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The analysis of a high speed boundary layer on a flared cone using direct numerical
simulation (DNS) is presented. To study boundary layer transition, DNS is needed to resolve the
large range of length scales required to accurately model the nonlinear interactions that occur
in the boundary layer. Furthermore, forcing is required to lead the flow to laminar-turbulent
transition. In this study, randomly generated traveling plane waves are used to perturb the
flow and promote transition. To more closely align with experiments, the amplitude vector of
these plane waves is set as the freestream noise profiles of the BAM6QT wind tunnel. Using this
approach, the DNS results in qualitatively similar findings as those in previous experimental
and computational studies.

Nomenclature

𝐴 = Random forcing amplitude
𝑎 = Speed of sound
𝑎𝑖 = Random forcing amplitude constant
f = Body force
𝑘 = Wavenumber
n = Unit normal vector
𝑟 = Radius of flared cone
𝑡 = Time
𝑉 = Local flow speed
𝑥 = Axial distance
x = Position vector
𝛼 = Wavenumber in x direction
𝛽 = Wavenumber in z direction
Φ = Scalar phase function
𝜙 = Phase shift
𝚿 = Vector wave function

I. Introduction
Incorporating boundary layer transition prediction in the design of high speed vehicles is necessary to ensure

safe and efficient operation. The heat transfer to the surface of the vehicle increases significantly when the boundary
layer transitions from laminar to turbulent flow. The nonlinear nature of transition requires careful consideration of
the disturbances present in the freestream. Conventional wind tunnels produce large amounts of noise compared to
atmospheric conditions and these disturbances can have a significant effect on transition. A quiet tunnel reduces the
noise levels to near atmospheric levels by maintaining a laminar boundary layer on the wind tunnel walls as long as
possible. Flared cone experiments were conducted by Chynoweth in a Mach 6 quiet tunnel at Purdue University, the
BAM6QT [1]. Using this tunnel, the underlying mechanics can be observed and analyzed. Chynoweth’s measurements
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indicated an unstable second mode frequency around 300 kHz. Additionally two regions were observed that produce
streaks of higher heat transfer rates.

Computations carried out by Hader aimed to recreate Chynoweth’s results by using DNS with a controlled disturbance
input and a natural disturbance input [2]. The controlled disturbance method used forcing at the unstable frequency of
300 kHz. The natural disturbance input implemented randomly generated pressure fluctuations located at the beginning
of the grid in order to simulate acoustic noise. Both of the methods successfully achieved transition with two regions of
streaks, similar to what Chynoweth observed [2]. Furthermore, Hader found aligned Λ vortices which then evolve into
hairpin vortices. This type of behavior is evidence for Klebanoff type breakdown. On the other hand, if the Λ vortices
are staggered, then the behavior is known as Herbert type breakdown.

In contrast, the present study used a multi-stage approach to calculate DNS using forcing of randomly generated
traveling plane waves with a formulation which aligns with BAM6QT freestream noise profiles. With this approach, it
may be possible to simulate a transition process that more closely mimics that observed in the wind tunnel experiments.

II. Methodology
The dimensions of the flared cone geometry were reported by Chynoweth [1] and the shape of the wind tunnel model

is presented in Figure 1. The cone has a length of 0.51 m, a nosetip radius of 0.0001 m, and the surface is generated by
using a circle of radius 3 m. For the algebraic grid generation used in this study, the surface of the cone is created using

𝑟 =
√︁

9 + (𝑥 + 0.08)2 − 3.001, (1)

where 𝑟 is the radius and 𝑥 is the axial distance. In this study, the cone is 0.6 m in length whereas the experimental
model had a length of 0.51 m. This extension is added to provide extra space to gauge the transition behavior as the
forcing strength is changed. The BAM6QT flow conditions corresponding to Run 1611 conducted by Chynoweth are
used for the DNS and are shown in Table 1. An isothermal boundary condition is used on the wall as experimental flow
times are not long enough to noticeably heat the cone.

Fig. 1 Flared Cone Geometry

The computations carried out in this study were done in stages. The first stage is to calculate two low-order solutions
of the entire cone with a numerically sharp nosetip using two different solvers, our in-house code, Wabash, and CREATE
Kestrel KCFD. Once these are done, a similar calculation is done on a high resolution, low-order basic state of the cone
with a modeled nosetip. A profile of the flow is extracted and interpolated onto a partial cone domain which is used for
DNS. Doing this saves computational resources by reducing the domain of the DNS and keeping the minimum cell edge
length at a reasonable size and thus a reasonable time step. Finally, random forcing is then implemented in the flow and
the strength is adjusted until transition is achieved at the experimentally observed location.

Kestrel KCFD is a unstructured, finite volume code developed by the DoD CREATETM team and can use second-order
accurate spatial and temporal schemes. It is highly optimized to obtain solutions for many types of air vehicles [3–5].
Wabash, used to calculate the DNS and implement the random forcing, is a high-ordered, structured, and overset code
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Table 1 Freestream Conditions

Parameter Value
Mach 6

Freestream Velocity 864 m/s
Freestream Pressure 684 Pa

Freestream Temperature 51.46 K
Unit Reynolds Number 12E6/m

Isothermal Surface Temp 300 K

that is developed by Poggie [6–9]. Wabash contains many numerical schemes that can be used for spatial and temporal
discretization and is aligned with the settings in Kestrel for the code comparison. For DNS, Wabash is configured to use
an implicit sixth order differencing spatial scheme and a explicit fourth order temporal scheme. Previous studies using
this code are available in references [10–12].

As mentioned previously, there is a grid for the code comparison and for a low-order basic state. The details of
these grids are available in Table 2 with an overview of the overall grid and nosetips available in Figures 2, 3, and 4.
The DNS used a partial cone geometry which was generated to optimize the azimuthal resolution between the cut

Table 2 Grid details for the code comparison and low-order basic state solution.

Parameter Low-Order Basic State Code Comparison
Nosetip Type Modeled Numerically Sharp
Total Cells 260E6 65E6

Nosetip Cells(unstructured) 9E6 N/A
Body Cells(structured) 251E6 65E6

Initial Wall Spacing 5 × 10−6 10 × 10−6

Axial Resolution (i) 844 600
Wall Normal Resolution (j) 600 600
Azimuthal Resolution (k) 500 181

Degrees/Cell 0.72o 2o

off streamwise location, minimum cell edge length, and azimuthal angle modeled (pie wedge angle). The azimuthal
resolution is important to be able to capture the streaks observed in Chyoweth’s and Hader’s work. With this in mind, a
cut off location of 0.30 m and 10o azimuthal angle is chosen to obtain a good azimuthal resolution while maintaining a
reasonable cell edge length. The details of the grid are available in Table 3 with a visual of the domain in Figure 5. This
configuration is analyzed in a linear stability theory solver to examine the effect of the cutoff. The stability of the full
domain is in Figure 6 while the stability of the DNS partial domain is shown in Figure 7. Both analyses find an unstable
second mode frequency that is close to that observed experimentally. If the instabilities cause the flow to transition at
an N-factor of around 10 then the full domain likely transitions at roughly 0.3 m and the partial domain transitions at
roughly 0.5 m. Although this is the case, the strength of the forcing can be adjusted to push the transition location
forward and have it better line up with experiment. Nonetheless, omitting the nose region omits possibly important
stability modes generated in the entropy layer. In this case, the partial domain analysis was unable to find any N-factor
results for higher frequency modes.

The random forcing that is used is constructed using traveling plane waves similar to those described by Tufts et al.
[13] and Cerminara et al. [14]. The plane waves are generated with the equations:

𝚿(x, 𝑡) = A cos[Φ(x, 𝑡)],
Φ(x, 𝑡) = k · x − 𝜔𝑡 + 𝜙,

(2)

where 𝚿(x, 𝑡) is the vector wave function, Φ(x, 𝑡) is the scalar phase function, A is the amplitude vector, k is the
wavenumber vector, 𝜔 is the angular frequency, and 𝜙 is the phase shift. The amplitude vector, A, can be specified to
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Fig. 2 Kestrel Grid Overview

Fig. 3 Kestrel Nosetip Grid
Fig. 4 Sharp Nosetip Grid

match the noise profile of a wind tunnel. In this study, a uniform amplitude profile along with the BAM6QT profiles for
noisy and quiet flow are be implemented [11]. Additionally, when an acoustic wave travels through a fluid, there is a
Doppler shift between the material frame and the lab frame which can be accounted for in the equation

𝑘 = 𝜔/|𝑎 + V · n|, (3)

where k = 𝑘n, 𝑎 is the speed of sound, and V is the velocity. The unit vector, n, is defined in spherical coordinates with
the equations

𝑛1 = cos \1,

𝑛2 = sin \1 cos \2,

𝑛3 = sin \1 sin \2.

(4)

The plane waves are created by randomly generating the polar angle, \1, azimuthal angle, \2, and phase shift, 𝜙, and
implemented as a body force, f, with the equation:

f = 𝐴
∑︁
𝑖

𝑎𝑖 cos
[
𝜔𝑖x · n
|𝑎 +𝑉𝑛1 |

− 𝜔𝑖𝑡 + 𝜙𝑖

]
n. (5)
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Table 3 Wabash Grid Details

Parameter Value
Total cells 1282E6

Angle modeled 10o

Cut off location 0.30 m
Initial wall spacing 1 × 10−5

Axial Resolution (i) 4025
Wall normal resolution (j) 801
Azimuthal resolution (k) 400

Degrees/Cell 0.025o

Boundary layer cells 100
Time step 1.3 × 10−8 s

Sampling frequency 77 MHz

Fig. 5 Wabash Computational Domain.

This body force was included in the momentum equation. The power corresponding to the body force, f · V, was
included in the total energy equation.

III. Results

A. Code Comparison
The first stage of the computations involved a code comparison between Wabash and Kestrel. This was done on the

numerically sharp geometry in Figure 2 and 4 using the entire 360◦ azimuthal sector. The numerical schemes in this
part of the computation were second order accurate in space and time. The results for skin friction coefficient are in
Figures 8 and 9. A circumferential line is extracted to examine the result in more detail and is shown in Figures 10 and
11. Equally spaced peaks are found and it is suspected these are similar to the stationary instabilities Porter et al. found
for an elliptic cone flow[15]. Further skin friction coefficient contours are available in Figures 12 and 13 and details of
the streaks are highlighted by using an adjusted scale.
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Fig. 6 N-factors for frequencies along a full
domain calculation.

Fig. 7 N-factors for frequencies along a partial
domain.

Fig. 8 Kestrel: Numerically sharp solution
displaying skin friction coefficient magnitude.

Fig. 9 Wabash: Numerically sharp solution
displaying skin friction coefficient magnitude.

Fig. 10 Circumferential skin friction coefficient
magnitude at 𝑥 = 0.4m.

Fig. 11 Zoomed in view of circumferential skin
friction coefficient magnitude at 𝑥 = 0.4m.
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Fig. 12 Kestrel: Numerically sharp solution with
adjusted contour levels of skin friction coefficient

magnitude.

Fig. 13 Wabash: Numerically sharp solution
with adjusted contour levels of skin friction

coefficient magnitude.
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B. Low-Order Basic State
With close agreement between Wabash and Kestrel, a low-order basic state calculation is completed using the

modeled nosetip on a higher resolution grid. The skin friction coefficient is shown in Figures 14 and 15 and show
similar behavior as before. Streaks appear in the solution at the same equally spaced azimuthal angles, as seen in Figure
16. The inflow is extracted at 0.3 m, as seen in Figure 17, and is carefully created to line up with the inflow plane of the
DNS. This extract location is before the streaks gain energy and, given the low magnitude, are considered to have little
effect. With the location specified, an azimuthally averaged 2D inflow profile is extracted and interpolated onto the inlet
of the DNS calculation.

Fig. 14 Kestrel: Modeled nosetip with skin
friction coefficient magnitude contours.

Fig. 15 Kestrel: Modeled nosetip with adjusted
skin friction coefficient magnitude contours.

Fig. 16 Skin friction coefficient magnitude
comparison. Fig. 17 Location of DNS inflow extract.

C. Direct Numerical Simulation
The DNS was run until the basic state converged, and then forcing was implemented. The forcing in this study

comprises of a uniform frequency distribution and two distributions that align with the quiet and noisy freestream
disturbances of the BAM6QT. The experimental data for these profiles was collected by Gray [16] and more information
about the generation of these profiles is available in reference [10] and [11]. The disturbance strength was calibrated by
increasing the strength of the uniform frequency disturbance profile until it achieves the correct position. At the highest
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strength that does not cause negative flow parameters, the flow is able to transition to turbulence. Unfortunately, it does
not reach the location of transition that occurs in the experiments.

However, the flow does display strong evidence of second mode dominated transition. Figure 18 shows an overview
an instantaneous uniform noise solution with density on the side and back plane and skin friction coefficient on the
surface. The generation of rope waves can be seen at the beginning of the flow and are indicative of the nonlinear
development of the second mode instability. As the flow continues downstream, these waves start to break down and
form secondary instabilities in the form of a cross pattern on the surface. There is a small region of lower activity before
the flow forms streaks and then breaks down into turbulence. Figure 19 shows the time averaged heat transfer of these
streaks and cross patterns and the primary and secondary set of streaks can clearly be seen and are qualitatively similar
to findings by Chynoweth and Hader.

Spectral analysis is conducted using wall pressure data to identify the energetic modes and is available in Figure 20.
The location at 0.375 m is within the forcing region and shows the forcing profile. Downstream of this, the unstable
mode of 300 kHz and its harmonics can clearly be seen. The energy distribution then smooths out as the flow transitions
to turbulence.

For the quiet and noisy flow profiles, the transition mechanics are similar with only slightly differences of the overall
flow compared to the uniform noise profile. To visualize these differences, the time-averaged heat transfer contour is
revolved to create a complete cone and is shown in Figure 21. The location of the beginning of transition moves for
the various forcing schemes and for the quiet flow it is not able to completely breakdown. Furthermore, the primary
set of streaks show slightly differing amplitudes and azimuthal wavenumbers for each case. This can result from the
complex interactions occurring between the primary instability and the other frequencies introduced in the forcing. By
introducing a wide range of disturbances instead of disturbing the primary unstable frequency, it makes it difficult to
identify any specific breakdown mechanisms, such as Klebanoff or Herbert type breakdown. As seen in Figure 22,
identifying any Λ vortices or the hairpin vortices associated with K-type or H-type breakdown using Q-criterion is
difficult as many complex interactions occur.

Fig. 18 Uniform Noise: Transition to turbulence.
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Fig. 19 Uniform Noise:Time-averaged heat transfer on the surface of the cone.

Fig. 20 Uniform Noise: Energy for frequencies
found at various 𝑥 surface locations.

IV. Conclusion
Direct numerical simulation carried out on the flared cone geometry using random forcing successfully achieved

transition and reproduced the primary and secondary set of streaks found by Chynoweth and Hader. Additionally,
spectral analysis identified the 300 kHz second mode instability that agrees with Chynoweth’s findings. However, the
location of transition does not match with experiment and is likely stemming from the decision to use a partial domain
DNS with the method of forcing used in this study. Future work will present a more comprehensive analysis and
comparison with Chynoweth and Hader using an overset grid DNS that will capture more of the cone compared to the
current work. An overset setup would allow disturbances more space to grow and achieve a more natural transition.
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(a) Uniform Forcing Profile (b) Quiet Forcing Profile

(c) Noisy Forcing Profile

Fig. 21 Comparisons between heat transfer contours.
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Fig. 22 Uniform forcing Profile: Q-criterion iso-surface colored by density with time-averaged heat transfer
contour on the surface. The box in the heat transfer contour above indicates the viewing region.
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