [2]. The pioneering work by Lele [[1] established the theoretical foundations of compact schemes,
demonstrating their spectral-like resolution characteristics. Subsequently, Gaitonde and Visbal [3]] extended these
schemes for practical CFD applications, including specialized boundary treatments. It has been demonstrated that
compact finite difference methods offer superior spatial accuracy on coarser grids compared to conventional schemes
[4], potentially leading to significant reductions in computational cost while maintaining high-order accuracy.

Achieving performance portability in computational fluid dynamics is a nontrivial task that requires algorithmic
redesign and rigorous cross platform numerical verification. Traditional development workflows require separate code
paths for multiple programming models and hardware targets, such as CUDA for NVIDIA GPUs, HIP for AMD GPUs,
OpenMP for CPUs, etc. The Kokkos programming model [S]] provides a unified abstraction layer that decouples
numerical algorithms from hardware specific implementation details. As a result, the majority of development and
debugging can be performed locally on CPU systems using the OpenMP backend, where correctness, unit testing, and
accuracy verification can be established. Once numerical integrity is ensured, and a test framework is established,
performance tuning and optimization for GPU architectures can be conducted using Kokkos profiling tools [6], enabling
efficient performance portability without duplicating solver implementations or requiring extensive GPU compute time.

This work presents a Kokkos based implementation of high-order compact finite difference schemes (4th, 5th, and
6th order) demonstrating that true GPU acceleration necessitates parallel algorithms rather than syntactic translation of
sequential methods. Two tridiagonal solution strategies are implemented: the sequential Thomas algorithm for CPU
efficiency and Parallel Cyclic Reduction (PCR) for GPU parallelism. The entire development and debugging cycle was
carried out locally on a laptop using the OpenMP backend, with only sporadic verification on HIP and CUDA backends,
totaling fewer than 100 GPU node hours.

The Kokkos programming model provides a mature, production-ready foundation for implementing performance
portable compact finite difference schemes. As demonstrated in recent studies, Kokkos achieves superior performance
portability compared to other programming models, with performance portability scores of 68% versus OpenMP’s 28%
across diverse architectures [7]. This proven track record makes it an ideal choice for CFD applications requiring both
numerical precision and hardware portability.

Beyond performance metrics, this work emphasizes numerical portability as essential infrastructure for high-order
CFD. Compiler optimizations targeting machine learning workloads increasingly threaten IEEE-compliant behavior
required by physics applications. We advocate for open-source, continuously tested reference implementations with
automated regression detection across evolving compiler and hardware landscapes. As GPU computing matures
with diverging precision requirements between Al and CFD domains, the computational physics community requires
sustained verification infrastructure [8]]. This work developed performance portable building blocks and a sustainable
verification framework based on Google Test and a curated suite of PDE benchmarks with manufactured and analytical
solutions for maintaining numerical integrity across heterogeneous architectures.

Performance portability is measured within a single unified codebase and does not claim to measure against hand
optimized implementations across programming models. All timing comparisons use identical Kokkos enhanced
source code compiled against different Kokkos execution backends (Serial: single-threaded CPU execution, OpenMP:
multi-threaded CPU execution, CUDA: NVIDIA GPU execution, HIP: AMD execution).

ITI. Mathematical Formulation
Compact finite difference schemes achieve high-order accuracy through implicit relationships between derivative
values at adjacent grid points. The general form is:

Sis1 = fic1 N bfi+2 - fia
2Ax 4Ax

af +fi+afi, =a M
where f/ represents the derivative at point i, and coefficients @, a, b determine the scheme’s order and accuracy.
This implicit coupling creates tridiagonal systems requiring specialized parallel solvers for efficient CPU and GPU
implementation.

Our implementation includes explicit schemes (E1-E6), compact schemes (C2-C6), and specialized boundary
treatments (DE1-DES6 for explicit boundaries, AC4-AC6 for compact boundaries).

The code tests multiple combinations of schemes, denoted using the format "Interior-SecondPoint-FirstPoint-
LastSecondPoint-LastPoint". For example, "C4-AC4-C4-AC4-C4" indicates a fourth-order compact scheme in the
interior with alternative compact boundary schemes, while "E4-DE4-E4-DE4-E4" uses fourth-order explicit schemes
throughout.

For curvilinear grids, coordinate transformations map physical space (x,y, z) to computational space (&,17,).
Following Thomas and Lombard [9]], the chain rule relates physical derivatives to computational derivatives:

a9 0906 dpan 3¢ dL

==t ——+ === 2
ox 0&0x Onox 0 ox @
with analogous expressions for y and z derivatives.
The geometric conservation law (GCL) governs the time variation of the coordinate transformation Jacobian J:
aoJ 0 0 0
—+ =&+ —=Un)+—=U&) =0 3
ot ﬁf(&) 87](1) (9{(&) 3

9(x,y,z)

where J = ’6(6—774) is the transformation Jacobian. Satisfying the GCL numerically ensures that grid motion does not

introduce spurious numerical errors, particularly critical for high-order compact schemes.

Our implementation provides two metric calculation approaches:

1) Standard approach: Direct computation using coordinate derivatives

2) Conservative approach: GCL-based formulation ensuring geometric conservation

The conservative approach, based on Thomas and Lombard’s differential GCL formulation [9], maintains consistency
between the finite-difference discretization and the effective volume elements, preventing grid motion-induced errors
that can corrupt high-order accuracy [3].

Further details on scheme constants and stability preserving filtering methods can be found in [1} 13} 4].

IV. Numerical Implementation

A. Fortran Code Base

The initial implementation of compact finite difference schemes used for this work was developed in Fortran and has
been extensively validated in previous work [4}[10]. The reference Fortran codebase supports a variety of stencil orders,
with modular components for setting scheme coefficients, applying compact differencing operators, and computing grid
metrics in curvilinear coordinates.

At its core, the Fortran solver applies high order compact schemes to structured three dimensional grids by
computing spatial derivatives along each computational coordinate direction. Derivative routines are configured using
coefficient generation modules tailored to the chosen order of accuracy. Derivatives in each direction are computed via
dimensionally split routines that operate on 2D data slices extracted from the full 3D field.

The solver supports both standard and conservative forms of metric term evaluation to accommodate curvilinear
geometries. These metric terms are derived from coordinate transformation functions and are used to convert between
computational and physical space gradients.

Tridiagonal systems arising from the compact discretization are solved using the classical Thomas algorithm in
a sequential, in-place fashion. While efficient for CPU execution on a single thread, this serial algorithm forms the
primary bottleneck when targeting parallel architectures such as GPUs or multi-core systems. This limitation motivated
the current effort to develop a portable, high-performance C++ implementation using Kokkos.

In the reference Fortran implementation, the innermost loops of the derivative and tridiagonal solve routines are
explicitly structured to promote SIMD vectorization on CPUs[11]. This is achieved through contiguous memory access
patterns along the fastest varying index and compiler level vectorization directives, enabling efficient utilization of wide
vector registers. While this approach is excellent on cache based CPU architectures, it is fundamentally incompatible
with GPU execution. On GPUs, performance is governed by massive thread level parallelism and memory coalescing
across thousands of concurrent threads, rather than long vector operations within a single thread. The sequential data
dependencies inherent to the Thomas algorithm and its vectorized inner loops prevent effective mapping onto SIMT
execution models, where warp level synchronization [[12] and occupancy dominate performance. Thus, to target GPUs
and achieve performance, a complete algorithmic redesign is required.

B. Tridiagonal Solvers
The tridiagonal system arising from compact schemes can be represented as:

Ax=d “
where A is a tridiagonal matrix:
b1 C1
a by ¢
A= as by c3 3)
a, by,
Each equation has the form:
aixi—1 + bix; + ¢ixiv1 = d; (6)

where a;, b;, and ¢; are the coeflicients of the tridiagonal matrix, and d; is the right-hand side.

For our implementation, we employ three different solvers: the Thomas algorithm for sequential execution on CPU,
and Cyclic Reduction (CR) [13]] and Parallel Cyclic Reduction (PCR) for parallel execution on GPU. CR and PCR have
been shown to be effective for GPU implementation of tridiagonal solvers [[14]. In this work the behavior of the PCR
algorithm is investigated in depth, the CR algorithm analysis and performance is deferred to future work.

The Thomas algorithm is the standard sequential method for solving tridiagonal systems, representing a specialized
form of Gaussian elimination optimized for tridiagonal matrices. It consists of two phases: forward elimination and
backward substitution.

Forward elimination:
’ C1 ’ Ci

cl:b_l, Ci:bi_cg—laiy i:2,3a"'7n_1 (7)
d di—d._a;
dj==2, d=——=10 0 i=23,....n 8)
b] bi —lelai
Backward substitution:
Xn =d,)
xi=d —cixiy1 i=n-1n-2,...1 (10)

The Thomas algorithm is inherently sequential because each step depends on the results of the previous calculation.
While computationally efficient with O (n) operations, it requires 2n strictly sequential steps, making it unsuitable for
parallel architectures.

The CR and PCR algorithms address this limitation by trading additional computational work for reduced algorithmic
depth and increased parallelism [[13}14]].

The CR algorithm operates by successively reducing the system size through elimination of odd-indexed unknowns.
The algorithm consists of two phases: forward reduction and backward substitution.

In each reduction step, even-indexed equations are updated as linear combinations of three consecutive equations.
For equation 7, the update formulas are:

a; Ci
ki = , ko= 11
" b > bin an
a; =—aj_1ki, b;=b;—ci_1ki —air1ks (12)
c;=—civika, di =di—di_1k) —dis1k (13)

This process continues until a 2x2 system remains, which is solved directly. The algorithm then works backward,
solving for the previously eliminated odd-indexed unknowns:

’ ’ ’
di —aixi—1 — CiXi+1

b,

Xi =

(14)

Although the CR algorithm provides greater parallelism than the Thomas algorithm, its parallel efficiency decreases
as the reduction progresses. In particular, the final reduction stages and the initial back-substitution steps expose
insufficient parallelism to fully utilize GPU cores [14].

The PCR algorithm further improves GPU utilization by eliminating the backward substitution phase entirely.
Instead of reducing to a single smaller system, PCR simultaneously reduces the original system to multiple independent
subsystems. In each reduction step, all equations are processed in parallel. With stride s = 2%P, each equation i is
updated using the linear combination of equations i — s, 7, and i + 5. The reduction formulas are identical to those of the
CR algorithm, but the application pattern differs significantly.

The key advantage of the PCR algorithm is that it maintains full parallelism throughout the entire solution
process.After log, n reduction steps, the algorithm produces multiple independent 1 X 1 or 2 X 2 systems that can be
solved simultaneously. For 1 X 1 systems the solution is directly available as

Xi = —. (]5)

This approach provides consistent GPU utilization throughout the algorithm execution.

Algorithm | Operations | Steps Parallelism | Memory Pattern
Thomas O(n) 2n None Sequential

CR O(n) 2log, n —1 | Variable Bank conflicts
PCR O(nlogyn) | logyn Full Conflict-free

Table 2 Comparison of tridiagonal solvers. More details on these statistics are available in [14]

Transition from CPU to GPU implementation necessitates abandoning the Thomas algorithm due to its inherently
sequential nature. While Thomas provides optimal computational complexity, its lack of parallelism renders it inefficient
on massively parallel architectures. At the same time PCR incurs added cost while running on single threads. Thus, it is
imperative to have both implementations available in any truly hardware agnostic code base.

The CR algorithm offers a compromise between computational efficiency and parallelism. It maintains linear com-
putational complexity but provides limited parallelism, particularly problematic in later algorithm stages. Additionally,
its memory access pattern can lead to bank conflicts (when multiple GPU threads access different memory addresses
that map to the same shared-memory bank, forcing serialized access) in GPU shared memory. The PCR algorithm’s
regular memory access pattern avoids the bank conflicts[14]. PCR truly shines when problem sizes get very large, this is
demonstrated by our operator performance results. A truly scalable system should be able to adapt and switch between
solvers as needed. The choice between CR and PCR should depend on the specific problem size, available GPU memory
bandwidth, and the trade-off between computational work and parallel efficiency for the target hardware architecture.

V. Parallelization Strategy and Implementation Takeaways

Kokkos abstracts parallel execution and memory management through six core concepts: execution spaces define
where computation occurs, execution patterns express algorithmic parallelism, and execution policies control scheduling.
memory spaces, memory layouts, and memory traits manage data placement and access patterns. This separation
allows numerical schemes to maintain their mathematical properties while adapting to different hardware architectures
automatically [5] [7].

Compact schemes benefit significantly from proper data layout. In this work, we explicitly use Kokkos: :LayoutRight
for 2D and 3D Views to guarantee stride-1 access in the innermost index, which is optimal for CPU cache utilization
and vectorization. On GPU backends, this study prioritizes numerical correctness and cross-platform consistency over
detailed optimization of memory coalescing. Although Kokkos Views do enable automatic layout selection based on the
target architecture, this feature has not yet been investigated for performance or correctness in the present work.

The hardware-agnostic approach was validated across diverse computing platforms, including NVIDIA GPUs (A30,
L40S, H100) and MI50 AMD architectures. The same source code achieved reasonable performance and near identical
accuracy on each platform after recompiling the code and Kokkos for the appropriate backend selection, demonstrating
excellent portability.

It was observed that code accessing class members inside device lambdas compiled and executed under older CUDA
toolchains, but failed under HIP. This indicates that earlier CUDA compilers silently tolerated a pattern that is not
robust in a heterogeneous setting, namely device code implicitly de-referencing host-resident objects. The stricter
behavior in HIP exposed this portability bug, which was resolved by explicitly creating local aliases of all required
class members inside each kernel-launching function (e.g., auto var = _var) prior to invoking device lambdas, this
avoids any implicit this capture. This approach was preferred over explicit function parameter forwarding to minimize
call overhead and enable aggressive compiler inlining and register allocation inside device kernels. Related undefined
host—device behavior has been previously reported by Mejstrik [15].

Host—device lambdas may not be defined inside private or protected class member functions. This restriction breaks
the use of Kokkos kernels inside GoogleTest TEST_F bodies, since GoogleTest generates a private TestBody () method
in which the device lambda is implicitly defined. All affected tests were updated to comply with CUDA 12.6.0 rules.
Interestingly, no corresponding fixes were required on the HIP backend. This behavior contrasts with an earlier issue in
which HIP flagged a memory-access pattern that CUDA permitted. The combined observations highlight subtle but
important differences in backend compiler enforcement of C++ device rules [16].

Recent large-scale portability studies show that GPU programming models can exhibit differing backend and
compiler dependent behavior for identical code [16]], thus expecting exact enforcement of device code rules can backfire
when writing portable code and remains the responsibility of the programmer.

The largest performance gain was obtained not from additional solver-level micro-optimizations, but from a
restructuring of the overall execution model to reduce kernel launch overhead. The original load—solve—store
implementation processed each tri-diagonal system with an independent kernel launch, yielding millions of very small
kernels even for moderately sized three-dimensional grids. In this regime, kernel launch latency dominated the runtime,
and the underlying cost of the tri-diagonal algorithms was effectively masked by orchestration overhead. To address
this, the implementation was reformulated as a fully batched, plane-based strategy in which all tri-diagonal systems
associated with a given two-dimensional slice are solved within a single kernel launch. This approach amortizes launch
overhead across thousands of independent systems, increases arithmetic intensity, and exposes sufficient concurrency to
better utilize the GPU. Once batching was introduced, both the Thomas and PCR solvers exhibited substantial speedups,
and their relative performance could be assessed in a regime where kernel launch costs are no longer the dominant factor.

Another optimization introduced was reuse of cached temporary workspaces across calls to reduce repeated allocation
overhead.

Persistent workspace caching and batch launching vectorized grids, significantly impacts the peak resident memory
footprint of the application. As a consequence of this intentional design shift, the memory limits were hit on available
hardware for the largest problem sizes which were previously computable. These results highlight a fundamental
memory—performance trade-off in large-scale high-order compact GPU implementations. An important direction for
future work is a more nuanced memory aware and flexible caching strategy.

An additional practical advantage of the Kokkos-based implementation is the dramatic reduction in required
large-scale GPU resources during development. Because the same code path executes on CPUs, local GPUs, and
leadership-class GPU systems, nearly all debugging, verification, and unit testing were performed locally. Only the final
large-scale performance benchmarks required access to H100 GPUs. As a result, the entire project consumed under 500
H100 GPU-hours in total, which is exceptionally low for a three-dimensional, high-order compact finite-difference solver
with implicit tridiagonal line solves. This demonstrates that performance portability not only enables cross-architecture
execution, but also substantially reduces the real computational cost of GPU-based research.

VI. Base Operator Verification
To validate the correctness of the compact and explicit derivative operators, we performed a manufactured—solution
accuracy study across all supported stencil families, including explicit (E1-E6), diagonal-enhanced (DE1-DE®6),
approximate compact (AC4-AC6), and fully compact (C4, C6) schemes. For each stencil, we computed the derivative
of the smooth analytic field:
f(x,y,z) = sin(nx) sin(ry) sin(7z) (16)

and recorded the global error as well as directional errors ey, ey, e;. As the grid is refined, all schemes exhibit the
expected convergence behavior: low—order explicit stencils reduce the error at first or second order rates, while higher
order compact and AC/DE hybrid stencils achieve errors in the 1073-107% range at N = 256. Directional errors remain
nearly identical, demonstrating that the assembled three—dimensional operator is isotropic and that the one dimensional
d-plane solves are consistent across all spatial directions. These tests confirm that the compact coeflicients are generated

correctly for all stencil families, the solver backend does not affect accuracy, and the base derivative operator attains its
formal order on uniform Cartesian grids.

Cross-platform numerical consistency was verified by comparing results from the reference Fortran implementation
(Thomas algorithm) against Kokkos/C++ implementations using OpenMP (CPU), CUDA (NVIDIA H100), and HIP
(AMD MI50) backends with the PCR algorithm and the Thomas algorithm. Table[3|shows maximum infinity norm
errors at N = 256 for representative schemes.

Platform to platform differences remain at machine precision (< 10~'#), with most schemes achieving bit-level
consistency (deviations of 1071% to 107!7) at the finest grids. These results confirm that both the PCR and Thomas
algorithm implementations preserve numerical accuracy to machine precision across heterogeneous architectures,
validating the algorithmic portability approach for production CFD applications.

Table 3 Cross-platform numerical consistency for selected compact finite difference schemes at N = 256.

Scheme Fortran OpenMP CUDA HIP Max. Dev.
E4-AC5-C6-AC5-E4 4.064E-10 4.064E-10 4.064E-10 4.064E-10 3.5E-17
C4-AC4-C4-AC4-C4 2991E-10 2.991E-10 2.991E-10 2.991E-10 3.8E-17
E5-DE5-C6-DES-E5 6.183E-12 6.183E-12 6.182E-12 6.182E-12 3.2E-16
C6-AC6-C6-AC6-C6 7.541E-14 7.540E-14 6.720E-14 6.720E-14 8.2E-15

Platform differences < 10~14

VII. PDE Verification Tests

A. Laplacian Stiffness Matrix Test
We used a smooth separable trigonometric function:

u(x,y,z) = sin(anx) sin(bry) sin(cnz) (17)

where a, b and ¢ are non-integer frequencies (0.21,0.23,0.27) to avoid symmetry artifacts. This function has an
analytical solution,

Viu=-n*a*+b*+cHu (13)

which provides a clean comparison benchmark. Max error (Maximum absolute pointwise error across the domain),

LoO = En/az |V2unum(l', j, k) - VZMexact(i’ j’ k)\ (19)

Lerror (root mean square error over all grid points),

1 2
L= [—— V2unum (i, 7, k) — Viegact (i, , k 20
2 \/NxNyNz L;{(Unum (0, J) Uexact (I,])) (20)

and Relative L, error (L, error normalized by the L, norm of the exact solution),

2

“VZMnum - Vzuexactuz J Zi,j,k (Vzunum - Vzlftexact)2
L2,rel = =

”Vzuexactuz Zi,j,k (Vzl/lexact)2

were computed.

This test isolates discretization error from time integration and provides a direct assessment of high-order accuracy,
solver consistency (Thomas, PCR), and platform portability (CUDA, HIP, OpenMP). The resulting stiffness matrix is
inverted along each grid line using the selected solver, and the discrete Laplacian is compared to the analytical reference.

For low-order or auxiliary stencils where the tridiagonal system is small enough, PCR recursion is unnecessary. In
these cases, the implementation automatically falls back to serial Thomas, which is more stable and efficient for such
regimes.

A progressive order study demonstrates systematic error reduction with increasing order, measured slopes closely
match theoretical predictions.

Solver correctness was verified by comparing the Parallel Cyclic Reduction (PCR) solver against the reference serial
Thomas algorithm. Both methods were seen to exhibit identical error profiles across all grid resolutions, demonstrating
that PCR recursion introduces no additional numerical diffusion or instability. The observed slope is consistent with the
theoretical accuracy of each scheme order.

All architectures reproduce the expected convergence behavior for 4th, 5th, and 6th-order compact Laplacians. The
E4 and E6 families achieve the expected O (h*) and O (k) scaling.

The pure 6th-order C6 interior suffers from an error floor at high resolution (N > 128), this is expected in high-order
compact formulations. This accuracy drop is consistent across all backends, confirming the degradation is inherent to
the stencil. It was observed that a hybrid scheme using a C6 interior with E5 boundaries restores full O (h°) convergence.
See Fig. [[land Fig. 2]

Progressive Scheme Order: 2nd through 6th: L. Convergence Progressive Scheme Order: 2nd through 6th: L, Convergence

2nd Order (E2) (-1.01) 2nd Order (E2) (-1.54)

101 3rd Order (E3-C4) (-1.97) 10-11 { =@~ 3rd Order (E3-C4) (-2.52)
4th Order (E4-C4) (-3.03) 4th Order (E4-C4) (-3.53)
~@~ 5th Order (E5-C6) (-3.47) =@~ 5th Order (E5-C6) (-4.05)
~#— 6th Order (E6-C6) (-2.82) —#— 6th Order (E6-C6) (-3.58)
10t 10? 10t 10?
Grid Size (N) Grid Size (N)

Fig. 1 Convergence behavior of progressively higher-order schemes from 2nd through 6th order.

C6 Interior: Pure Compact vs Hybrid Approach: L. Convergence C6 Interior: Pure Compact vs Hybrid Approach: L, Convergence
10 ~8— Pure C4 (baseline) (-3.04) 10 —®— Pure C4 (baseline) (-3.53)
~#- Hybrid: ES + C6 (works!) (-3.47) ~#- Hybrid: E5 + C6 (works!) (-4.05)
=%~ Pure C6 (error floor) (-1.53) =% Pure C6 (error floor) (-2.43)

10-11 101

Grid Size (N) Grid Size (N)

Fig.2 Comparison of pure C6 interior versus hybrid E5+C6 compact scheme for the 3D Laplacian.

B. Heat Equation 3D
The heat equation is defined as:
u, = aViu (22)

1. Manufactured Solution - Convergence
The smooth manufactured solution

Uexact (X, ¥, 2, 1) = sin(anx) sin(bry) sin(cnz) exp(—Ar)

where 1 = an?(a®> + b*> + c®) and a = b = ¢ = 1, was used. The problem is solved using the C6~AC6—-C6-AC6-C6
sixth-order compact scheme in space and RK4 for time integration. Gridsize N is varied as 8, 16,32, 64. Error is
measured along the 3D L, norm Eq.(20).

The solver achieves sixth-order spatial accuracy, as expected from the compact stencil and fourth order temporal as
expected from RK4 scheme. CUDA, HIP, and OpenMP backends produce numerically indistinguishable results with
differences within machine precision. As seen in the strictly overlapping curves shown in Fig. [3]

Spatial Convergence Temporal Convergence (RK4)
1076 4 -@- CUDA 102 =@~ CUDA RK4: O(at*)
L =~ OpenMP =~ OpenMP
HIP HIP

10-74 1004

10-¢ 1 | 1072
8 8 10741
5 10794 =
5| 5]

4 -6

2 N Py oy 107 -

10710 N\

O(h%) 108 i
107114 N\
\ D(h%) 10-10 4 |
-12
10 b 107121 g
10 2x100 3x10! 4x10' 6x 10! 10-¢ 10-3
Grid Points per Direction (N) Time Step (At)

Fig.3 Convergence behavior of the sixth-order compact diffusion operator with RK4 time integration. (a) Spatial
convergence of the discrete Laplacian for the analytical heat-equation mode u(x, y, z) = sin(nx) sin(ry) sin(7z)
showing sixth-order accuracy. (b) Temporal convergence of the RK4 integrator demonstrating the expected

O(At*) behavior.

2. 3D Heat Diffusion from a Gaussian Pulse
We next simulate 3D heat diffusion using:

ou (ou Ou Ou)

= -y = 2
o ¢ 6x2+6y2+622 @9

with Dirichlet boundary conditions # = 0 on all faces. and a radially symmetric Gaussian initial condition centered at
(0.5,0.5,0.5)

(24)

(=052 +(y =057+ (2 - 0.5)2)
2

u(x,y,z,0) = exp (

20
Spatial discretization: C6—AC6—-C6—AC6—-C6, time integration RK4 and timestep set as Ar = 0.1 X ﬁ A—;z, where d = 3,
in accordance with the standard stability limit for multidimensional diffusion. The Gaussian pulse spreads smoothly and
symmetrically, and both energy and temperature decay monotonically, consistent with the expected diffusive scaling.
CUDA, HIP, and OpenMP versions produce overlapping energy decay curves, identical centerline profiles, and matching
2D/3D temperature fields. See Fig. [Fig. [5]and Fig. [6]

°
3
3

°

&

Temperature

°
=
&

°

g

8

Temperature

Heat Diffusion - Time: 0.000 . Heat Diffusion - Time: 0.100 e
075 0.15
0.30 0.06
0.15 0.03
0 02 04 06 08 10
X

0.00 0.00

Fig. 4 Evolution of a 3D Gaussian temperature pulse under the heat equation using the sixth-order compact
Laplacian and RK4 time integration. The solution exhibits smooth radial diffusion and monotonic decay,
consistent with analytical expectation.

| —@— CUDA 1.04 W -8 CUDA
~~ OPENMP ——- OPENMP
HIP HIP
. 0.8
m]
= g
° >
3 2
o 2 0.6 1
CO &
2 10-24 | 2 [
2 S
3 =
2 |
5] g]
- g 0.4
Z '
DA
| |
0.2 o
| ' n
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Time Time

Fig. 5 Energy conservation analysis for the Gaussian heat-pulse diffusion test. (Left) Total energy E(¢) =
% f u* dV decreases monotonically as expected for the heat equation. (Right) Normalized energy E(¢)/E(0)
showing identical decay curves for CUDA, OpenMP, and HIP backends. The overlap of all curves to machine
precision demonstrates backend-invariant behavior of the compact Laplacian and RK4 integrator.

10

0.200
1.0

N o CUDA
o N o~ OPENMP
0.175 1 / \ HIP
0.150 / Y

0.125 4 / \

0.050 / \

0.025 / \

0.000{ « ~

0.8

e
=)

Temperature
o
~

Temperature
o o
o _
~ (=]
w (=}

0.2 1

0.0

0.0 02 04 0.6 08 10 0.0 02 0.4 0.6 0.8 10
Fig. 6 Temperature profiles through the centerline (y = 0.5) of the domain. (Left) Temporal evolution of the
Gaussian pulse at times r = 0.000, 0.020, 0.040, 0.060, 0.080, and 0.100, showing smooth radial diffusion and
consistent decay. (Right) Cross-platform comparison at 1 = 0.100 demonstrating that CUDA, OpenMP, and HIP
produce indistinguishable temperature distributions. This verifies that the discrete diffusion operator is stable,
symmetric, and backend-agnostic.

C. Burgers Equation (Nonlinear Advection Test)

1. Viscous 1D Burgers: N wave Shock Formation
We considered the nonlinear, viscous one dimensional Burgers equation

ou ou 0%u

— et U— = y—, 25
ot ox T Vox ()
on x € [0, 1] with homogeneous Dirichlet boundary conditions
u(0,t) = u(l,t) =0, (26)
and a smooth initial condition
u(x,0) = Asin(2rx), A=0.2. 27
For the numerical test the 2D field was initialized as
u(xi,y;,0) = Asin(2mx;), v(x;,y7,0) =0, (28)

with viscosity set to v = 0.001. The j direction was treated as a dummy index dummy index so that the solution
remains one-dimensional in x. The streamwise grid used N, = 512 points (and Ny, = 512 dummy points in the
transverse direction). The domain was discretized with a 6th order compact interior stencil and 6th order boundary
closures (C6—-AC6—-C6—-AC6—C6). The soslution was advanced to ;4 = 1.0, using a CFL = ﬁ—)’c =0.25. AtA=0.2
and v = 1073 the effective Reynolds number is Re ~ UL/v ~ 200, and the resulting viscous shock has thickness
§ = O(v/U) = 5x 1073, corresponding to approximately 2.6 grid spacings for N, = 513. The small viscosity
regularizes the shock formation into smooth viscous shock layer with thickness § = O(v), which prevents Gibbs
oscillations and captures shock steepening.

11

Initial (t=0) Final (t=1.0)

0.8 1 0.8

0.6 0.6

o

°

8
u-velocity

y

o

°

8
u-velocity

0.4 04

—-0.06 —0.06

0.24 0.2

-0.12 -0.12

0.0+ -0.18 0.0 —0.18
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 06 0.8 10

X X

Fig. 7 Fig. 7. Viscous Burgers evolution on the 2-D solver grid. The left panel shows the initial condition
u(x,0) = Asin(2rx) with A = 0.2, extended uniformly in y. With viscosity v = 0.001, nonlinear steepening
generates a smooth viscous shock centered at x = 0.5 by ¢t = 1.0. The field remains constant in the transverse
direction, confirming correct derivative assembly and boundary closures in the 2-D code path.

The numerical solution shows the expected N-wave steepening of the initial sine profile. The finite viscosity
regularizes the shock into a smooth layer of thickness 6 = O(v/U), preventing Gibbs oscillations while still capturing
the nonlinear compression. The shock forms at the correct location and remains symmetric about the domain center.
The energy decays monotonically in time.

= t=0 (Initial) 01425

— t=1.0 (Final) T ey

01400

01375

01350

u-velocity
g
Energy

01325
-0.05
01300
-0.10
01275
-0.15

01250
-0.20

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8 Left: 1D centerline solution u«(x) showing formation of the viscous shock. Right: evolution of the
total energy, which decreases monotonically due to viscous dissipation. No spurious oscillations are observed,
indicating stable high-order reconstruction and time integration.

2. Viscous 2D Burgers: Diffusion of a Gaussian Pulse
Coupled 2D viscous Burgers system was tested.

ou ou Ou 5

- - —— =V 29

5 +u o +v 3y vVu (29)

ov ov av

— 4+ —_— 4t y— = V2 30

ot " ox Y ay vvw 30)
on [0, 1] x [0, 1] with homogeneous Dirichelet boundaries, u = 0,v = 0 on dQ. The initial condition is a Gaussian

pulse, that enforces zero values at the boundaries:

(x=3)2+(-1)?
202

s

u(x,y,0)=A exp(—

(3D
v(x,y,0) = u(x,y,0).

12

u-velocity at t=0 u-velocity at t=0.2

0.450 0108
0375 0090
0300 0072
0225 0054
0150 0036
0075 oos

0.000

0.108

0.090

0072

0.054

0.036

0.018

0.000

Fig. 10 Contour plots of the « and v velocity fields for the 2D viscous Burgers problem. The initially compact
Gaussian pulse (left column) diffuses outward and decreases in amplitude by r = 0.2 (right column). Both
components remain smooth and symmetric, with no spurious oscillations.

with amplitude A = 0.5 and width o = 0.01. The viscosity was set to v = 0.02. A uniform 129 x 129 grid was
used. 6th order compact stencils were employed in both directions with 6th order boundary closures. Timestep was

chosen according to diffusive CFL vAr/Ax* = 0.25, and convective CFL Ar/Ax = 0.25 as At = min(0.2524= Ax ,0.25Ax)
the solution was advanced to ¢ = 0.2. Total kinetic energy:

1
"7 N.N, Zi’j Uij T Vi (32)

was monitored, and seen to decay in time, as expected.

Snapshots of u(x, y, t) show the initially compact pulse diffusing outwards and remaining centered in the domain and
also decaying in amplitude. No spurious oscillations are observed, indicating that the high—order compact derivatives
and RK4 time integration remain stable and non-oscillatory for this nonlinear convective—diffusive flow.

Energy Dissipation (Viscous Burgers)

Fig. 9 Monotonic decay of the Kkinetic energy, shows viscous dissipation and the stability of the 6th-order
compact scheme with RK4 time integration.

3. Manufactured Solution for 2D Burgers with Dirichlet BCs

Lastly, method of manufactured solutions was employed to verify the spatial accuracy of the solver for a fully
coupled, source-driven problem with Dirichlet boundaries.

The 2D Burgers system is defines as:

13

ou ou ou

. a_ .- VZ u s Vs
c’)t+u6x+v6y vWou+S,(x,y,y) (33)
ov ov ov
. a. a. = V2 v s) 4
6t+ué)x+v(9y vV + 8,(x, y,1) (34)
on [0, 1] x [0, 1] with
u(x, y,t) = v(x,y,1) = sin(zx)sin(ny) exp(-2n*vt) (35)

homogeneous Dirchlet boundary conditions are satisfied naturally at the boundaries for this setup. The source terms
S, and S, are obtained by substituting the exact solution into the PDEs and are evaluated analytically in the code. To
isolate spatial discretization error a very small timestep of Az = 10~ was used. The simulations were run from ¢ = 0 to
tfinal = 1073 on grid size [32 x 32],[64 x 64], [128 x 128], [512 x 512]. Fourth-order schemes (E3-DE3-C4-DE3-E3
through C4-AC4-C4-AC4-C4) achieve convergence rates of 3.2-4.7, while sixth-order schemes (E5-DES-C6-DES5-ES
through C6-AC6-C6-AC6-C6) achieve rates of 5.2-6.9 before saturating at machine precision (107') on N > 256 grids.
Reference dashed lines indicate theoretical slopes of 4th, 5th, and 6th order. All schemes demonstrate design order
accuracy. See Fig. [TT]

Maximum Error Convergence L2 Error Convergence

—@- E3-DE3-C4-DE3-E3 —@- E3-DE3-C4-DE3-E3

E4-AC5-C6-ACS-E4 E4-AC5-C6-ACS-E4
~@- E4-DE4-E4-DE4-E4 10-5 ~@- E4-DE4-E4-DE4-E4
~@- E4-DE4-C4-DE4-E4 ~@- E4-DE4-C4-DE4-E4
~@- E4-AC4-C4-AC4-E4 ~@- E4-AC4-C4-ACA-E4
—@- C4-AC4-C4-AC4-C4 —@- C4-AC4-C4-AC4-C4

E5-DE5-C6-DES-E5 E5-DE5-C6-DE5-ES
—@- ES5-AC5-C6-AC5-ES 1077+ —@- E5-AC5-C6-ACS-ES

E6-DE6-C6-DE6-E6 E6-DE6-C6-DE6-E6
=@~ E6-AC6-C6-AC6-E6
C6-AC6-C6-AC6-C6
10724

~@- E6-AC6-C6-AC6-E6
10114

C6-AC6-C6-AC6-C6

10-10

Max Error
L2 Error

10-12
10-13 4

1071
10-15 4

10! 10? 10! 10?
Grid Points (N) Grid Points (N)

Fig. 11 Spatial accuracy verification for viscous Burgers equation using Method of Manufactured Solutions. All
compact finite difference schemes achieve their theoretical convergence rates, with 6th-order schemes reaching
machine precision on fine grids.

D. 2D Euler-Shu /Isentropic Vortex Propagation

The isentropic Euler vortex problem is a standard benchmark for assessing the accuracy, dispersion/dissipation
characteristics, and long-time stability of high-order schemes. The test consists of superimposing an analytical vortical
purturbation on to a uniform mean flow. The initial conditions are constructed by superimposing a vortical purturbation
onto a unifrom mean flow. The exact solution art time t is simply the initial conditon translated by the uniform convection
velocity. The numerical error is measured by comparing the solution after one or more vortex periods to the initial
conditions. Following Speigel et al. [17]], who surveyed the vortex problem extensively for discontinuous Galerkin and
flux reconstruction methods, vortex parameters, presented in Table EI), were chosen using the standard Shu formulation
[18]. The test was implemented within the framework using C4-AC4-C4-AC4-C4 and C6-AC6-C6-AC6-C6 stencils.
Periodicity was enforced through the Sherman-Morrison correction, enabling a truly periodic grid with no ghost cells.
Sherman Morrison requires applying tri-diagonal solver twice. PCR was applied twice. This is an important detail
to consider while establishing performance estimates. The Euler solver uses fourth order RK4 time integration and
positivity preserving floors on density and pressure.

14

Density (p) Pressure (p) Velocity Magnitude

0.9587 0.6777 1.756
4 0.9070 4 0.6319 41 1.620
0.8554 0.5862 =SS 1.484
2 24 24 7
0.8037 0.5405 1.347
o g -
-~ 0 07521 5 0 04947 2 s 0 1211 8
g g &
a &
0.7004 0.4490 1.075
-2 -2 -2
0.6488 0.4032 / 0.939
0.5971 0.3575 0.802
-4 -4 -4
0.5455 0.3117 0.666
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
X 0.4938 X 0.2660 x 0.530
Velocity Field
Vorticity (av/ax - du/ay) 1833
Field Statistics:
44
1.386 Density:
min: 0.493807
0.939 max: 1.000000
2 mean: 0.982417
0.492 Pressure:
> min: 0.265982
4 S max: 0.714286
=0 0045 5 mean: 0.697703
2
-0.402 Speed:
2 min: 0.529793
- max: 1.865144
—0.849 mean: 1.203425
-1.297 Vorticity:
-4+ min: -0.298563
max: 2.190797
-1.744
-4 -2 0 2 4
X -2.191

Fig. 12 Initial conditions for the isentropic Shu vortex at = 0. Density, pressure, velocity magnitude, velocity
vector field, and vorticity distribution over the domain [-5, 5] X [-5, 5].

Table 4 Parameters for the isentropic Shu vortex benchmark.

Quantity Value
Ratio of specific heats, y 1.4
Free-stream Mach number, M, N2/y
Free-stream velocity direction a =45°
Free-stream pressure P =1/y
Free-stream density Poo =1
Free-stream temperature To =1
SMeV2
Vortex strength parameter B= 4—\/_ el?
74
Core radius / length scale R=1
Gaussian width parameter o=1
Domain size [-5,5] x [-5,5]
10V2
Period of one vortex revolution T = M\/_

15

Governing Equations
The Shu vortex evolves under the two—dimensional compressible Euler equations:

p pu pv
0 0 24 0
o L - i - e) (36)
ot | pv ox puv oy | pvo+p

pE u(pE + p) v(pE + p)

The total specific energy is defined as
1
E=c+ E(u2 +17), (37

where e is the internal energy per unit mass. The pressure is given by the ideal-gas equation of state,

p=(y-1pe,
or equivalently,

1
p=(-1 pE—Ep(u2+v2) - (38)

Detailed notes on the analytical solution can be found in Spiegel et.al [[17].

1. Accuracy and Convergence

The L, error reported represents total discretization error, including both spatial and temporal contributions. since
the temporal integration is sufficiently resolved, the observed convergence sloped reflect the design spatial order of
the compact schemes. For short-term simulations (up to 5 periods), both schemes achieve design order accuracy;
for long-term unfiltered runs, the C4 scheme offers better robustness. Long term stability was assessed by extending
simulations to 20 periods without filtering. All grids eventually experienced failure due to aliasing induced oscillations
driving with failure period increasing with grid size.

The C6 scheme initially results in lower errors but experiences earlier failure caused by accumulating aliasing errors.
The C4 scheme demonstrated superior stability surviving 2 to 5 additional periods on average before instability onset.
This confirms that higher order schemes require more aggressive filtering for long term integration, as noted by Spiegel
et al. [[17] and by Visbal and Gaitonde [19]].

We adopt the original Shu formulation on the domain [-5, 5] X [-5, 5] with fully periodic boundaries. As noted by
Spiegel et al. [[17], this domain size is not large enough for the velocity perturbations to decay to zero at the boundaries,
which introduces weak artificial shear layers. For the range of resolutions considered here, these shear layers do
not contaminate the observed 4th- and 6th-order convergence rates over 1-5 periods, but they do contribute to the
eventual loss of stability at long times. A more stringent ‘clean’ verification study could employ the enlarged domain
[-10, 10] x [-10, 10] recommended by Spiegel et al., however this is left for future work. Compared to the one period
tests commonly reported in the literature, the present 5 to 20 period runs on a relatively small [-5, 5] domain constitute
a significantly harsher test of phase accuracy and nonlinear stability.

16

1014 =@~ C4, After 1 period (p=0) -’- C4, After 4 periods (p=3)
-@- C6, After 1 period (p=0) @~ C6, After 4 periods (p=3)
=jl= C4, After 2 periods (p=1) C4, After 5 periods (p=4)
=fl- C6, After 2 periods (p=1) C6, After 5 periods (p=4)
=~ C4, After 3 periods (p=2) =+ A4th-order slope

10-2 =~ C6, After 3 periods (p=2)

10-3 4

—
(]
—
o
~ 10—4 4
-
1075 gzmsmzzmsmsemmpemmmssmmmm e O P e st e NN N Moo e
105 4
.\.
.

102
Grid size N

Fig. 13 Grid-refinement study for the Shu isentropic vortex showing the density error after 1 to S vortex periods
for fourth-order (C4) and sixth-order (C6) compact schemes.

VIII. Performance Analysis
Table. [B]lists the details of the hardware platforms utilized for the performance and accuracy analysis presented in
this work.

Table 5 Hardware platforms cross-architecture performance benchmarking on Purdue RCAC clusters.

Platform Bell (CPU) Bell (HIP) Gautschi (CUDA)
Processor / GPU Dual-socket AMD EPYC AMD Radeon Instinct NVIDIA H100

7662 (2x64 cores, Zen 2) MI50
Host memory per node 256 GB 256 GB 512GB to 1TB (node dependent)
GPU memory (per GPU) - 32 GB HBM2 80 GB HBM3
Programming backend OpenMP HIP CUDA
Tri-diagonal Solver Thomas / PCR Thomas / PCR Thomas / PCR
Cluster / institution Bell / Purdue RCAC Bell / Purdue RCAC Gautschi / Purdue RCAC

As explained in section[V] gains were achieved in two phases. In phase one, the PCR algorithm was used in place of
Thomas to solve tri-diagonal algorithms to exploit GPU parallelism. In phase two, the PCR algorithm was equipped
with a variable-sized cache to reduce repeated memory initialization (memset) overhead. Next, the 3D derivative driver
was restructured to replace a plane-by-plane launch strategy with a fully batched formulation.

In the original implementation, the compact derivative was applied independently to each k-plane, resulting in a
separate tridiagonal solve for every slice. See Algorithm 1. This approach restricts available GPU parallelism to the
Jj-direction and incurs repeated kernel launch and memory initialization overhead. The optimized formulation instead

17

flattens the (J, k) directions into a single batched dimension, enabling all tridiagonal systems associated with the 9/9&
operator to be solved simultaneously in a single PCR invocation. See Algorithm 2.

This restructuring exposes O (jmax kmax) independent systems to the GPU, substantially increases effective occupancy,
and amortizes solver and memory setup overhead. The combined effect of batched execution and variable-sized cache
reuse yields an order-of-magnitude performance improvement relative to the original plane-by-plane formulation on
both CUDA and HIP backends.

The pre-batched formulation also exhibited considerable speedups over CPU baselines (Serial and OpenMP) for
single-derivative, see Appendix section [X.B]and Laplacian operator see Appendix section[X.D] However, once time
stepping is introduced, the number of kernel launches increases rapidly, leading to significant performance degradation.

Detailed speed-up tables are presented in the Appendix, section [X]for both implementations. Figures [I4]and[I3]
summarize the performance improvements obtained through batched kernel launching across all backends. Both PCR
and Thomas solvers benefit from batching within compact difference formulations, with consistent gains observed on
CPU and GPU architectures.

It is imprtant to acknowledge that batched kernel launching introduces additional temporary storage requirements
associated with solver workspaces, increasing peak memory usage relative to plane-by-plane execution.

Algorithm 1 Pre-batched 3D §/0¢ driver (plane-by-plane)
1: for k = 0to kpax — 1 do
2 Pack 3D slice: phi_plane(j,i) « ¢(i, j, k)
3 Solve tridiagonal system:

4: dphi_plane « PCR(phi_plane)

5

6

7

Unpack result:

¢&(i, j, k) < dphi_plane(j,i)
end for

Algorithm 2 Batched 3D 9/90¢ driver (flattened j—k)

Mmax < Jmax * Kmax

Mmax < max

Pack 3D field:

for all (k, j,i) in parallel do
m <« j+k- jmax
phi_lines(m,i) « ¢(i, j, k)

end for

Single batched tridiagonal solve:
dphi_lines « PCR(phi_lines)

10: Unpack result:

for all (k, j, i) in parallel do

R AN A R >

—
—_

12: mee— j+k- jmax
13: ¢ (i, j, k) < dphi_lines(m,i)
14: end for

18

EEE PCR Solver
Thomas Solver
80.0x

45.1x 43.1x

Speedup Factor

20
16.0x

10.0x
4.0x

CUDA CUDA HIP HIP OMP-64 OMP-64
PCR Thomas PCR Thomas PCR Thomas

Fig. 14 Performance improvement of the PCR algorithm from batched kernel launching and variable
caching at N = 1283 for the 3D heat equation. Bars report the speedup factor defined as Speedup =
Time pcR/Thomas/ TPCR/Thomas batcheds Where Tpcr/Thomas corresponds to the original plane-by-plane execution
and TpCR/Thomas enhanced t0 the batched kernel launch with variable caching introduced for PCR. Results are
shown for PCR and Thomas solvers across CUDA (H100), HIP (MI50), and OpenMP (64 threads) backends.

(a) Before Batching (b) After Batching
-®- CUDA -@- CUDA
-o- HIP //‘ —@- HIP
-8 OMP 103 —@~ oMP
103 4 Serial Serial
n n
E " E
[[
Q Q
n n
[L, 1074
15) 15)
2 a
[} [}
E E
E e =
101 4
323 642 1282 323 643 128°
Grid Size N Grid Size N

Fig. 15 Effect of batched kernel launching on PCR performance for the 3D heat equation. (a) Baseline
plane-by-plane execution exhibits limited scaling due to repeated kernel launch and memory initialization
overhead. (b) After batching the (, k) dimensions into a single invocation, PCR achieves near-linear scaling with
substantial reductions in time per step across CUDA, HIP, and OpenMP backends.

A. Single Derivative — Performance

The performance characteristics of the Thomas and PCR algorithm are well established. The Thomas algorithm
minimizes arithmetic cost and is typically optimal on scalar or lightly threaded CPU execution, whereas PCR exposes
substantial parallelism and maps efficiently to many-core and GPU architectures [14]].

The results in Tables[T3]to[T7]are consistent with the expected behavior of tridiagonal solvers reported by Zhang et
al. [14]]. On serial CPUs, Thomas remains the fastest solver for both C4 and C6 schemes and PCR shows slowdown.
Under OpenMP, PCR becomes competitive and achieves modest speedups at larger grid sizes as thread-level parallelism
increases. On GPUs, PCR provides the highest throughput, outperforming Thomas by several factors on both CUDA
and HIP backends, particularly for moderate and large three-dimensional grids where the parallel reduction steps can
fully utilize device concurrency. See Appendix sections [X.A]and [XB]

Fig. [T6)illustrates the massive gains achieved through batch kernel launching and creating variable cache storage
available for reuse in the PCR algorithm implemtation.

19

Execution Time Speedup vs Serial Computational Throughput

T

5
3

Time/Iter (ms)
5
Speedup (x)
8
Throughput (Points/s)

16 32 647 128” 256° 512 16° 32 647 128° 256° 512% 10¢ 10° 10°
Grid Size Grid Size Problem Size (Points)

(Line styles: -—---- 4th Order | — 6th Order]

Fig. 16 Performance of the 3D compact finite-difference single-derivative operator (all three directions evaluated
sequentially) using the PCR algorithm. Absolute execution time per iteration (left), speedup relative to the serial
baseline (center), and sustained computational throughput (right) are shown for C4 and C6 schemes on Serial,
OpenMP, CUDA (H100), and HIP (MI50) backends. Throughput is defined as Throughput = %’ where N3 is
the total number of grid points and 7j., is the average wall-clock time per full derivative sweep over all three
spatial directions. The trends closely mirror the Laplacian operator results, confirming that tridiagonal solver
performance dominates the overall cost.

Prior to batch launching the parallel PCR solver only delivers its full performance benefits on sufficiently large grids.
As shown in Table speedups of over an order of magnitude relative to the serial Thomas baseline are observed only
once problem sizes are sufficiently large to amortize parallel overheads and memory traffic. On smaller problems, these
overheads limit achievable gains. In practice, realizing the asymptotic performance characteristics of PCR on GPUs
requires strict, problem-aware memory management strategies (batched solves, domain decomposition, and careful data
layout).

In this initial implementation we have relied on CUDA unified memory and HIP managed memory for ease of
portability and faster backend verification. This choice improves portability and development productivity, but restricts
the deeper performance gains expected from device-resident memory management.

Achieving strong parallel performance for tri-diagonal systems required algorithmic changes: on serial architectures,
the classical Thomas algorithm consistently outperforms PCR, whereas on GPU platforms the parallel PCR formulation
decisively outperforms Thomas by factors of 10-20 at large grid sizes. Hardware-agnostic frameworks such as Kokkos
are therefore powerful enablers of portability and code reuse, but they require careful attention to algorithm design
and an awareness of underlying architectural differences to achieve true performance. Parallelizing inherently serial
algorithms through such frameworks—and lowering onto CUDA, HIP, or pthreads can result in performance penalties
rather than gains.

B. Laplacian Operator - Performance

The Laplacian benchmark results reinforce the trends observed in the single-derivative operator, PCR initially under
performs compared to Thomas across all architectures for small grids (N < 64), which is expected given PCR’s higher
arithmetic intensity and larger temporary workspace requirements. As N increases, PCR begins to outperform serial
Thomas around N = 256 on both CUDA and HIP, and the gains grow rapidly: by N = 512, CUDA achieves s = 10.5
relative to serial PCR and s =~ 4.7 relative to serial Thomas. At N = 1024, CUDA reaches s ~ 42 relative to serial PCR
and s ~ 28 relative to serial Thomas, representing the true asymptotic benefit of PCR’s parallelism in three dimensions.
See Appendix section

OpenMP-64 shows a contrasting scaling behavior: while it achieves modest speedups (s ~ 3.4 at N = 1024 for C4),
the gains are limited by both thread contention and NUMA effects on the underlying 64 core X 2 dual-socket test system.
The relatively poor OpenMP scaling (s = 3.4 with 64 threads from a serial baseline) confirms that CPU-side parallelism
for tridiagonal solvers faces fundamental memory bandwidth constraints even on modern architectures.

In summary, the Laplacian results demonstrate that PCR delivers substantial speedups, achieving up to 42 times
over serial PCR and 28 times over serial Thomas on CUDA. The next layer of performance gains is obtained through
batch launching the PCR solve kernels. This is illustrated in Fig. [[7]and Appendix section[X.C} For the C4 operator,

20

speedups of up to 295 times relative to serial Thomas on the CPU are observed on CUDA, while the C6 operator
achieves speedups of up to 291 times.

Execution Time Speedup vs Serial Computational Throughput

Time/lter (ms)

Speedup (
Throughput (Points/s)

16 32 64 128° 256 5120 16 32 64 128° 256 512* 10°
Grid Size Grid Size

Problem Size (Points)

(Cine styles: - 4th Order | — 6th Order]

Fig. 17 Performance of the 3D compact finite-difference Laplacian (all directions) using the PCR algorithm.
Absolute execution time (left), speedup over serial (center), and sustained computational throughput (right) are
shown for C4 and C6 schemes on Serial, OpenMP, CUDA (H100), and HIP (MI50) backends. Throughput is
defined as the number of grid points processed per second and is computed as Throughput = N3 /Tj,, where
N3 is the total number of grid points and 7i, is the average wall-clock time per Laplacian application. GPU

backends achieve over two orders of magnitude speedup at large problem sizes, with CUDA sustaining the highest
throughput.

C. Heat Equation Performance

Table 6 Problem size definition for the 3D Gaussian heat-diffusion test.

Grid Size (Interior Cells) N Points Time Steps

323 35,937 62
643 274,625 246
1283 2,146,689 984
2563 16,974,593 3933
5123 135,005,697 15729

The 3D heat equation benchmark exercises the complete solution pipeline: spatial derivatives via compact Laplacian
operators combined with time integration. This test isolates the cost of repeated tridiagonal solves across multiple time
steps, providing a realistic performance assessment for time-dependent PDE applications. The setup details are provided
in section [VIL.B.T| The problem size is defined in Table [f]

The performance characteristics reinforce the resolution dependent trends observed in the Laplacian benchmarks,
substantial GPU acceleration truly materializes at sufficiently large problem sizes where parallelism can saturate the
device. For the 1283 grid, CUDA achieves 4.6x speedup of PCR over Thomas and HIP delivers 6.4x, while smaller
grids show minimal or negative speedups, parallel launch overhead dominates. So much so that there are seriously
dimishing returns with increasing timestep. The tables in Appendix section [X.E] and section [X.F] provide detailed
speedup comparisons.

Cross platform numerical consistency remains robust, PCR and Thomas implementations with RK4 produce
identical L, error profiles, decreasing from 10710 at 323 to 10~13 at 1283; illustrated in Figin the Appendix@ For
production time-dependent simulations, extracting GPU performance requires both large problem sizes and careful
management of memory hierarchy to minimize host-device memory traffic per time step. After kernel launch overheads
are amortized, the achieved performance is substantial. Total wall time for the largest grid sizes computed on each
backend is reported in Table [7} corresponding accuracy and throughput summaries are shown in Fig. For the 2563

21

grid, the CUDA backend achieves a 30 times speedup over 64-thread OpenMP using identical C++ Kokkos code, and a
6.5 times speedup over HIP.

Future work will include weak-scaling studies to quantify performance with increasing thread and device concurrency,
enabling direct comparison of scalability trends between CPU and GPU backends.

Table 7 Runtime comparison across backends for the 3D heat-diffusion test. N denotes the nominal grid size in
each spatial direction (interior cells).

Backend Grid Size N3 Time Steps Wall Time
CUDA 5123 (1.35 x 10%) 15729 24,593 s (6 h 50 min)
CUDA 256° (1.69 x 107) 3833 660 s (11 min)
HIP 2563 (1.69 x 107) 3933 4350 s (1 h 12 min)

OpenMP 256% (1.69 x 107) 3933 20,220 s (5 h 37 min)

IX. Conclusion

This work demonstrates that achieving performance portability for high-order compact finite difference schemes
requires fundamental algorithmic redesign, not mere syntactic translation of sequential code. The transition from CPU
to GPU architectures necessitates replacing the inherently sequential Thomas algorithm with Parallel algorithms like
PCR, trading increased arithmetic cost (O(n log n) versus O(n)) for the massive parallelism required to saturate modern
GPUS. Our Kokkos-based PCR implementation achieves 189 times speedup over CPU serial Thomas baselines on
NVIDIA H100 GPUs and up to 32 times on AMD RadeonlInstinct MI50 for 3D single derivatives, for 4th and 6th order
compact schemes. Laplacian operator achieves upto 295 times speedup on NVIDIA and 49 times on AMD. The 3D
heat equation achieves upto 61 times speedup on NVIDIA and 11 times on AMD per timestep.

The total runtime for the 3D heat equation with the PCR tri-diagonal algorithm for a 256° grid with 3933 timesteps
is 5 hrs and 37 minutes on a single CPU with OpenMP backend running 64 threads and this is reduced to 11 minutes on
NVIDIA CUDA backend and 1 hr and 37 minutes on the AMD HIP backend, with identical C++ Kokkos code.

Comprehensive validation through Method of Manufactured Solutions confirms that the framework maintains design-
order accuracy across all test cases. Sixth-order compact schemes achieve spatial convergence rates approaching 6.0,
while RK4 time integration delivers fourth-order temporal accuracy. Testing across multiple governing equations—heat
diffusion, inviscid and viscous Burgers equations, and isentropic Euler vortex propagation—verifies robust performance
in both linear and nonlinear regimes. Cross-platform numerical consistency is preserved to sub-percent relative
agreement, with absolute L, errors approaching machine precision. This reproducibility demonstrates that performance
portability and numerical portability are distinct challenges, both requiring explicit verification.

The current implementation’s reliance on managed memory (CUDA unified memory and HIP equivalents) provides
portability and development productivity but limits access to the full performance potential available through explicit
device memory management. Future work will leverage architecture-specific memory optimizations: device-resident
allocations, elimination of host-device migration overhead, and aggressive reduction of temporary storage.

Long-time stability analysis exposes a critical trade-off between accuracy and robustness: while sixth-order schemes
achieve lower initial errors, fourth-order schemes survive 2-5 additional convection periods before aliasing-induced
instability in unfiltered simulations. This confirms that higher-order methods require more aggressive filtering for
extended time integration. This is consistent with established literature, it is quantified here across multiple spatial
orders and test problems. For production CFD applications requiring long-time integration, scheme selection must
balance instantaneous accuracy against accumulated aliasing effects.

As GPU computing matures with diverging precision requirements between Al and computational physics domains
[20], the scientific computing community requires verification frameworks that detect numerical regressions before they
contaminate production simulations[21].

Compiler optimizations increasingly target machine learning workloads, where approximate arithmetic and relaxed
IEEE compliance accelerate training. [8] These same optimizations can degrade accuracy in high-order CFD schemes,
corrupting convergence rates that directly determine solution fidelity [22]]. Maintaining bit-for-bit reproducibility across

22

evolving compiler tool-chains and diverging hardware architectures requires verification testing not as a one time
validation exercise, but as sustained infrastructure analogous to established numerical libraries.

The presented framework provides verified building blocks for performance-portable CFD applications requiring

high-order accuracy on heterogeneous architectures.

(1]

2

—

3

—

[4

—_

[5

—

[6

—_

[7

—

(8

—_—

[9

—

(10]
(1]
[12]
(13]

(14]

[15]

[16]

(171

(18]

(19]

References
Lele, S. K., “Compact finite difference schemes with spectral-like resolution,” Journal of computational physics, Vol. 103,
No. 1, 1992, pp. 16-42.

Kravchenko, A., and Moin, P., “On the effect of numerical errors in large eddy simulations of turbulent flows,” Journal of
computational physics, Vol. 131, No. 2, 1997, pp. 310-322.

Gaitonde, D. V., and Visbal, M. R., “High-Order Schemes for Navier—Stokes Equations: Algorithm and Implementation into
FDL3DI,” Tech. Rep. AFRL-VA-WP-TR-1998-3060, Air Force Research Laboratory, Air Vehicles Directorate, Wright-Patterson
Air Force Base, OH, 1998.

Poggie, J., “Compact Difference Methods for Discharge Modeling in Aerodynamics,” 40th AIAA Plasmadynamics and Lasers
Conference, 2009. AIAA Paper 2009-3908.

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S.,
Ibanez, D., et al., “Kokkos 3: Programming model extensions for the exascale era,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 33, No. 4, 2021, pp. 805-817.

Hammond, S. D., Trott, C. R., Ibanez, D., and Sunderland, D., “Profiling and debugging support for the kokkos programming
model,” International Conference on High Performance Computing, Springer, 2018, pp. 743-754.

Edwards, H. C., Trott, C. R., and Sunderland, D., “Kokkos: Enabling manycore performance portability through polymorphic
memory access patterns,” Journal of parallel and distributed computing, Vol. 74, No. 12, 2014, pp. 3202-3216.

Dongarra, J., Gunnels, J., Bayraktar, H., Haidar, A., and Ernst, D., “Hardware trends impacting floating-point computations in
scientific applications,” arXiv preprint arXiv:2411.12090, 2024.

Thomas, P. D., and Lombard, C. K., “Geometric conservation law and its application to flow computations on moving grids,”
AIAA journal, Vol. 17, No. 10, 1979, pp. 1030-1037.

Poggie, J., “High-Order Compact Difference Methods for Glow Discharge Modeling,” , 2009.
Wolfe, M. J., High performance compilers for parallel computing, Addison-Wesley Longman Publishing Co., Inc., 1995.
Guide, D., “Cuda c++ programming guide,” NVIDIA, July, 2020.

Hockney, R. W., “A fast direct solution of Poisson’s equation using Fourier analysis,” Journal of the ACM (JACM), Vol. 12,
No. 1, 1965, pp. 95-113.

Zhang, Y., Cohen, J., and Owens, J. D., “Fast tridiagonal solvers on the GPU,” ACM Sigplan Notices, Vol. 45, No. 5, 2010, pp.
127-136.

Mejstrik, T., “_host_ _device_—Generic programming in Cuda,” arXiv preprint arXiv:2309.03912, 2023.

Davis, J. H., Sivaraman, P., Kitson, J., Parasyris, K., Menon, H., Minn, 1., Georgakoudis, G., and Bhatele, A., “Taking
GPU programming models to task for performance portability,” Proceedings of the 39th ACM International Conference on
Supercomputing, 2025, pp. 776-791.

Spiegel, S. C., Huynh, H. T., and DeBonis, J. R., “A Survey of the Isentropic Euler Vortex Problem Using High-Order Methods,”
22nd AIAA Computational Fluid Dynamics Conference, 2015. AIAA Paper 2015-2444.

Shu, C.-W., “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,”
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures given at the 2nd Session of the Centro
Internazionale Matematico Estivo (CIME) held in Cetraro, Italy, June 23-28, 1997, Springer, 2006, pp. 325-432.

Visbal, M. R., and Gaitonde, D. V., “On the use of higher-order finite-difference schemes on curvilinear and deforming meshes,”
Journal of Computational Physics, Vol. 181, No. 1, 2002, pp. 155-185.

23

[20]

[21]

[22]

NVIDIA, “A New Precision Format for Deep Learning: TensorFloat-32 (TF32),” , 2020. NVIDIA Technical Blog.

Zou, D., Zeng, M., Xiong, Y., Fu, Z., Zhang, L., and Su, Z., “Detecting floating-point errors via atomic conditions,” Proceedings
of the ACM on Programming Languages, Vol. 4, No. POPL, 2019, pp. 1-27.

Kashi, A., Lu, H., Brewer, W., Rogers, D., Matheson, M., Shankar, M., and Wang, F., “Mixed-precision numerics in scientific
applications: survey and perspectives,” arXiv preprint arXiv:2412.19322, 2024.

24

X. Appendix

This appendix provides detailed performance details for the compact derivative implementation, written in C++
Kokkos. Sections [X.A] to [X.F| provide speedup comparisons for single derivatives computed in all three directions,
Laplacian operator and the heat equations benchmark, which solves the three-dimensional heat equation using RK4
time integration and a sixth-order compact finite-difference scheme (C6-AC6-C6-AC6-C6). Performance of the PCR
and Thomas tridiagonal solvers is compared across OpenMP (64 threads), CUDA, and HIP backends. The computing

hardware used for these experiments is summarized in Table

Speedup is defined as s = d

baseline algorithm/backend Values in
talgorithm/backend '

green (greater than 1) indicate a speedup, while values in red (less than 1) indicate a slowdown.

1004
~ 1500 A
E 1250 -
g
21000 ~
»n
= 750
2,
o 500
-E 250 1 168
0 4.8 15.3 29.9
323 643 128 256° 5123
Grid Size
1T1UD
@ 1000
£
A
o, 800 A
Q
-
@ 600
-
)
& 400
o
_E 200 1 168
46.3
ol 1386
323 64% 1283 256°
Grid Size
~ 5000
g
~ 4000
-3
2
i 3000 4
5
2 2000 A
o
E 1000 46
7
a 0l 179 722
323 643 128 256°
Grid Size

—_

o

o
1

o
o
L

60 1

40

20 +

Throughput (M points/s)
o

32% 64° 128 256° 5123
Grid Size

(a) NVIDIA H100 (CUDA)

= =

N ol

wl o
L L

H

o

<)
|

5.0 1

2.5 1

Throughput (M points/s)
~
(€]

323 643 1282 2562
Grid Size

(b) AMD MIS0 (HIP)

o~
L

w
L

N
1

—_
L

Throughput (M points/s)

(=}
I

323 643 1283 2562
Grid Size

(c) OpenMP (64 threads)

L2 Error

L2 Error

L2 Error

1.5e-10

323

1.5e-10

—==- Machine Precision

64° 128% 256° 5123
Grid Size

323

1.5e-10

——- Machine Precision

643 1283 2563
Grid Size

328

——- Machine Precision

643 1283 2568
Grid Size

Fig. 18 Performance and accuracy of the sixth-order compact finite-difference scheme with a parallel cyclic
reduction (PCR) solver across different execution backends. Shown are the time per timestep, computational
throughput (in millions of grid points per second), and L2 error for increasing three-dimensional grid sizes.

25

A. Single Derivative Results : With Batch Kernel Launch

Table 8 PCR vs Thomas speedup on GPUs.
§ = !GPU Thomas/!GPU PCR

CUDA HIP

N c4 Co C4 Co6

16 | 094 095 | 505 5.01
32 | 5.18 539 | 386 3.84
64 | 443 443 | 230 2.30
128 | 3.78 3.81 | 1.82 1.82
256 | 220 222 | 1.64 1.66
512 | 2.09 2.09 | 1.60 1.59
1024 | — — — —

Table 9 PCR vs Thomas speedup on CPUs.
§ = ICPU Thomas/!CPU PCR

OpenMP-64 Serial

N C4 C6 C4 Co

16 1.05 290 | 0.62 0.57

32 | 231 246 | 048 046

64 | 240 279 | 049 046
128 | 1.36 0.50 | 0.72 0.73
256 | 1.49 2.00 | 0.75 0.75
512 | 224 242 | 1.21 1.21
1024 | — — — —

Table 10 Speedup of the parallel PCR single-derivative operator (Direction = ALL, C4) on CUDA, HIP, and
OpenMP-64 backends relative to the serial Thomas baseline. Here, speedup = fsrial, Thomas/fparaliel, PCR- Values
> 1 (green) indicate that parallel PCR is faster than serial Thomas.

CUDA HIP OpenMP-64
C4 Co6 C4 C6 C4 C6
16 0.05 0.05 028 026 | 0.12 0.28
32 3.12 3.00 1.05 1.00 | 0.66 0.64
64 9.91 9.50 290 278 | 1.87 1.66
128 | 6540 66.55 | 10.88 11.02 | 1.75 0.49
256 | 11692 116.71 | 17.30 17.17 | 1.89 1.05
512 | 189.19 187.06 | 32.39 32.01 | 296 2.49
1024 — — — — — —

Table 11 Speedup of PCR single-derivative operator
relative to Serial PCR s = tgerjal PCR/ Iparallel PCR+

Table 12 Speedup of PCR single-derivative operator
relative to OMP-64. s = tcpyu pcr/!GPU PCR

CUDA HIP OMP-64

N C4 C6 C4 C6 Cc4 Co
16 0.08 0.08 045 045 | 020 0.48
32 6.54 6.56 219 219 | 1.38 1.39
64 20.38 2046 | 596 598 | 3.85 3.57
128 | 90.86 91.06 | 15.12 15.08 | 2.43 0.67
256 | 156.27 156.42 | 23.12 23.01 | 252 1.40
512 | 156.73 154.07 | 26.83 26.37 | 2.45 2.05
1024 — — — — — —

26

CUDA HIP

N C4 Co6 C4 C6

16 0.42 0.17 229 093

32 4.74 4.72 1.59 1.57
64 5.29 5.73 1.55 1.67
128 | 3736 136.22 | 6.22 2255
256 | 6197 111.57 | 9.17 16.41
512 | 6393 75.01 | 10.94 12.84
1024 — — — —

B. Single Derivative Results : Without Batch Kernel Launch

Table 13 Speedup of PCR single-derivative operator

relative to Serial PCR s = fgerjal PCR/ tparallel PCR+

CUDA HIP OMP-64
N C4 C6 c4 C6 C4 Cé6
16 0.07 0.07 | 0.04 0.04 | 0.09 0.09
32 020 020 | 0.10 0.10 | 0.18 0.16
64 073 072 | 036 036 | 0.50 047
128 1.85 1.88 | 1.50 1.50 | 0.81 0.86
256 | 4.31 435 | 5,53 551 | 1.13 1.09
512 | 1035 1039 | 693 698 | 2.07 2.13
1024 | 38.88 3890 | — — 1302 152

Table 15 PCR vs Thomas speedup on GPUs.
§ = GPU Thomas/!GPU PCR

Table 17 Speedup of the parallel PCR single-derivative operator (Direction = ALL, C4) on CUDA, HIP, and
OpenMP-64 backends relative to the serial Thomas baseline. Here, speedup = serial, Thomas/!parallel, PCrR- Values

CUDA HIP
N c4 Co C4 C6
16 1.71 1.69 | 1.81 1.79
32 | 316 3.15| 259 257
64 | 556 551 | 451 448
128 | 6.46 649 | 8.07 798
256 | 632 6.39 | 13.90 13.81
512 | 6.42 641 | 830 826
1024 | 9.83 9.86 — —

Table 14 Speedup of PCR single-derivative operator

relative to OMP-64. s = tcpy pcR/!GPU PCR

CUDA HIP

N C4 Co6 Cc4 Co

16 073 073 | 042 042
32 1.13 1.22 | 0.58 0.62
64 1.46 1.54 | 0.73 0.77
128 | 229 220 | 1.85 1.75
256 | 3.83 398 | 491 5.04
512 | 499 488 | 334 3.28
1024 | 12.86 25.59 | — —

Table 16 PCR vs Thomas speedup on CPUs.
§ = ICPU Thomas/!CPU PCR

OpenMP-64 Serial

N C4 C6 C4 C6

16 380 472 | 1.20 1.19
32 809 7.79 | 094 094
64 13.83 1222 | 0.64 0.64
128 | 992 10.03 | 0.50 0.49
256 | 5.10 5.12 | 040 0.40
512 | 3.10 3.09 | 0.53 048
1024 | 3.12 097 | 0.58 0.59

> 1 (green) indicate that parallel PCR is faster than serial Thomas.

N CUDA HIP OpenMP-64

16 0.08 0.05 0.11

32 0.19 0.10 0.17

64 046 0.23 0.32
128 092 0.74 0.40
256 1.70 2.19 0.45
512 543 3.64 1.09
1024 | 22.74 — 1.77

27

C. Laplacian Operator Results: With Batch Kernel Launch

Table 18 Speedup of compact Laplacian PCR relative

to Serial PCR.
§ = Iserial PCR/ Iparallel PCR-

CUDA HIP OMP-64

N C4 C6 C4 C6 c4 Co
0.84 0.13 045 045 | 0.03 0.50

6.39 6.03 230 215 | 145 1.30

21.52 19.21 6.69 5.88 | 345 0.22
90.91 84.99 | 1587 14.62 | 3.65 2.79
14455 14447 | 21.67 21.66 | 299 1.31
156.82 156.90 | 26.25 26.26 | 1.93 1.95

Table 20 PCR vs Thomas speedup for Laplacian on

GPUs.

§ = IGPU Thomas/GPU PCR-

CUDA HIP
N | C4 Co Cc4 Co
8.62 131 | 2.66 2.68
536 534 | 327 3.26
424 433|229 230
367 372|182 1.82
2.16 217 | 1.63 1.63
205 205|152 1.52

Table 19 Speedup of compact Laplacian PCR relative
to OMP-64 PCR.

§ = tOMP-64 PCR/!GPU PCR-

CUDA HIP
N | C4 Co6 C4 C6
24.15 0.25 1290 0.89
4.40 4.65 1.58 1.66
6.23 86.78 1.94 26.58
2490 30.50 | 435 525
48.27 110.56 | 7.24 16.58
81.46 80.39 | 13.64 13.46

Table 21 PCR vs Thomas speedup for Laplacian on
CPUs.
§ = ICPU Thomas/!CPU PCR-

OMP-64 Serial
N Cc4 C6 Cc4 C6
12.02 41.05 | 0.62 0.62
2.03 220 | 045 047
10.57 024 | 043 0.55
2.37 4.60 | 0.69 0.74
396 0.84 | 0.77 0.77
1.79 2.17 | 1.88 1.86

Table 22 Speedup of the parallel PCR Laplacian operator (C4 and C6) on CUDA, HIP, and OMP-64 backends
relative to the serial Thomas baseline.
S = Iserial, Thomas/ fparallel, PCR- Values > 1 (green) indicate that parallel PCR is faster than serial Thomas.

CUDA HIP OMP-64
N C4 Co C4 C6 c4 Co
16 0.52 0.08 028 027 | 0.02 0.31
32 2.89 2.83 1.04 1.01 | 0.66 0.61
64 9.18 10.55 | 2.85 323 | 1.47 0.12
128 | 62.47 63.00 | 1091 10.84 | 2.51 2.07
256 | 111.90 110.62 | 16.78 16.59 | 2.32 1.00
512 | 29544 29149 | 49.46 48.79 | 3.63 3.63
1024 — — — — — —

28

D. Laplacian Operator Results: Without Batch Kernel Launch

Table23 Speedup of compact Laplacian PCR relative Table24 Speedup of compact Laplacian PCR relative

to Serial PCR. to OMP-64 PCR.
§ = tserial PCR/?parallel PCR- § = tOMP-64 PCR/!GPU PCR-
CUDA HIP OMP-64 CUDA HIP
N C4 C6 C4 C6 C4 Co6 N C4 C6 C4 C6
16 0.08 0.07 | 0.04 0.03 | 0.09 0.09 16 0.84 075 | 041 0.38
32 0.20 020 | 0.10 0.10 | 0.11 0.16 32 1.72 1.25 | 0.86 0.63
64 0.74 0.73 | 0.36 0.36 | 0.31 0.39 64 2.35 1.86 1.14 0.92
128 1.89 1.74 1.46 1.47 | 090 1.08 128 2.10 1.60 1.62 1.35
256 4.41 375 | 539 539|137 1.33 256 3.22 2.82 | 393 4.06
512 1049 828 | 6.88 6.83 | 3.08 2.12 512 3.41 390 | 224 3.22
1024 | 42.05 35.85 — — 340 2.23 1024 | 12.36 16.10 — —

Table 25 PCR vs Thomas speedup for Laplacian on Table 26 PCR vs Thomas speedup for Laplacian on

GPUs. CPUs.
§ = tGPU Thomas/!GPU PCR- § = tCPU Thomas/!CPU PCR-
CUDA HIP OMP-64 Serial
N C4 C6 C4 Co6 N C4 Co6 C4 Co6
16 201 1.71 1.63 1.39 16 565 532 1.16 1.17
32 3.15 3.18 | 2.53 2.57 32 520 8.08 | 092 0.92
64 555 554 | 438 4.47 64 7.08 10.53 | 0.63 0.63
128 | 6.74 6.15 | 7.90 7.96 128 | 7.56 1298 | 0.48 0.48
256 | 6.58 5.63 | 13.71 13.85 256 | 5.60 553 | 0.39 0.39
512 | 6.68 5.31 8.36 8.37 512 | 4.51 3.08 | 045 0.50
1024 | 9.89 8.20 — — 1024 | 2.21 1.67 | 0.67 0.64

Table 27 Speedup of the parallel PCR Laplacian operator (C4) on CUDA, HIP, and OMP-64 backends relative
to the serial Thomas baseline.
S = Iserial, Thomas/ fparallel, PCR- Values > 1 (green) indicate that parallel PCR is faster than serial Thomas.

N CUDA HIP OMP-64
16 0.09 0.04 0.11
32 0.18 0.09 0.11
64 046 0.22 0.20
128 0.91 0.70 0.43
256 .72 2.1 0.54
512 4.67 3.06 1.37
1024 | 28.03 — 2.27

29

E. Heat Equation Results: With Batch Kernel Launch

Table 28 Speedup of heat equation PCR solver rela-
tive to Serial PCR.
§ = Iserial PCR/ Iparallel PCR-

N | CUDA HIP OMP-64
32 6.71 2.36 1.79
64 19.65 6.52 4.18
128 | 9250 16.42 5.93
256 — — —

Table 30 Speedup of heat equation PCR solver rela-
tive to OMP-64 PCR.
§ = fOMP-64 PCR/1GPU PCR-

N | CUDA HIP
32 3.75 1.32
64 4.70 1.56
128 | 15.61 2.77
256 | 30.65 —

Table 32 PCR vs Thomas speedup for heat equation
on GPUs.
§ = IGPU Thomas/!GPU PCR-

N | CUDA HIP
32 532 323
64 395 2.28
128 3.62 1.81
256 | 2.11 —

Table 29 Speedup of heat equation Thomas solver
relative to Serial Thomas.

S = Iserial Thomas/ Iparallel Thomas-

N | CUDA HIP OMP-64
32 0.63 0.36 0.33
64 2.73 1.57 1.01
128 | 17.03 6.04 1.59
256 — — —

Table 31 Speedup of heat equation Thomas solver
relative to OMP-64 Thomas.
§ = IOMP-64 Thomas/!GPU Thomas-

N | CUDA HIP
32 1.92 1.11
64 2.70 1.55
128 | 10.72 3.81
256 — —

Table 33 PCR vs Thomas speedup for heat equation

on CPUs.
§ = ICPU Thomas/!CPU PCR-

N | OMP-64 Serial
32 2.73 0.50

64 2.27 0.55

128 2.49 0.67

256 — —

Table 34 Speedup of the parallel PCR heat equation solver on CUDA, HIP, and OMP-64 backends relative to

the serial Thomas baseline.

§ = Iserial, Thomas/ !parallel, PCR- Values > 1 (green) indicate that parallel PCR is faster than serial Thomas.

N | CUDA HIP OMP-64
32 3.35 1.18 0.81
64 10.81 3.59 227
128 | 61.63 10.94 3.35
256 — — —

30

F. Heat Equation Results: Without Batched Kernel Launch

Table 35 Speedup of heat equation PCR solver rela-
tive to Serial PCR.

§ = Iserial PCR/ Iparallel PCR-

Table 36 Speedup of heat equation Thomas solver
relative to Serial Thomas.

S = Iserial Thomas/ Iparallel Thomas-

N | CUDA HIP OMP-64
32 020 0.10 0.17
64 0.74 037 0.30
128 1.86 1.49 1.33
256 — — —

N | CUDA HIP OMP-64
32 0.06 0.04 0.03
64 0.09 0.06 0.03
128 | 0.14 0.09 0.07
256 — — —

Table 37 Speedup of heat equation PCR solver rela-
tive to OMP-64 PCR.

§ = IOMP-64 PCR/tGPU PCR-

Table 38 Speedup of heat equation Thomas solver
relative to OMP-64 Thomas.

§ = IOMP-64 Thomas/!GPU Thomas-

N | CUDA HIP
32 1.19 0.61
64 247 1.22
128 1.39 1.12
256 — —

N | CUDA HIP
32 1.95 1.24
64 2.88 1.83
128 2.14 1.41
256 — —

Table 39 PCR vs Thomas speedup for heat equation
on GPUs.

§ = !GPU Thomas/!GPU PCR-

Table 40 PCR vs Thomas speedup for heat equation
on CPUs.

§ = 1CPU Thomas/!CPU PCR-

N | CUDA HIP
32 3.15 2.51
64 554 432
128 642 7.83
256 — —

N | OMP-64 Serial
32 5.13 0.95
64 6.45 0.66
128 9.88 0.50
256 — —

Table 41 Parallel PCR vs Serial Thomas.
S = IserialThomas /tpurallelPCR-

N | CUDA HIP OMP-64
32 0.19 0.10 0.16
64 049 024 0.20
128 | 092 0.74 0.66

31

	Nomenclature
	Introduction
	Mathematical Formulation
	Numerical Implementation
	Fortran Code Base
	Tridiagonal Solvers

	Parallelization Strategy and Implementation Takeaways
	Base Operator Verification
	PDE Verification Tests
	Laplacian Stiffness Matrix Test
	Heat Equation 3D
	Manufactured Solution - Convergence
	3D Heat Diffusion from a Gaussian Pulse

	Burgers Equation (Nonlinear Advection Test)
	Viscous 1D Burgers: N wave Shock Formation
	Viscous 2D Burgers: Diffusion of a Gaussian Pulse
	Manufactured Solution for 2D Burgers with Dirichlet BCs

	2D Euler-Shu /Isentropic Vortex Propagation
	Accuracy and Convergence

	Performance Analysis
	Single Derivative – Performance
	Laplacian Operator - Performance
	Heat Equation Performance

	Conclusion
	Appendix
	Single Derivative Results : With Batch Kernel Launch
	Single Derivative Results : Without Batch Kernel Launch
	Laplacian Operator Results: With Batch Kernel Launch
	Laplacian Operator Results: Without Batch Kernel Launch
	Heat Equation Results: With Batch Kernel Launch
	Heat Equation Results: Without Batched Kernel Launch

