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This paper explores the feasibility of applying high-order, compact difference methods
to the modeling of glow discharges for high-speed flow control. Previous papers (AIAA
2008-1357) have successfully applied second-order finite difference methods to glow dis-
charge modeling. Detailed grid resolution studies, however, have revealed that very fine
grid resolution is required for acceptable quantitative results. High-order compact differ-
ence methods offer a possible means of achieving high spatial accuracy on coarser grids,
potentially leading to a significant reduction in the computational cost of an accurate solu-
tion. In previous work (AIAA 2009-1047), preliminary, one-dimensional compact difference
calculations were carried out for glow discharge problems. Here the work is extended to two
dimensions. Sample compact difference calculations are presented for several test cases,
including a Poisson equation solution, a compressible Couette flow problem, a hypersonic
laminar boundary layer flow, and a transient plasma-sheath problem. Spatial convergence
of second- through sixth-order compact schemes was investigated, and found to be compa-
rable to the theoretical order of accuracy. In particular, compact difference methods of up
to sixth order can successfully achieve their theoretical order of accuracy for the coupled
Poisson and Euler equations with source terms. Compact difference schemes appear to be
a promising numerical approach for modeling plasma actuators for high-speed flow control.

I. Introduction

Since the mid-1990s, there has been considerable research interest in plasma-based flow control techniques
for aerospace applications. Because of their favorable weight and power consumption properties, small-scale
actuators based on glow and arc discharges have become increasingly popular, and much effort has been
invested in numerical modeling of actuator behavior.1–3

Toward this end, the author has developed a second-order accurate, finite-difference code capable of
modeling the region of finite space-charge present in the vicinity of electrode surfaces in the electric discharges
used for flow control.3–5 The physical model includes the fluid conservation laws for the bulk gas flow, a
model for charged particle motion, and a self-consistent computation of the electric potential. This code has
been successfully applied to a variety of discharge problems, including low-density plasma-sheath problems,
DC glow discharges, and RF glow discharges. Comparisons among different numerical methods have been
carried out, and a central difference scheme, an upwind scheme, and a finite difference implementation of
the Sharfetter-Gummel scheme have all been found to give very similar results.

Recently, an investigation was carried out on spatial resolution issues in modeling DC glow discharges.4,5

A detailed grid resolution study was carried out, and very fine grid resolution was found to be required for
acceptable quantitative results. Coarse grids led to underestimates of number density, temperature, and
current density and to overestimates of the lateral extent of the discharge column.

High-order compact difference methods6,7 offer a possible means of achieving high spatial accuracy on
coarser grids, potentially leading to a significant reduction in computational cost. In previous work,8 prelimi-
nary, one-dimensional compact difference calculations were carried out for glow discharge problems. Here the
work is extended to two dimensions. Sample compact difference calculations are presented here for several
test cases, including a Poisson equation solution, a compressible Couette flow problem, a hypersonic laminar
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boundary layer flow, and a transient plasma-sheath problem. Accuracy is evaluated for second- through
sixth-order compact schemes, and compared to standard second-order upwind schemes.

II. Methods

The physical model and the numerical methods are described in this section. The physical model includes
the fluid conservation laws for the motion of each species and a self-consistent computation of the electric
potential. The baseline numerical implementation involves compact spatial differences of up to sixth order
accuracy, driven by a low-storage, fourth-order Runge-Kutta time marching scheme.

A. Physical Model

Continuum methods, based on moments of the Boltzmann equation, have been a popular and productive
means of modeling electrical discharges. One-dimensional modeling of direct-current glow discharges was
carried out as early as the late 1950s,9,10 and two-dimensional simulations were first carried out in the late
1980s.11,12 By the early 1990s, two dimensional simulations of radio-frequency glow discharges13,14 and
transient low-density discharges15,16 had been performed. Three-dimensional simulations have appeared
more recently.3,17

A variety of physical models have been employed in such work. One of the most common models is drift-
diffusion, assuming local equilibrium with the electric field, so that the transport and ionization coefficients
are a function of the local reduced field E/N .9,11,12 The next step up in generality is to solve the electron
energy equation as well, and use the local electron temperature Te instead of the local E/N to determine
the coefficients.18,19

Some studies have used continuity-momentum equations in place of the drift-diffusion model, thus in-
cluding the effects of particle momentum. The role of inertia in DC and RF discharges has been examined,
including the momentum of the electrons,20 the heavy particles,21 or both.22,23 Ion inertia is important
in the transient sheath that appears in plasma-source ion implantation,24 and in modeling the low-density
plasma-sheath transition.25,26

One aim of this ongoing project is to determine limits of the moment method in modeling electrical
discharges, specifically whether a three-moment model for each species can be accurate and computationally
tractable. A relatively general formulation of the conservation equations for electrical discharges is outlined
below, based on standard references.27–29 Briefly, the conservation laws can be derived from moments of
the Boltzmann equation, with closure models utilized for the inelastic collision source terms,29 the elastic
collision source terms,29,30 and the flux terms.28,31,32

1. Governing Equations

The problem of sheath structure in ionized argon was used as a test case in the current project. Gravity
is neglected, and the absence of an applied magnetic field is assumed. The conservation equations for each
species are:

∂

∂t
(msns) +∇·(msnsvs) = Ss

∂

∂t
(msnsvs) +∇·(msnsvsvs + psI) = ∇·τs + qsnsE + As

∂
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[
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(
εs + 1

2v
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)]
+∇·

[
msnsvs

(
εs + 1

2v
2
s

)
+ psvs

]
= ∇·[τs ·vs −Qs] + qsnsvs ·E +Ms

(1)

where the notation s = n, i, e indicates the neutrals, ions, and electrons, respectively.
The mass per particle of each species is denoted as ms, and the corresponding charge per particle is qn = 0,

qi = +e, and qe = −e. The number density is ns, the velocity is vs, and the translational temperature is Ts.
The electric field is E, and the symbol kB indicates the Boltzmann constant. The pressure is found from
ps = nskBTs, and the internal energy per particle is assumed to have the form msεs = Hs + kBTs/(γs − 1),
where γs = 5/3 is the ratio of specific heats. The heat of formation is Hn = He = 0 and Hi = H, where
H = 15.7 eV for argon ionization.
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It assumed that the gas is weakly ionized, so that the primary elastic collisions are with neutral particles.
For the inelastic collisions, it is assumed that the species appear or disappear with the average momentum
and energy of their peers, except for the electrons, which lose energy H in each inelastic collision.

The net production rate ω of charged particles in argon gas was given by:

ω = kfnnne − kbnine

kf = σT

√
8kBTe
πme

(
1 +

Ei
kBTe

)
exp

(
− Ei
kBTe

) (2)

with σT = 2× 10−12 m2, Ei = 15.7 eV, kb = 3.5× 10−14 m3/s. The ionization rate is from Meyyappan and
Kreskovsky22 and the recombination rate is from Adamovich et al.33 The species source terms become:

Si = miω

Se = meω

Sn = −mnω

(3)

The momentum source terms are:

Ai = ωmivi − niminνin(vi − vn)
Ae = ωmeve − nemenνen(ve − vn)

An = −(Ai + Ae)
(4)

The collision frequency between the charged and neutral species νsn was estimated from mobility data, with
the correlations for ion and electron mobility in argon taken from Ward.10 The energy source terms are:
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γi − 1

+ 1
2miv

2
i

)
− niminνin
mi +mn

[3kB(Ti − Tn) + (vi − vn)·(mivi +mnvn)]

Me = ω

(
−H+

kBTe
γe − 1

+ 1
2mev

2
e

)
− nemenνen
me +mn

[3kB(Te − Tn) + (ve − vn)·(meve +mnvn)]

Mn = −(Mi +Me)

(5)

For the neutral particles, it was assumed that the viscous term had a Newtonian form, with Stokes
hypothesis applied, and that the heat flux followed Fourier’s law:34

τn = µvn
[
(∇vn) + (∇vn)T − 2

3∇·vnI
]

Qn = −kn∇Tn
(6)

where µvn is the viscosity and kn is the thermal conductivity for the neutral particles. The viscosity and
thermal conductivity of the charged particles were neglected for the present work.

To complete the physical model, the electric field must be found from a consistent solution of Maxwell’s
equations. For the present work, the Poisson equation was solved for the electric potential:

∇2φ = − e

ε0
(ni − ne) (7)

and the electric field was found from E = −∇φ.

2. Nondimensionalization

The equations were solved in non-dimensional form. For brevity, only an outline of the nondimensionalization
procedure is given here. Global reference quantities were chosen for length LR, velocity uR, number density
nR, potential φR, collision rate νR, viscosity µvR, and thermal conductivity kR. For each species, however,
there was a different reference density ρRs = msnR, temperature TRs = msu

2
R/kB , and pressure pRs =

msnRu
2
R. Space charge was normalized by the electron charge e, and heat of formation was normalized by

msu
2
R.
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The nondimensionalized equations have much the same form as (1)-(7). In addition to a Reynolds number
and Prandtl number for each species, the following nondimensional parameters appeared as a consequence
of this form of nondimensionalization:

Φs =
eφR
msu2

R

C =
νRLR
uR

a = LR

√
enR
ε0φR

The nondimensional parameters are, respectively, a relative field strength, a nondimensional collision fre-
quency parameter, and a non-neutrality parameter.

B. Numerical Methods

The governing equations (1)-(6) were solved using a fourth-order accurate, low-storage Runge-Kutta time
marching scheme combined with either a compact spatial difference scheme, Steger-Warming flux splitting,
or Roe flux difference splitting. The compact formalism was evaluated with second- through sixth-order
accurate differencing, whereas the upwind schemes employed third-order upwind biased differencing in the
MUSCL formalism. For the compact scheme, stability was enforced by filtering, typically with a filter of two
orders greater than the accuracy of the basic scheme. The Poisson equation (7) was solved by an iterative
scheme (described below), with either central or compact spatial differences. The Poisson solution was not
filtered. The metric terms were evaluated with central or compact differencing of an order corresponding to
the basic scheme.

1. Governing Equations

In transformed coordinates, the conservation laws (1) can be written in the form:

∂U

∂t
+
∂E

∂ξ
+
∂F

∂η
=
∂Ev
∂ξ

+
∂Fv
∂η

+ S (8)

where U is the vector of conserved variables, E and F are the inviscid flux vectors, Ev and Fv are the
viscous flux vectors, and S represents the source terms. A standard, low-storage, fourth-order Runge-Kutta
scheme35 was used for time integration of Eq. (8). Three different schemes were used to evaluate the spatial
differences: either a compact difference scheme of up to sixth-order accuracy (described below), the Steger-
Warming flux split scheme, or the Roe flux difference split scheme. The upwind schemes used third-order
MUSCL extrapolation36 for the inviscid fluxes and second-order central differencing for the viscous terms.

The Poisson equation (7) was solved at the end of each stage of the Runge-Kutta time-integration. It
can be written in the following form in transformed coordinates:

∂E

∂ξ
+
∂F

∂η
= Sφ (9)

An iteration procedure was introduced such that the potential at iteration step m was φm+1 = φm + ∆φ.
With a linear expansion about the solution from the previous iteration, and approximate factoring of the
implicit terms, the discretized equation has the form:

[1−∆τ(δξAδξ −D)] [1−∆τδηBδη] ∆φ = ω∆τ
[
∂Em

∂ξ
+
∂Fm

∂η
− Smφ

]
(10)

with iteration driving ∆φ to zero. Here A and B are flux Jacobians, D is the source Jacobian, τ is a time-like
variable introduced to motivate the iteration process, and ω is an over-relaxation factor. Discretizing the
left-hand side using second order central differences in space, a tridiagonal system of equations is obtained.
(Since iteration drives ∆φ to zero, the form of the discretization of the left-hand-side does not affect the
order of spatial accuracy of the converged solution.) Either central or compact difference schemes were used
to evaluate the spatial differences present on the right hand side of Eq. (10), and the system was solved
using the Thomas tridiagonal algorithm.37 The pseudo-time-step ∆τ was varied cyclically to accelerate
convergence, and iteration was continued until the change in potential ∆φ had dropped below a specified
tolerance.
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2. Compact Differences

Considering a one-dimensional, uniform mesh, the following central difference scheme6,7 with a 5-point stencil
can be used to generate estimates of the first derivative φ′i = ∂φ/∂x|xi

with up to sixth-order accuracy:

αφ′i−1 + φ′i + αφ′i+1 = a
φi+1 − φi−1

2 ∆x
+ b

φi+2 − φi−2

4 ∆x
(11)

Here α, a, and b are constants that are used to alter the properties of the scheme, and φ(x) is a generic
function, not to be confused with the electric potential. Taylor series expansions can be used to derive
a family of second- to sixth-order accurate schemes employing this template.6,7 Table 1 gives selected
coefficients for internal points using Eq. (11) for different orders of accuracy. Note that the implicit form
of the scheme (α 6= 0) results in a narrower stencil for a given order of accuracy than for an explicit form
(α = 0). Modified schemes7 were used near boundaries, where the interior stencil would protrude outside of
the domain.

Table 2 shows the forms of the compact difference scheme that were examined in this project, using the
notation of Gaitonde and Visbal. To evaluate the derivative at each point, the appropriate form of Eq. (11)
was solved using the Thomas tridiagonal algorithm.37 Second derivatives were evaluated by applying the
differencing scheme twice.

Numerical stability was enforced using filtering, typically with a filter of two orders greater than the
accuracy of the basic scheme. The form of the filtering scheme7 for interior points was as follows:

αfφi−1 + φi + αfφi+1 =
N∑
n=0

an
2

(φi+n + φi−n) (12)

where φi is the filtered value of φi, and N+1 is the order of the filter. A table of coefficients for interior-point
filters of second to eighth order is given in Table 3. Modified filters were used near the boundaries; the various
options are shown in Table 2. (In the table, F0 indicates that no filter was applied to the boundary points.)
The filter was applied to the conserved variables at the end of a time step, and the boundary conditions were
updated so that the boundary points were consistent with the filtered interior points. For the cases labeled
Filter A in Table 2, the filter’s free parameter was set to α = 0.40, whereas for Filter B, the value was varied
between α = 0.495 at the boundary and α = 0.400 for the interior points.

III. Results

Sample compact difference calculations are presented here for several test cases, including a Poisson
equation solution, a compressible Couette flow problem, a hypersonic laminar boundary layer flow, and a
transient plasma-sheath problem. Accuracy is evaluated for second- through sixth-order compact schemes,
and compared to standard second-order upwind schemes.

A. Poisson Solver Test

To verify the correct implementation of the Poisson solver, the code was tested against the following problem:

∂2φ

∂x2
+
∂2φ

∂y2
= xey (13)

with φ = xey imposed on the boundary of the domain. The analytical solution for this problem is φ(x, y) =
xey.

Calculations were carried out with the compact difference schemes 1-5 in Table 2, and compared to
calculations using a second-order central difference scheme. For each case, the solver was run for 105 iterations
to ensure convergence to machine precision.

Sample results are shown in Fig. 1 for a 31×31 computational mesh (see Fig. 1a). The mesh is deliberately
distorted to test the correct implementation of the metric terms. The solution obtained with Compact
Scheme 5 is shown in Fig. 1b. The value of the potential rises smoothly from zero at the origin to about
2.7 at the upper right corner of the domain. The absolute error is shown, respectively, for the compact and
central difference schemes in Figs. 1c-d. The maximum absolute error for the compact scheme was 6.3×10−6,
whereas the corresponding error for the central scheme was 1.3× 10−2.
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The iterative convergence rate of of the two schemes is examined in Fig. 2a. The maximum change in the
potential is plotted as a function of iteration number. Oscillations appear in the plots because of the cyclic
variation of the pseudo-time parameter. The envelope of the curves drops almost linearly on these semi-log
plots. Eventually, the limit of machine precision is reached, and the value levels off. The solution converged
more slowly with the compact scheme, probably because the left-hand-side of Eq. (10) was evaluated using
a second-order central difference framework. This issue will be addressed in future work.

Figure 2b shows the maximum error for each numerical scheme as a function of mesh size for grids
between 11 × 11 and 161 × 161. The slope of the lines on the log-log plot follows the expected value for
the order of the scheme. (Each curve is a power-law fit to the points, and is annotated with the absolute
value of its exponent.) Generally, the compact schemes show better absolute accuracy than corresponding
explicit numerical schemes of the same order. The second-order scheme in the compact formalism has higher
absolute accuracy than the conventional central scheme. The difference between these two cases lies in the
manner in which the second derivative is evaluated (conventional vs. first derivative applied twice).

B. Compressible Couette Flow

As a test of the diffusion terms in the conservation laws, computations were carried out for a compressible
Couette flow problem. A single species of neutral gas was assumed. This problem has a similar nature to the
Poisson solver test, but includes the effects of variable transport properties, so is weakly non-linear. Further,
the steady-state solution is obtained through time-marching, rather than iteration.

The problem consists of a thin layer of gas between two walls, one moving and one stationary, which are
separated by a distance H. The lower wall (y = 0) is labeled 1, and the upper wall (y = H) is labeled 2.
The boundary conditions are:

u(x, 0) = 0 T (x, 0) = T1

u(x,H) = u2 T (x,H) = T2

(14)

with ∂/∂x = 0. The Prandtl number was assumed to be Pr = 0.72 and the viscosity was assumed to vary
linearly with temperature. This problem has the following analytical solution:

y∗ =
2u∗

[
T ∗1 + 1

2 (1− T ∗1 )u∗ + Prγ−1
2 M2

(
1
2u
∗ − 1

3u
∗2)]

1 + T ∗1 + Pr γ−1
6 M2

T ∗ = T ∗1 + (1− T ∗1 )u∗ + Pr
γ − 1

2
M2

(
u∗ − u∗2

) (15)

where M = u2/a2, y∗ = y/H, u∗ = u/u2, and T ∗ = T/T2.
Sample calculations were carried out for M = 2 and T1/T2 = 2, exercising only the neutral-gas module

in the computer code. Filter A of Table 2 was used for these computations. Solution profiles are shown
in Fig. 3a, where the analytical solution is compared to the numerical solution with Compact Scheme 5 on
a 9 × 11 point mesh. The results computed with this high-order scheme are seen to match the analytical
solution closely even for this course mesh. For the incompressible case (M = 0), both profiles would be
linear; see Eq. (15). A moderate temperature rise due to dissipation is evident for this Mach 2 flow, and
there is a corresponding distortion of the velocity profile.

The results of a grid convergence study are shown in Fig. 3b for each of the spatial differencing schemes
of Table 2. Grids of 11, 21, 41, and 81 points in the y-direction were employed. Each of the schemes is seen
to converge at rate close to its theoretical order of accuracy. (Each curve is annotated with the exponent
of the power-law curve fit.) Interestingly, the mixed fourth and sixth order scheme is almost as accurate
as the full sixth-order scheme for this problem. This high accuracy is probably a consequence of the mesh
clustering near the boundaries that was employed for these test cases.

C. Hypersonic Boundary Layer

As a full test of the basic fluid solver, computations were carried out for a Mach 6, laminar boundary layer
flow in air. The thermophysical properties of air were taken from White,34 and the modules for the Poisson
equation and charged particle motion were turned off in the code. The Reynolds number, based on plate
length, was ReL = 1.8 × 105. An adiabatic wall boundary condition was chosen in order to introduce a
strong hypersonic interaction effect.
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The computational grid consisted of 101 × 101 points, with clustering near the wall and leading edge.
Three numerical schemes were employed: Roe, Steger-Warming, and a mixed scheme with fourth-order
compact differencing used in smooth regions and the Roe scheme employed where a shock was detected.
Filter B of Table 2 was used for these computations.

The procedure for handling shocks with the compact scheme was largely based on the work of Visbal
and Gaitonde.38 Briefly, a simple, thresholded pressure-field smoothness switch was used to identify certain
cells as containing a shock. The pressure field is shown in Fig. 4a, and the shock locations identified by the
pressure switch are shown in Fig. 4b. The filter scheme was smoothly blended between no filtering at a shock,
and full sixth-order filtering in regions of smooth solution away from shocks. Analogously, the scheme was
blended between the Roe scheme at the shock and the full fourth-order compact scheme in smooth regions.

Velocity and temperature profiles obtained with each scheme are compared to a similarity solution cor-
responding to the local edge Mach number in Fig. 5a. Because of the streamwise pressure gradient caused
by the hypersonic leading edge interaction effect, exact similarity does not exist for this flow. Neverthe-
less, reasonable agreement is obtained between the numerical results and the similarity solution. The three
numerical schemes are seen to agree fairly closely.

Skin friction and recovery factor profiles provide a more challenging test of the accuracy of the numerical
scheme, as shown in Fig. 5b. All three schemes agree closely for the recovery factor. The Roe and mixed
compact schemes agree closely for the skin friction, but the highly dissipative (unmodified) Steger-Warming
scheme does not accurately capture this property.

D. Transient Sheath

As a test of the coupled moment equations and Poisson equation, a two-dimensional transient sheath problem
was considered, investigating the effect of a suddenly-applied voltage on an initially-uniform, low-density
plasma in an annular domain. A similar transient sheath problem has been used as a one-dimensional test
case in previous papers.39,40

A three-moment model was considered for this problem. The ion properties were computed using the
conservation laws (1), whereas the electron temperature was held fixed at Te = 11600 K and the electron
number density was computed by assuming Boltzmann equilibrium: ne = n0 exp(eφ/kBTe). Both inelastic
and elastic collisions were included in the computation, but ionization was negligible for the conditions
examined here. The neutral background gas was assumed to be at rest with a temperature of 300 K and a
pressure of 0.07 Pa.

A sample 101× 101 computational mesh is shown in Fig. 6a. The spatial coordinates are nondimension-
alized by the electron Debye length λD =

√
ε0kBTe/(n0e2). An O-type mesh was employed, with 5 points

of overlap in the circumferential direction.
The initial condition was taken to be a stationary, uniform plasma of number density n0 = 1× 1014 m−3

and temperature Ti = 300 K, and a potential of φ = −50 V was suddenly applied at the inner electrode
(r = 100λD) at time t = 0. The potential at the outer boundary of the computational domain was held
fixed at zero. Ion properties at the outer boundary were held fixed, while extrapolation consistent with each
numerical scheme and supersonic ion outflow was used at the inner boundary.

The ionized gas has the following response to the change in boundary conditions. With the sudden
application of a negative potential, the electrons are repelled from the electrode, forming a layer of positive
charge. The relatively massive ions slowly respond to the changed conditions, forming an ion current into
the electrode. As a result, the space charge diminishes, and the sheath expands. Ahead of the sheath, a
quasi-neutral presheath propagates into the bulk plasma as an expansion wave.

Figure 6b shows the distribution of ion number density at ωpit = 18, where ωpi =
√
noe2/(ε0mi).

Corresponding radial profiles are shown in Figs. 7a-b, and the time-history of the ion current density at the
inner electrode is shown in Fig. 7c. Here, number density is nondimensionalized by the initial plasma density
n0, the velocity is nondimensionalized by the the Bohm velocity uB =

√
kBTe/mi, and the temperature is

nondimensionalized by the electron temperature Te.
The space charge layer is evident for the approximate range 100 ≤ r ≤ 130, and a large corresponding

potential drop is evident (Fig. 7a). The large electric field there leads to high ion velocities, and high ion
temperatures brought about by the dissipative effects of elastic ion-neutral collisions (Fig. 7b).

The time-evolution of the ion current density ji = eni|ui| at the inner electrode is shown in Fig. 7c. The
time-axis is shown on a logarithmic scale to illustrate the solution details more clearly. There is an initial
surge in current as the transient sheath forms, followed by a gradual relaxation to constant current density
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at large times. In this asymptotic state, the current to the electrode is balanced by ions uncovered by the
expanding rarefaction wave. The presheath accelerates the ions up to approximately the Bohm velocity,
supporting a quasi-steady sheath.

As a gauge of the quality of the solution for different numerical schemes, the ion current at the inner
electrode for ωpit = 18 was examined. The error in this quantity, relative to a reference solution of 101×101
points using Compact Scheme 5, is plotted versus grid size in Fig. 7d for grids between 41× 41 and 71× 71
points. Again, each power-law curve fit is annotated with its exponent, and the slope of the lines on
the log-log plot follows the expected value for the order of the scheme. These results show that compact
difference methods of up to sixth order can successfully achieve their theoretical order of accuracy for the
coupled Poisson and Euler equations with source terms. It should be noted that spatial convergence tends
to degenerate to second order if the Poisson solution is not tightly converged for each time step.

IV. Summary and Conclusions

This paper has explored the feasibility of applying high-order, compact difference methods to the modeling
of glow discharges for high-speed flow control. High-order compact difference methods offer a possible
means of achieving high spatial accuracy on coarser grids, potentially leading to a significant reduction
in computational cost. Two-dimensional compact difference calculations were carried out for several test
cases, including a Poisson equation solution, a compressible Couette flow problem, a hypersonic laminar
boundary layer flow, and a transient plasma-sheath problem. Spatial convergence of second- through sixth-
order compact schemes was investigated, and found to be comparable to the theoretical order of accuracy. In
particular, compact difference methods of up to sixth order can successfully achieve their theoretical order
of accuracy for the coupled Poisson and Euler equations with source terms. Compact difference schemes
appear to be a promising numerical approach for modeling plasma actuators for high-speed flow control.
Future work will focus on shock capturing and on more complex discharge problems.
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Scheme α a b Stencil Order

E2 0 1 0 3 2

E4 0 4/3 -1/3 5 4

C4 1/4 3/2 0 3 4

C6 1/3 14/9 1/9 5 6

Table 1. Coefficients for compact difference schemes at interior points. Adapted from Gaitonde and Visbal.7

Scheme Filter A Filter B

0 Conventional Central F0-FB2,4-F4-FB2,4-F0 F0-F2-F4-F2-F0

1 E2-DE2-E2-DE2-E2 F0-FB2,4-F4-FB2,4-F0 F0-F2-F4-F2-F0

2 E4-DE4-E4-DE4-E4 F0-FB2,6-FB3,6-F6-FB3,6-FB2,6-F0 F0-F2-F4-F6-F4-F2-F0

3 E4-AC4-C4-AC4-E4 F0-FB2,6-FB3,6-F6-FB3,6-FB2,6-F0 F0-F2-F4-F6-F4-F2-F0

4 E4-AC4-C6-AC4-E4 F0-FB2,6-FB3,8-FB4,8-F8-FB4,8-FB3,8-FB2,6-F0 F0-F2-F4-F6-F8-F6-F4-F2-F0

5 E6-AC6-C6-AC6-E6 F0-FB2,8-FB3,8-FB4,8-F8-FB4,8-FB3,8-FB2,8-F0 F0-F2-F4-F6-F8-F6-F4-F2-F0

Table 2. Compact difference schemes and corresponding filters. Notation of Gaitonde and Visbal.7

Scheme a0 a1 a2 a3 a4 Order

F2 1+2αf

2
1+2αf

2 0 0 0 2

F4 5+6αf

8
1+2αf

2
−1+2αf

8 0 0 4

F6 11+10αf

16
15+34αf

32
−3+6αf

16
1−2αf

32 0 6

F8 93+70αf

128
7+18αf

16
−7+14αf

32
1−2αf

16
−1+2αf

128 8

Table 3. Coefficients for filter schemes at interior points. Adapted from Gaitonde and Visbal.7
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(b) Solution computed with Compact Scheme 5.
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Figure 1. Test of Poisson solver, 31× 31 grid.
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Figure 3. Compressible Couette flow test case (M = 2, T1/T2 = 2).
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Figure 4. Shock detection for laminar, Mach 6 boundary layer solution.
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Figure 5. Laminar, Mach 6 boundary layer solution.
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Figure 6. Transient sheath test case.
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Figure 7. Transient sheath test case.
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