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Preliminary results are presented from an analysis of high-speed tunnel noise and its effect
on hypersonic boundary layer transition. The acoustic noise profile of AEDC-VKF Tunnel B is
approximated and used as an input to both linear stability and full Navier-Stokes calculations
of a series of cone and hollow cylinder experiemnts. Apparent differences in the receptivity
processes for these two canonical boundary layers are shown.

I. Nomenclature

) = Temperature
% = Pressure
UA = Streamwise instability wavenumber
U8 = Streamwise instability growthrate
VA = Spanwise instability wavenumber
V8 = Spanwise instability growthrate
l = Instability angular frequency
5 = Instability frequency
'4G = Reynolds number based on streamwise distance
: = Disturbance wavenumber vector
q8 = Disturbance phase constant
08 = Disturbance amplitude

Subscripts
0 = Stagnation conditions
1 = Reference/normalization conditions

II. Introduction

The topic of high-speed boundary layer transition is one of great importance to the development of a wide variety
of hypersonic flight vehicles. The onset of turbulence in boundary layers has been observed to correspond to an

sharp increase in heat flux and skin friction when compared to laminar flow, making the task of accurately predicting
boundary layer transition one of significant relevance. Despite many decades of active research in the field, much of the
underlying science of high-speed boundary layer transition remains poorly understood.

A topic of particular concern in the study of hypersonic boundary layers is the effect of the freestream disturbance
environments in conventional high-speed wind tunnels on measurements of aerodynamic phenomena such as boundary
layer transition. Early work by Kovasznay [1] characterized the fluctuating disturbances of turbulent flows into
acoustic, entropic, and vortical fluctuations; Morkovin applied this framework to study the noise environment of
conventional-design tunnels [2]. Key work on the topic was performed by Laufer, who recognised that turbulent
boundary layers formed on the sidewalls of hypersonic tunnels radiate significant noise into the freestream environment
of the test section [3, 4].

The effect of acoustic disturbances on hypersonic transition was specifically studied by Pate and Schueler [5], who
compared measurements of transition on in nine different wind tunnels ranging from 30 cm to 130 cm in diameter. Their
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comparison showed that increased tunnel size led to two significant effects: decreased noise intensity, and increased
transition Reynolds number. These observations supported the notion that freestream disturbances in conventional
hypersonic tunnels is predominantly caused by acoustic radiation from turbulent boundary layers on the walls of the
facility.

A similar study by Stainback [6] on a cone in six different hypersonic facilities at NASA Langley corroborated Pate
and Schueler’s observations on the importance of free-stream disturbances (specifically, pressure fluctuations resulting
from turbulent boundary layers). Wind tunnel work by Kendall [7] elucidated details of the interactions between
freestream facility noise and boundary layer instability, showing that the role of acoustic noise becomes increasingly
significant as Mach number moves into the hypersonic regime. Extensive experimentation by Pate [8] using pairs
of concentric shrouds to isolate test articles from freestream acoustic fields showed that for conventional hypersonic
facilities, acoustic noise is a dominating factor in measurements of boundary layer transition. A comprehensive review of
high-speed tunnel noise was published by Schneider [9], who summarized key studies of freestream noise in conventional
ground facilities, ballistic ranges, and some flight experiments. A more recent study of wind tunnel data collected at
eleven conventional hypersonic facilities by Marineau et al. [10] highlighted many of the trends reported by previous
researchers, including a longstanding unit Reynolds number effect (initial amplitudes of boundary layer instabilities
appear to scale with increasing unit Reynolds number) and a clear correlation between transition Reynolds number and
tunnel size.

Facility noise has long been suspected to play a major role in the differing behavior of conical and planar boundary
layers. Early work in the incompressible regime by Battin and Lin [11] and Tetervin [12] predicted that the ratio between
conical and planar transition Reynolds numbers should be equal to 3. Experimental measurements, such as those by
Potter and Whitfield [13] and Pate [14] produced a variety of values for this ratio, ranging from approximately 3 to 1
across a range of Mach numbers.

Pate surveyed the existing literature and, proposed a correlation for the conical-to-planar transition Reynolds number
ratio as a function of turbulent skin friction coefficient along the tunnel wall [8]. This correlation showed remarkable
qualitative agreement with data drawn from 11 different facilities, indicating that the ratio decreased monotonically with
increasing Mach number from Mach 3 to 8.

However, the application of stability theory to the problem by Mack [15] suggests exactly the opposite of the
available experimental data - that transition should occur later on flat plates than on cones due to lower disturbance
growth rates in the flat plate case.

In order to address this discrepancy, Stetson et al. performed a series of experiments on a sharp cone and a sharp,
hollow cylinder (used as a flat plate analog) at hypersonic speeds [16]. They collected detailed data on the growth of
instabilities in each boundary layer but were not able to resolve the disagreement — their measurements were consistent
with previous experimental data suggesting that cones have higher transition Reynolds numbers than plates. Notably,
the data showed significant growth for low-frequency instabilities which was not predicted by LST. These results can be
seen in plots of instability amplitude published in the the original paper, included below in Figure 1. These findings
suggest that another instability mechanism may be dominant in the case of the hollow cylinder experiments; specifically,
the unexpected growth of low-frequency waves is likely a result of low-frequency disturbances in the freestream. The
authors posited that there may exist a fundamental difference in the receptivity of the two boundary layer categories
such that for equivalent freestream disturbances, different instability waves are generated in the boundary layer of the
cone versus the hollow cylinder.

Subsequent experiments conducted in quiet tunnels have corroborated this prediction. A significant work by Chen et
al. [17] used NASA Langley’s Pilot Low-Disturbance Tunnel (Mach 3.5), finding that the conical-to-planar transition
Reynolds number ranged from 0.8 - 1.2 depending on unit Reynolds number. By running the tunnel with closed bleed
valves, they generated high-noise conditions which led to a higher transition Reynolds number ratio; under low-noise
conditions, the ratio dropped below 1. These values of transition Reynolds number ratio correspond well to predictions
using linear stability theory, providing strong support for the theory that acoustic noise produced by turbulent sidewall
boundary layers is a dominant factor in transition in conventional tunnels.

In recent years, the advent of direct numerical simulation (DNS) as an effective tool for scientific analysis has also
been hugely beneficial for the study of hypersonic boundary layer transition; several experiments by Stetson et al. have
been studied computationally. A 2003 paper by Zhong examined the receptivity of a blunt cone at Mach 8 to freestream
disturbances [18], finding that second-mode waves are not directly excited by freestream disturbances, but instead
arise due to resonance effects with excited first-mode waves. This synchronization between the first and second modes
appears to play an important role in the receptivity of the boundary layer. Two works by Ma and Zhong performed a
similar analysis on a flat plate at Mach 4.5, focusing on the resulting wave structures [19] and the freestream acoustic
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(a) Cone (b) Cylinder

Fig. 1 Instability amplitudes as a function of frequency from Stetson et al. [16].

disturbance receptivity process [20].
Another study by Balakumar [21] considered the receptivity of a flat plate boundary layer to acoustic disturbances,

aiming to understand the relative importance of fast versus slow waves. The results show that slow waves more
readily generated boundary layer instabilities due to the closeness in wavelength between the two waveforms. Work by
Cerminara on a generic forebody shape [22] found very similar results; acoustic disturbances of the slow-wave form
produced better agreement with experimental data, although they underpredicted the transition Reynolds number. This
shortfall which may be attributable to inaccurate modeling of the wind tunnel noise environment, which highlights the
need for accurate characterization of wind tunnel disturbance environments that can be grounded by comparison to
experimental measurements.

The current work aims to study the cone and hollow cylinder experiments of Stetson et al. [16] to understand the
effect of facility noise on measurements of hypersonic boundary layer transition. This paper demonstrates the use
of linear stability theory (LST) and DNS to study the stability of boundary layers subject to acoustic radiation in a
conventional hypersonic wind tunnel.

III. Experimental Geometry & Freestream Conditions
The experiments of Stetson et al. focused on two articles: a sharp cone and a hollow cylinder. The cone had an

overall length of 1.016 m and a half angle of 7 degrees with a tip radius of 5.08 × 10−5 m. The cylinder (used as a
flat plate analog to avoid three-dimensional end effects) had a length of 1.511 m, an outside diameter of 25.4 cm, and
an internal diameter of 20.3 cm with the same specified tip radius of 5.08 × 10−5 m and a leading edge beveled at 15
degrees. Diagrams of the two models are shown below in Figures 2 and 3.

Fig. 2 Schematic of the cone of Stetson et al. [16].
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Fig. 3 Schematic of the cylinder of Stetson et al.[16].

Both models were made from concentric aluminium shells of approximately 3 mm thickness, between which cooling
water circulated to maintain a constant surface temperature of 302 K. The tip regions of each article (14.4 cm for the
cone and 9.5 cm for the cylinder) were fabricated from solid stainless steel. The effect of nose heating on transition
was not addressed in detail by Stetson et al., but no change in transition location was observed with changes in the tip
temperature over the course of experimental runs.

Stetson et al. performed their experiments in Tunnel B at the Arnold Engineering Development Complex von
Karman Facility (AEDC-VKF). Tunnel B is a closed loop facility with a 1.27 m diameter test section and a range
of available stagnation pressures from 345 kPa to 6.205 MPa. The air is vitiated using a natural gas heater to avoid
condensation, while the tunnel surfaces itself are water-cooled. Different axisymmetric nozzles allow for operation at
Mach 6 or Mach 8, with a unit Reynolds number range of 1.3 × 106 m−1 - 17.0 × 106 m−1. Further details on the design
and capabilities of Tunnel B can be found in Ref. [23]. The experiments of Stetson et al. were carried out using the
Mach 8 nozzle and unit Reynolds numbers ranging from 3.2 × 106 m−1 to 6.4 × 106 m−1. These flow parameters are
summarised below in Table 1.

Mach Number 7.94
Velocity 1176.0 m/s
Static Pressure 165.5 Pa
Static Temperature 54.4 K
Unit Reynolds Number 3.2 × 106 m−1

Model Wall Temperature 305.7 K
Table 1 Freestream conditions reported by Stetson et al. [16].

Due to the relatively long lifespan of AEDC-VKF Tunnel B, a large body of data characterizing its freestream
environment is available. A 1995 study by Donaldson and Coulter [24] collated data from over 20 years of experiments
in which hotwire anemometry was used to examine the noise environment of both tunnels. Data collected along the
tunnel centerlines were processed to generate disturbance spectra for mass flux and total temperature fluctuations.

These results provide an idea of the relative amplitude of the freestream disturbances in each tunnel, up to a frequency
of approximately 80 - 220 kHz (depending on unit Reynolds number), beyond which point the disturbances were
indistinguishable from the instrumentation noise. Correlation between the instrumentation noise and the experimental
measurements is an issue worth noting; as Schneider [9] observes, Donaldson and Coulter simply subtracted the “wind
off” signal from the test measurements, which assumes that the instrumentation nose is completely uncorrelated with
the measured variable.

For the purposes of replicating the AEDC Tunnel B environment computationally, the two spectra of normalized
total temperature fluctuation provided by Donaldson et al. were used to interpolate a spectrum at '4G = 3.28 × 106 m−1

(corresponding to the experiments of Stetson et al. [16]), as shown below in Figure 4.
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Fig. 4 Spectra of nondimensional total temperature fluctuations based on the work of Donaldon et al. [24].

The interpolated fluctuation spectrum shows good qualitative agreement with the freestream noise profile reported
by Stetson et al. (see Figure 1(a)). Both profiles were scaled to provide unit area (i.e. divided by total signal energy so
that the area under the curve is unity); a comparison of the two is shown below in Figure 5.
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Fig. 5 Comparison of fluctuation spectra from Donaldson et al. [24] and Stetson et al. [16].
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Marineau demonstrated that the spectral roll-off of freestream noise could be accurately modeled with a power law
function; the power spectral density decreased in the range of frequencies corresponding to second mode frequencies
with 5 −3.5 [25]. In a 2019 survey paper by Duan et al. [26], this model was applied to measurements of freestream
fluctuations in eleven different conventional hypersonic facilities (not including AEDC Tunnel B). A plot from this
paper showing the power spectral density of normalized Pitot pressure fluctuations for five different facilities is copied
below as Figure 6(a)). The power spectral densities of the scaled Donaldson interpolant and Stetson disturbance profiles
are shown in comparison to this trendline in Figure 6(b).

(a) Freestream pressure fluctuations of multiple facilities from Duan et
al. (Fig. 2) [10]
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(b) Fluctuations of Stetson et al. [16] and interpolant based on
Donaldson et al. data [24]

Fig. 6 Freestream disturbance spectra.

While the data reported by Donaldson et al. [24] do not extend to frequencies high enough to show close agreement
with the power law fit suggested by Marineau et al. [25], the available data show enough similarity with the available
measurements from other facilities to suggest that the trend likely holds.

A piecewise curve was fit to the Donaldson interpolant, enabling calculation of an approximate fluctuation amplitude
for an arbitrary frequency value.

) ′0
() ′0)1

=

{
4.125 × 10−5 exp

[
−1.547 × 10−1 ln ( 5/3300)2

]
0 kHz ≤ 5 ≤ 11.6 kHz

1.530 × 10−4 − 1.340 × 10−5 ln ( 5 ) 11.6 kHz ≤ 5 ≤ 90 kHz
(1)

This function is shown plotted against the Donaldson interpolant in Figure 7; it shows near-exact agreement in
the initial portion of the domain where the data indicate a curved distribution and close agreement in the steadily
logarithmically-decreasing region thereafter.
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Fig. 7 Curve fit vs Donaldson interpolant.

IV. Linear Stability Theory
The application of linear and nonlinear stability theories is a well-known tool in the prediction of high-speed

laminar-turbulent transition. Even in higher-fidelity analyses, the traditional stability theories provide a useful reference.
Here, linear stability theory was applied to flow profiles generated by solving the boundary layer equations.

A. Governing Equations
The equations of linear stability theory are derived by writing flow quantities as the sum of an undisturbed laminar

base flow and a fluctuating perturbation:
q = q̄ + q′, (2)

where q̄ is the laminar flow quantity and q′ is the fluctuation. Substituting this form into the Navier Stokes equations
and simplifying yields the LST equations, which can be solved to describe the behavior of the fluctuating flow properties
(i.e. the instabilities). The equations have normal mode solutions of the following form:

q = q̂(H)48 (UG+VI−lC) . (3)

Here, q′ is a particular disturbance quantity (D′
8
, ?′, or ) ′), U and V are wavenumbers in the G and I directions,

respectively, l is the frequency, and q̂(H) is a function which provides the spatial structure of the disturbance in the
H-direction. Whether the values of U, V, and l are real or complex dictates the stability of the disturbance; if all are
real then the disturbance is neutrally stable (i.e. it does not grow or decay in time or space); if U or V is complex, then
the amplitude of the instability wave will change as it propagates through space (spatial instability); if l is complex,
then the amplitude of the instability wave will change with time (temporal instability). In general, temporal and spatial
instabilities are not simply related as each harmonic component has a unique phase velocity, meaning that a group of
instability waves of different frequencies will disperse as they propagate in time or in space.

When the linearized disturbance equations are discretized, they take the following form:

�q = 5 , (4)

where q is the solution vector containing the disturbance magnitudes for all points in the domain; 5 is a vector which
encodes information about boundary conditions; and � is a matrix derived from the finite difference scheme. Solving
the system for q generates the eigenfunction for a specified V and l. This solution — representing a particular instability
mode — can then be tracked through the computational domain to analyze the amplification or attenuation of the
disturbance as it progresses through the flow.
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For this analysis, the VESTA code [27] was used to solve the equations of linear stability. The LST equations were
treated as a spatial stability problem, in which one seeks a complex streamwise wave number U = UA + 8U8 corresponding
to a specified instability frequency (l) and spanwise wave number (V). In the VESTA code, the stability equations are
solved using a Chebyshev collocation method. This approach allows for highly-accurate interpolation of the boundary
layer profile while minimizing spurious oscillations at the domain boundaries (i.e. the Runge phenomenon) associated
with other interpolant functions such as Lagrange polynomials [28].

High-quality boundary layer profiles were obtained by using the DEKAF solver [29] to solve the boundary layer
equations for each axisymmetric geometry assuming a calorically perfect gas. The freestream conditions from the
experiments of Stetson et al. as reported in Table 1 were used to generate these profiles, which are shown below in
Figure 8; they have the expected self-similar shape and the development of the flow is evident from comparison of
progressive streamwise locations.

(a) Cone

(b) Cylinder

Fig. 8 Boundary layer profiles generated by DEKAF solver at '4G = 3.28 × 106 m−1.

Since the boundary layer equations are implicitly limited by their omission of higher-order terms from the
Navier-Stokes equations, it is important to verify that the profiles obtained numerically are an adequate match for the
experiments of Stetson et al. [16]. The results are roughly comparable to the experimenally-measured profiles, as seen
in Figure 9, which shows both results for a series of Reynolds numbers based on streamwise distance. At increasing
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Reynolds numbers (i.e. further downstream locations) for each flow, the agreement deteriorates; this is explained by
the experimental boundary layers’ evolution from laminar to transitional. In their paper, the authors also note that the
boundary layer profiles obtained in their experiments are not of high quality, as the Pitot pressure probe experienced
significant interference in the vicinity of the models’ surfaces [16]. In light of this, the self-similar solutions obtained
from the boundary layer equations would appear adequate for an initial linear stability analysis.

(a) Cone of Stetson et al. (b) Cylinder of Stetson et al.

Fig. 9 Computed boundary layer profiles vs. experimental data of Stetson et al. [16].

The equations of linear stability theory have been solved for each of the boundary layers generated by DEKAF using
the VESTA code. Boundary layer profiles for each flow were read into the code and used to perform a global eigenvalue
search, providing a complete picture of the instability modes that exist in the linear regime (i.e. excluding modes that
vanish under the assumption of locally parallel flow such as Görtler vortices). Within the spectrum of eigenvalues,
specific instability modes can be selected by examining the eigenfunctions of their disturbances; these modes can then
be followed using a local eigenvalue search to understand their stability at different points in the spatial and frequency
domains.

Figure 10 shows curves of neutral stability for the cylinder and cone geometries; each curve represents the locus of
points for which the amplification rate −U8 is 0, indicating a disturbance of neutral stability (i.e. one that is neither
amplified or attenuated). Points on the interior of these curves represent unstable perturbations, while the exterior points
correspond to stable perturbations.

9



(a) Cone of Stetson et al. (b) Cylinder of Stetson et al.

Fig. 10 Neutral curves generated from LST calculations.

For the cone, the neutral curve shows that instabilities of less than approximately 70 kHz are stable throughout the
domain; a wide band of instabilities between approximately 70 kHz and 200 kHz are amplified through most of the
domain; frequencies above 200 kHz are strongly amplified near the nose but damped elsewhere.

The behaviour of the cylinder is broadly similar, with a band of stable frequencies at the very low end of the spectrum
(less than 10 kHz), a broad range of amplified frequencies (approximately 10 kHz to 130 kHz), and a range of higher
frequencies amplified near the nose. However, the neutral curve for the cylinder displays a more complex disturbance
spectrum consisting of higher modes, as seen in the multivalued top surface of the curve.

(a) Cone of Stetson et al. (b) Cylinder of Stetson et al.

Fig. 11 Amplification rates at various downstream distances.

The additional mode which appears in the cylinder disturbance spectrum is clearer in the plots of amplification rate
shown in Figure 11. Plot (a) shows amplification rates for the cone; these curves represent second-mode disturbances
across the same band of frequencies covered by the neutral curve. Lower frequencies experience the strongest
amplification in the downstream region; higher frequencies are weakly amplified near the nose and damped thereafter.

The curves in (b) show the harmonic behaviour of the second mode for the cylinder; each has a characteristic twin
peak shape which becomes progressively stretched out as the disturbance propagates downstream. The two peaks create
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multiple regions of instability, leading to the peculiar shape of the neutral curve. Another salient feature, not obvious
from the neutral curves, is that the amplification rates for the cylinder are much lower than those for the cone - the
second mode has both a lower frequency range and a lower rate of amplification in the cylindrical boundary layer versus
the conical boundary layer.

Re_x

(a) Cone of Stetson et al. (b) Cylinder of Stetson et al.

Fig. 12 Frequencies of maximum second-mode growth computed via LST vs data of Stetson et al. [16].

In both sets of amplification rate curves, the first mode appears stable as expected from the experiments of Stetson et
al. [16]. In addition, the maximum growth rates correspond well with the experimental data; this is shown in Figure 12.
The wind tunnel data show an approximately linear relationship between the maximally unstable frequency and the
streamwise Reynolds number for both the cone and the cylinder, but the LST analysis suggests that the experiments
simply failed to capture upstream behaviour of the second mode.

Calculation of the amplification factor −U8 of a frequency across a range of streamwise locations makes it possible
to study the growth of an instability as it propagates downstream, as is done in the 4# method of transition prediction
[30, 31]. This makes it possible to calculate instability spectra like those published by Stetson et al. [16] (reproduced
above in Figure 1). Assuming that there are initially no significant instabilities in the boundary layer, the result is an
estimate of the boundary layer stability when the receptivity is zero (i.e. freestream disturbances do not generate any
initial instabilities within the boundary layer). These results are shown below in Figure 13.
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(a) Cone of Stetson et al. (b) Cylinder of Stetson et al.

Fig. 13 Growth of disturbance amplitudes with increasing streamwise Reynolds number.

Conversely, Equation 1 can be used to generate initial amplitudes for the instability spectrum based on the tunnel
noise profile assuming perfect receptivity - i.e. tunnel noise directly generates initial boundary layer instabilities with no
modulation or attenuation. These results are shown in Figure 14.

(a) Cone of Stetson et al. (b) Cylinder of Stetson et al.

Fig. 14 Growth of disturbance amplitudes with increasing streamwise Reynolds number.

Comparison of these figures indicates that for this simplified analysis, LST does indeed predict modest growth of the
low-frequency disturbances reported by Stetson et al. However, the growth only appears in the cylindrical boundary
layer and is much lower in amplitude than seen in the instability spectra of Stetson et al. (Figure 1). This suggests that
the receptivity of the cylindrical (i.e. planar) boundary layer to low-frequency freestream disturbances is indeed much
higher than that of the conical boundary layer, but the mechanism is not well captured by straightforward LST.
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V. Direct Numerical Simulation
An initial study of boundary layer receptivity to freestream noise has been undertaken by simulating the experiments

of Stetson et al. [16] with an acoustic body force source term in the freestream. This simulates the acoustic disturbances
generated by turbulent boundary layers on the sidewalls of AEDC-VKF Tunnel B.

A. Governing Equations
The physics of the hypersonic flow studied in these computations were modeled using the Navier-Stokes equations

for an ideal, compressible gas. The conservation equations were tranformed from Cartesian coordinates (i.e. G, H, I) to
the coordinates of the computational grid (b, [, b). In nondimensional form, the equations can thus be expressed in
terms of vectors:

m*̄

mC
+
m�̄9

mb 9
=
m�̄ 9

mb 9
+ (̄ (5)

where the solution vector* and flux vector �8 are defined as

* =



d

dD1

dD2

dD3

�


(6)
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dD1

dD1D1 + ?
dD1D2
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dD1 (� + ?
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dD3

dD1D3

dD2D3

dD3D3 + ?
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, (7)

and the transformed solution vector *̄ and flux vectors �̄8 are defined in terms of the grid transformation Jacobian, �
and the grid metrics as:

*̄ =
*

�
(8)

�̄8 =

(
mb8

mG 9

)
� 9

�
. (9)

The governing equations were solved using the Wabash code (formerly Higher Order Plasma Solver, or HOPS)
developed by Poggie [32–36]. This code uses a compact differencing scheme for spatial discretization which is
sixth-order at interior points and fourth-order at boundaries with a reduction to a second-order upwind scheme near
shocks. Temporal discretization uses an implicit method similar to the Beam-Warming scheme [37]; this results in
a tridiagonal system of equations which is then solved using the approximate-factorization algorithm of Pulliam and
Chaussee [38]. This discretization provides second-order accuracy in time.

To ensure the stability of the numerical scheme, a high-order filtering algorithm was implemented. The filter serves
a purpose analogous to that of artificial damping; i.e. smoothing out the solution and limiting the growth of numerical
instabilities. A low-pass, non-dispersive Padé-type filter is applied after each time step; the filter has an implicit form
based on a local average of q and neighboring values of q̄. A more detailed description of the filter can be found in
references [39] and [40].

B. Forcing Formulation
The method used for the freestream forcing is a superposition of random plane waves, similar to techniques

demonstrated by Cerminara et al. [22] and Tufts et al. [41]. A number of discrete waves within a specified frequency
spectrum are input to the code as a body force source term in the Navier-Stokes equations of the following form:

®5 = �
∑
8

082>B

(
l8 ®G · =̂
|0 ++=1 |

− l8C + q8
)

(10)
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where l8 and q8 are the angular frequency and phase constant, respectively; 0 and + are the wave speed and local flow
velocity, 08 is an amplitude constant, and =̂ = ®:/| ®: | is the unit vector in the direction of the wave. The wave direction
vector is = = 〈cos \1, sin \1 cos \2, \1 sin \2〉.

The forcing is implemented by selecting 8 = 100 modes evenly spaced across a frequency range spanning 10 kHz -
100 MHz with phase constant q8 and wave direction angles \1, \2 generated randomly for each. The frequency range is
based on the freestream disturbance spectrum of AEDC Tunnel B as reported by Stetson et al. [16] (Figure 1); the
amplitude distribution 08 (l8) is generated from a curvefit.

VI. Results of Freestream Body Forcing
The governing equations were solved for both the cone and cylinder using dense structured grids of 1.3 billion cells,

sufficient to capture the entire surface of each test article. With the forcing formulation given by Eq. 10 applied to a
region ahead of the shock structure generated by each geometry, the manner in which these disturbances are processed
by the shock and the boundary layer can be observed. While detailed analysis of these data is forthcoming, the initial
results are shown in Figures 15 and 16.

(a) Density contours (b) Pressure gradient contours

Fig. 15 Simulation of Stetson et al. [16]’s cone subject to freestream acoustic forcing.

14



(a) Density contours (b) Pressure gradient contours

Fig. 16 Simulation of Stetson et al. [16]’s cylinder subject to freestream acoustic forcing.

In the above images, several salient features of the flow are visible - namely, the junction between the uncooled nose
tip and the constant temperature walls of each model, the development of an instability wavepacket (particularly evident
in the pressure gradient contours), and the streamwise development of these instabilities as they propagate downstream.
These contour plots clearly show that the freestream noise generated upstream by the curvefit model has been processed
by the leading shock/Mach wave structure of each geometry and absorbed by each boundary layer. As the instabilities
propagate downstream, they are modulated by the boundary layer and significant nonlinearity begins to appear.

VII. Conclusion
Linear stability theory and direct numerical simulation have been used to study the effect of acoustic noise on

hypersonic laminar-turbulent boundary layer transition. LST has been used to study the disturbance frequencies which
are most unstable for each geometry and to examine the effect of receptivity when the boundary layer is subjected to a
tunnel noise profile representative of AEDC-VKF Tunnel B. The LST results show agreement with the data collected
by Stetson et al. [16] on second mode instabilities; notably, they also indicate a difference in the receptivity process
between the cylindrical and conical boundary layer. More detailed work has begun using an in-house DNS code to study
the receptivity of hypersonic boundary layers to freestream forcing and the subsequent growth of instabilities. Future
work will focus on refining the DNS methods used and studying the components of the downstream flowfield using
Fourier decomposition to gain a better understanding of the receptivity differences between cylindrical and conical
boundary layers at hypersonic velocities.
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