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This paper explores the feasibility of applying high-order, compact difference methods to the modeling of
glow discharges for high-speed flow control. Previous papers (AIAA 2007-0632, 2008-1357) have successfully
applied second-order finite difference methods to glow discharge modeling. Detailed grid resolution studies,
however, have revealed that very fine grid resolution is required for acceptable quantitative results. High-
order compact difference methods offer a possible means of achieving high spatial accuracy on coarser grids,
potentially leading to a significant reduction in the computational cost of an accurate solution. Sample com-
pact difference calculations are presented here for one-dimensional test cases, and accuracy is compared to a
standard second-order upwind scheme. In particular, fourth order accuracy is demonstrated with compact
differencing for several problems involving the internal structure of weak shocks and the plasma-sheath tran-
sition. Future work will focus on applying the compact difference method to problems of interest in plasma
aerodynamics.

I. Introduction

Since the mid-1990s, there has been considerable research interest in plasma-based flow control techniques for
aerospace applications. Because of their favorable weight and power consumption properties, small-scale actuators
based on glow and arc discharges have become increasingly popular, and much effort has been put toward numerical
modeling of actuator behavior.1–3

Toward this end, the author has developed a second-order accurate, finite-difference code capable of modeling
the region of finite space-charge present in the vicinity of electrode surfaces in the electric discharges used for flow
control. 3–5 The physical model includes the fluid conservation laws for the bulk gas flow, a model for charged particle
motion, and a self-consistent computation of the electric potential. This code has been successfully applied to a variety
of discharge problems, including low-density plasma-sheath problems, DC glow discharges, and RF glow discharges.
Comparisons among different numerical methods have been carried out, and a central difference scheme, an upwind
scheme, and a finite difference implementation of the Sharfetter-Gummel scheme have all been found to give very
similar results.

Recently, an investigation was carried out on spatial resolution issues in modeling DC glow discharges.4,5 A
detailed grid resolution study was carried out, and very fine grid resolution was found to be required for acceptable
quantitative results. Coarse grids led to underestimates of number density, temperature, and current density and to
overestimates of the lateral extent of the discharge column.

High-order compact difference methods6,7 offer a possible means of achieving high spatial accuracy on coarser
grids, potentially leading to a significant reduction in computational cost. This paper presents a preliminary, one-
dimensional implementation of a compact difference scheme for plasma discharge problems. Sample calculations are
presented here for several test problems, including shock internal structure and the plasma-sheath transition.

II. Methods

The physical model and the numerical methods are described in this section. The physical model includes the
fluid conservation laws for the motion of each species and a self-consistent computation of the electric potential. The
numerical implementation involves compact spatial differences of up to sixth order accuracy, driven by a low-storage,
fourth-order Runge-Kutta time marching scheme.
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A. Physical Model

Continuum methods, based on moments of the Boltzmann equation, have been a popular and productive means of
modeling electrical discharges. One-dimensional modeling of direct-current glow discharges was carried out as early
as the late 1950s,8,9 and two-dimensional simulations were first carried out in the late 1980s.10,11 By the early 1990s,
two dimensional simulations of radio-frequency glow discharges12,13 and transient low-density discharges14,15 were
done. Three-dimensional simulations have appeared more recently.3,16

A variety of physical models have been employed in such work. One of the most common models is drift-diffusion,
assuming local equilibrium with the electric field, so all coefficients are a function of the local reduced field E/N . 9–11

The next step up in generality is to solve the electron energy equation as well, and use the local electron temperature
Te instead of the local E/N to determine the transport and ionization coefficients.17,18

Some studies have used continuity-momentum equations in place of the drift-diffusion model, thus including
the effects of particle momentum. The role of inertia in DC and RF discharges has been examined, including the
momentum of the electrons,19 the heavy particles,20 or both.21,22 Ion inertia is important in the transient sheath that
appears in plasma-source ion implantation,23 and in modeling the low-density plasma-sheath transition.24,25

One aim of this ongoing project is to determine limits of the moment method in modeling electrical discharges,
specifically whether a three-moment model for each species can be accurate and computationally tractable. A rel-
atively general formulation of the conservation equations for electrical discharges is outlined below, based on stan-
dard references.26–28 Briefly, the conservation laws can be derived from moments of the Boltzmann equation, with
closure models utilized for the inelastic collision source terms,26 the elastic collision source terms,26,29 and the flux
terms.27,30,31 In this preliminary work, a one-dimensional form of these equations is used, suitable for the test problems
of shock internal structure and the plasma-sheath transition investigated in this paper.

1. Governing Equations

The focus of this paper is on one-dimensional shock and sheath structure in ionized argon. Gravity is neglected, and
the absence of an applied magnetic field is assumed. The conservation equations for each species are:
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where the notation s = n, i, e indicates the neutrals, ions, and electrons, respectively.
The mass per particle of each species is denoted as ms, and the corresponding charge per particle is qn = 0,

qi = +e, and qe = −e. The number density is ns, the velocity is us, and the translational temperature is Ts. The
viscosity and thermal conductivity of each species are denoted as µvs and ks, respectively. The electric field is E,
and the symbol kB indicates the Boltzmann constant. The internal energy per particle is assumed to have the form
msεs = Hs + kBTs/(γs − 1), where γs = 5/3 is the ratio of specific heats. The heat of formation is Hn = He = 0
and Hi = H, where H = 15.7 eV for argon ionization.

It assumed that the gas is weakly ionized, so that the primary elastic collisions are with neutral particles. For the
inelastic collisions, it is assumed that the species appear or disappear with the average momentum and energy of their
peers, except for the electrons, which lose energy H in each inelastic collision.

Consider the reaction pair Ar+e− ! Ar++2e− and let ω be the production rate of charged particles. The species
source terms become:

Si = miω

Se = meω

Sn = −mnω

(2)

The momentum source terms are:
Ai = ωmiui − niminνin(ui − un)

Ae = ωmeue − nemenνen(ue − un)
An = −(Ai + Ae)

(3)
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The energy source terms are:

Mi = ω

(
H +

kBTi

γi − 1
+ 1

2miu
2
i

)
− niminνin

mi + mn
[3kB(Ti − Tn) + (ui − un)(miui + mnun)]

Me = −ωH + ω

(
kBTe

γe − 1
+ 1

2meu
2
e

)
− nemenνen

me + mn
[3kB(Te − Tn) + (ue − un)(meue + mnun)]

Mn = −(Mi + Me)

(4)

To complete the physical model, the electric field must be found from a consistent solution of Maxwell’s equations.
For the present work, the Poisson equation is solved for the electric potential:

∂2φ

∂x2
= − 1

ε0

∑
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qsns (5)

and the electric field is found from E = −∂φ/∂x.
Some calculations were carried out with the full model (1)-(5), but for the work presented in this paper, Boltzmann

equilibrium was assumed for the electrons in order to reduce the computational cost of carrying out many runs for
convergence studies. Under this the assumption, the electron temperature is held fixed, and the electron number
density is computed from:

ne = no exp
(

eφ

kBTe

)
(6)

where n0 is a reference number density, corresponding to the potential φ = 0.

2. Transport Properties and Reaction Rates

The collision frequency between the charged and neutral species νsn was estimated from mobility data, with the
correlations for ion and electron mobility in argon taken from Ward.8

For the ionization rates, two models were considered. One had the form ω = zne, where the ionization rate z is
an eigenvalue of the problem, the production rate necessary to maintain a steady state. Alternatively, ionization and
recombination coefficients were taken from the correlations of Adamovich et al.32

Standard correlations were used for the viscosity and thermal conductivity of the neutral particles.33 The viscosity
and thermal conductivity of the charged particles were neglected for the present work. A reasonable estimate of their
magnitudes21,30 can be found by assuming that the ions have the same transport coefficients as the neutrals, and that
the electron transport coefficients can be found by assuming a Lewis number of unity and a Prandtl number of 2/3.

3. Nondimensionalization

The equations were solved in non-dimensional form. For brevity, only an outline of the nondimensionalization proce-
dure is given here. Global reference quantities were chosen for length LR, velocity uR, number density nR, potential
φR, collision rate νR, viscosity µvR, and thermal conductivity kR. For each species, however, there was a different
reference density ρRs = msnR, temperature TRs = msu2

R/kB , and pressure pRs = msnRu2
R. Space charge was

normalized by the electron charge e, and heat of formation was normalized by msu2
R.

The nondimensionalized equations have much the same form as (1)-(5). In addition to a Reynolds number and
Prandtl number for each species, the following nondimensional parameters appeared as a consequence of this form of
nondimensionalization:

Φs =
eφR

msu2
R

C =
νRLR

uR
a = LR

√
enR

ε0φR

The nondimensional parameters are, respectively, a relative field strength, a nondimensional collision frequency pa-
rameter, and a non-neutrality parameter.

B. Numerical Methods

The governing equations (1)-(4) were solved using a fourth-order accurate, low-storage Runge-Kutta time marching
scheme combined with either a second-order Steger-Warming scheme or a compact spatial scheme of up to sixth order
accuracy. For the compact scheme, stability was enforced by filtering, typically with a filter of two orders greater than
the accuracy of the basic scheme. The Poisson equation (5) was solved by an iterative scheme (described below),
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with either second-order central or compact spatial differences. The Poisson solution was not filtered. For the present
examples, a one-dimensional, uniform mesh was employed, but an extension of the method to multi-dimensional,
curvilinear grids is planned for future work.

1. Governing Equations

The conservation laws (1) can be written in the form:

∂U

∂t
+

∂E

∂x
=

∂Ev

∂x
+ S (7)

where U is the vector of conserved variables, E is the inviscid flux vector, Ev is the viscous flux vector, and S
represents the source terms. A standard, low-storage, fourth-order Runge-Kutta scheme34 was used for time integration
of Eq. (7). Two different schemes were used to evaluate the spatial differences: either a compact difference scheme
of up to sixth-order accuracy (described below), or a second-order Steger-Warming scheme, which used third-order
MUSCL extrapolation35 for the inviscid fluxes and second-order central differencing for the viscous terms.

The Poisson equation (5) was solved at the end of each stage of the Runge-Kutta time-integration. It can be written
in the form:

∂2φ

∂x2
= Sφ (8)

An iteration procedure was introduced such that the potential at step m was φm+1 = φm+∆φ. With a linear expansion
about the solution from the previous iteration, the discretized equation has the form:
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]
(9)

with iteration driving ∆φ to zero. Here τ is a time-like variable introduced to motivate the iteration process, and ω is
an over-relaxation factor. Discretizing the left-hand side using second order central differences in space, a tridiagonal
system of equations is obtained. (Since iteration drives ∆φ to zero, the form of the discretization of the left-hand-side
does not affect the order of spatial accuracy of the converged solution.) Either central or compact difference schemes
were used to evaluate the spatial differences present on the right hand side of Eq. (9), and the system was solved using
the Thomas tridiagonal algorithm.36 Iteration was continued until the change in potential ∆φ was less than a small
tolerance.

2. Compact Differences

Considering a one-dimensional, uniform mesh, the following central difference scheme6,7 with a 5-point stencil can
be used to generate estimates of the first derivative φ′ = ∂φ/∂x|i with up to sixth-order accuracy:

αφ′i−1 + φ′i + αφ′i+1 = a
φi+1 − φi−1

2 ∆x
+ b

φi+2 − φi−2

4 ∆x
(10)

Here α, a, and b are constants that are used to alter the properties of the scheme, and φ(x) is a generic function, not to
be confused with the electric potential. Taylor series expansions can be used to derive a family of second to sixth order
accurate schemes employing this template.6,7 Table 1 gives selected coefficients for internal points using Eq. (10) for
different orders of accuracy. Note that the implicit form of the scheme (α "= 0) results in a narrower stencil for a given
order of accuracy that for an explicit form (α = 0). Modified schemes7 were used near boundaries, where the interior
stencil would protrude outside of the domain.

Table 2 shows the forms of the compact difference scheme that were examined in this project, using the notation
of Gaitonde and Visbal. To evaluate the derivative at each point, the appropriate form of Eq. (10) was solved using the
Thomas tridiagonal algorithm.36 Second derivatives were evaluated by applying the differencing scheme twice.

Figure 1 illustrates the accuracy of each of the schemes (see Table 2) in computing the derivative of the function
f(x) = sinx in the range 0 ≤ x ≤ π. The L2-norm for the full domain is shown in Fig. 1a. With this metric of
solution quality, the accuracy is seen to be constrained by the lower order stencil used near the boundaries. If points
near the boundary are omitted from the norm (Fig. 1b), the convergence rate is seen to improve, and the accuracy of
the scheme E4-AC4-C6-AC4-E4 is seen to lie between that of pure fourth- and sixth-order schemes.
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Numerical stability was enforced using filtering, typically with a filter of two orders greater than the accuracy of
the basic scheme. The form of the filtering scheme7 for interior points was as follows:

αfφi−1 + φi + αfφi+1 =
N∑

n=0

an

2
(φi+n + φi−n) (11)

where φi is the filtered value of φi, and N + 1 is the order of the filter. A table of coefficients for interior-point filters
of second to eighth order is given in Table 3. Modified filters were used near the boundaries; the various options are
shown in Table 2. (In the table, F0 indicates that no filter was applied to the boundary points.) The filter was applied to
each primitive variable at the end of a time step, and the boundary conditions were updated so that the boundary points
were consistent with the filtered interior points. For the cases labeled Filter A in Table 2, the filter’s free parameter
was set to α = 0.40, whereas for Filter B, the value was varied between α = 0.49 at the boundary and α = 0.40 for
the interior points.

Careful treatment of the boundary conditions was necessary to maintain the spatial accuracy of the scheme. Unless
otherwise noted, both extrapolation and derivative (Neumann) boundary conditions were handled with a scheme of
spatial order corresponding to that of the boundary scheme.

III. Results

Several test problems were examined in order to evaluate the accuracy of the compact scheme relative to the
second-order Steger-Warming scheme. The focus was on one-dimensional shock and sheath structure in ionized
argon.

A. Neutral-Gas Shock

As a test of the code’s ability to solve electrically-neutral, viscous gasdynamics problems, a calculation was carried
out of the internal structure of a weak shock in argon. The following notation will be used: the subscript 1 indicates the
state upstream of the shock, 2 indicates the downstream state, m indicates an average of the upstream and downstream
states, and x1/2 indicates the position corresponding to u = um. The upstream Mach number was M1 = 1.2. The
dimensional upstream conditions were: p1 = 42.2 kPa, T1 = 125 K, u1 = 125 m/s. Downstream conditions were
computed using the ideal gas jump conditions.37 The computational domain was L = 5 µm in width.

A reference computation was carried out with 401 points using the E4-AC4-C6-AC4-E4 compact difference
scheme. Figure 2a shows the basic shock structure, with the independent variables normalized using the conditions
upstream of the shock. Pressure, temperature, and density increase monotonically through the shock, whereas velocity
decreases to satisfy continuity. Because of the effects of heat conduction, entropy has the characteristic maximum
typical of shock structure (See Zel’dovich and Raizer,38 pp. 473–475). The total enthalpy, H = e + p/ρ + u2/2, has
a slight variation through the shock, and the upstream and downstream values are equal: H1 = H2.

As a qualitative verification of code accuracy, the reference solution is compared to the approximate analytical
solution of G. I. Taylor in Fig. 2b. (See Thompson,39 pp. 361-368, for a full discussion of the Taylor weak shock
theory. In the figure, A = (γ + 1)/[8/3 + 2(γ − 1)/Pr] ≈ 4/7.) Although the analytical solution cannot be used
for a quantitative verification of the code because of its approximate nature, the agreement between the numerical and
analytical solutions is seen to be quite good. In particular, the shock thickness is predicted accurately.

The shock thickness based on the total enthalpy profile was chosen as a parameter for studying the convergence
of the scheme. This thickness was defined as: ∆H =

∫∞
−∞(H − H1)/H1 dx. Since the total enthalpy upstream

and downstream of the shock are equal in the present problem, the integrand is zero at the boundaries of the domain.
Integration was carried out using Eq. (13), below. Grid convergence was studied using this parameter for two numerical
schemes: the E4-AC4-C6-AC4-E4 compact difference scheme and the second-order accurate Steger-Warming scheme.
Figure 2c shows the percentage error in the total enthalpy thickness, with the reference solution used as the baseline.
The remarkable accuracy of the compact scheme relative to the Steger-Warming scheme is apparent in the plot. Note
the difference in accuracy between the two filters used with the compact scheme.

B. Transient Sheath Problem

As a test of the coupled potential and moment equations, this section investigates the effect of a suddenly-applied
voltage on an initially-uniform, low-density plasma. This transient sheath problem was used as a test case in previous
papers.40,41
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A two-moment model was considered for the this problem. The ion and electron temperatures were held fixed at
Ti = 293 K and Te = 11600 K, respectively, and the electron number density was computed by assuming Boltzmann
equilibrium, Eq. (6). Viscous forces and collisions with neutrals were neglected for the ions. This restricted model
was implemented in the code by turning off selected terms in the full model.

The initial condition was taken to be a stationary, uniform plasma of number density n0 = 1 × 1014 m−3, and a
potential of φ = −50 V was suddenly applied at the left electrode (x = 0) at time t = 0. The potential at the right
boundary of the computational domain was held fixed at zero.

The characteristic scales in this problem are the ion plasma frequency fp =
√

noe2/(4π2ε0mi), the Bohm velocity
uB =

√
kBTe/mi, and the electron Debye length λD =

√
ε0kBTe/(n0e2). The computational domain was taken

to be L = 200λDe wide. The ion properties at x = 0 were found by extrapolation (with an order of accuracy
corresponding to that of the numerical scheme at the boundary), and the properties at x = L of the computational
domain were held fixed at ni = n0 and ui = 0.

Figure 3a shows the distribution of ion and electron number densities at selected times for a reference calculation
with the E4-AC4-C6-AC4-E4 compact difference scheme with a grid of 401 points and a nondimensional time step
of fp∆t = 0.01. With the sudden application of a negative potential, the electrons are repelled from the electrode,
forming a layer of positive charge. The relatively massive ions slowly respond to the changed conditions, forming an
ion current into the electrode. As a result, the space charge diminishes, and the sheath expands. Ahead of the sheath,
a quasi-neutral presheath propagates into the bulk plasma.

The time-evolution of the ion current density ji = eni|ui| at the electrode is shown in Fig. 3b. The inset shows
the long-time behavior on an expanded time scale. There is an initial surge in current as the transient sheath forms,
followed by a gradual relaxation to constant current density at large times. In this asymptotic state, the current to the
electrode is balanced by ions uncovered by the expanding rarefaction wave. The presheath accelerates the ions up to
approximately the Bohm velocity, supporting a quasi-steady sheath.

The transient sheath problem was studied analytically by Lieberman,42 who developed approximate expressions
for the time-evolution of the ion current density at the cathode. Lieberman used a matrix sheath model for the short-
time behavior, and a Child law sheath model for the long-time solution. Qualitative agreement between the numerical
solution and Lieberman’s theory is seen in Fig. 3b. (This is the level of agreement seen by Lieberman as well.)

As a gauge of the quality of the solution for different numerical schemes, the ion current at x = 0 and fpt = 24
was examined. The error in this quantity, relative to the reference solution, is plotted versus grid size in Fig. 3c. The
Steger-Warming scheme and the E4-AC4-C6-AC4-E4 compact scheme with Filter A appear to converge, respectively,
with the expected second and fourth order accuracy. The compact scheme with Filter B has a high absolute accuracy,
but the slope does not have the expected value.

C. Steady-State Sheath

As a somewhat more complex test case, the problem of an ionized gas confined between a pair of planar electrodes
fixed at a distance of 2L apart was considered. The electrodes were assumed to be maintained at a constant negative
potential, and to draw a current that was maintained by ‘direct’ ionization.

In order to exercise more features of the code, a three-moment model of ion motion was considered, along with
constant temperature, Boltzmann electrons and a uniform, neutral background gas at rest. Viscous forces on the ions
were neglected. The ionization rate was taken to have the form ω = zne. As in the previous case, this restricted model
was implemented in the code by turning off selected terms in the full model.

The ion properties at x = 0 were found by extrapolation, whereas the following conditions were imposed at the
symmetry plane (x = L): ni = n0, ∂ui/∂x = z, and ∂Ti/∂x = 0. (The boundary conditions were imposed with an
order of accuracy corresponding to that of the numerical scheme at the boundary.) The centerline boundary condition
on the velocity follows from applying the symmetry conditions, and has been found to be more stable than directly
imposing ui = 0. The boundary conditions on the electric potential were φ(0) = −50 V and φ(L) = 0.

The temperatures of the neutral gas and the electrons were taken to be Tn = 293 K and Te = 11600 K, respectively.
The centerline number density was n0 = 1× 1014 m−3. The neutral gas pressure was taken to be pn = 50 mPa.

A procedure based on the integral form of the ion continuity equation was used to estimate, at each time step, the
ionization frequency z required to achieve a steady state. Assuming a steady state, and integrating the ion continuity
equation (1a) from the wall at x = 0 to the center at x = L, the following formula is obtained for the ionization rate:

z =
−niui|x=0∫ L

0 ne dx
(12)
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A new value of z was computed at the end of each time step from Eq. (12). In order to make the order of accuracy
of the integration in Eq. (12) consistent with compact difference schemes of up to sixth order accuracy, the following
integration formula was employed:

∫ xn

x0

f(x) dx = h

{
n∑

i=0

fi −
f0 + fn

2

−23681f0 − 55688f1 + 66109f2 − 57024f3 + 31523f4 − 9976f5 + 1375f6

120960

−23681fn − 55688fn−1 + 66109fn−2 − 57024fn−3 + 31523fn−4 − 9976fn−5 + 1375fn−6

120960

}
(13)

This is an eight-order accurate integration scheme, exact for a seventh order polynomial. (The author would like
to thank Dr. Michael D. White of the Ohio Aerospace Institute for providing this formula.) The calculations were
marched in time until the change of the ionization frequency and the independent variables with each time step had
reached a minimum.

The computational domain was taken to be L = 100λD in width, and a reference computation was carried out
with a grid of 401 points using the E4-AC4-C6-AC4-E4 compact difference scheme. Figure 4a shows the ion and
electron number densities and the ion temperature. The quasi-neutral presheath (where ni ≈ ne) is apparent near the
centerline, and the sheath (where ne ≈ 0) is visible near the electrode on the left. The ion temperature rises near the
electrode due to the dissipative effects of elastic ion-neutral collisions (see Eq. 4a).

The electric potential and ion velocity are shown in Fig. 4b. The majority of the potential drop occurs in the
sheath, with only a slight change in the presheath. Despite the collisional drag with the neutrals, the ions are seen to
be strongly accelerated toward the electrode by the electric field in the sheath.

The error in the ionization rate z, relative to the reference solution, was chosen as a figure of merit for spatial
convergence. The results of the convergence study are shown in Fig. 4c. The convergence behavior of the two
schemes is seen to be similar to that observed in the previous examples.

D. Shock Structure with Three-Species Model

As a final test, a computation involving a three-species model of a shock in a weakly-ionized, nonequilibrium plasma
was carried out. The flow conditions were chosen to be similar to those examined by Adamovich et al.32 The upstream
conditions for the neutrals were u1 = 645 m/s, p1 = 1.3 kPa, and T1 = 300 K. The electron temperature was taken
to be Te = 3.6 eV, and the fractional ionization in the incoming flow was ni,e/nn = 1× 10−6. The electric potential
was set to zero at the upstream boundary, and extrapolation was used for all quantities at the downstream boundary.
Ideal gas jump relations were used for the initial conditions.

As with the previous problems, the electrons were assumed to be in Boltzmann equilibrium. Ionization and re-
combination rates were chosen to match those of Adamovich et al.

The computational domain was L = 5 mm wide, and a grid of 1001 points was employed. The E4-AC4-C6-AC4-
E4 compact difference scheme was used. For stability, Filter B was employed, and second-order extrapolation was
used for the outlet boundary condition.

The results of the computations are shown in Fig. 5. Figure 5a shows the number density for each species and the
electric potential. The velocity for each species is shown in Fig. 5b, and the corresponding temperatures in Fig. 5c.
The shock transition zone is seen to be substantially thicker for the charged particles than for the neutral gas. The large
difference in mass between the ions and electrons leads to charge separation in the vicinity of the neutral gas jump,
setting up an electric potential rise of a few volts across the shock.

IV. Summary and Conclusions

This paper has explored the feasibility of applying high-order, compact difference methods to the modeling of glow
discharges for high-speed flow control. High-order compact difference methods offer a possible means of achieving
high spatial accuracy on coarser grids, potentially leading to a significant reduction in the computational cost of
an accurate solution. Sample calculations were presented for shock and sheath problems in ionized argon, and the
compact difference methods were shown to be superior in both absolute accuracy and rate of spatial convergence.
Future work will focus on applying the compact difference method to problems of interest in plasma aerodynamics.
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Scheme α a b Stencil Order

E2 0 1 0 3 2
E4 0 4/3 -1/3 5 4
C4 1/4 3/2 0 3 4
C6 1/3 14/9 1/9 5 6

Table 1. Coefficients for compact difference schemes at interior points. Adapted from Gaitonde and Visbal. 7

Scheme Filter A Filter B

E2-DE2-E2-DE2-E2 F0-FB2,4-F4-FB2,4-F0 F0-F2-F4-F2-F0
E4-DE4-E4-DE4-E4 F0-FB2,6-FB3,6-F6-FB3,6-FB2,6-F0 F0-F2-F4-F6-F4-F2-F0
E4-AC4-C4-AC4-E4 F0-FB2,6-FB3,6-F6-FB3,6-FB2,6-F0 F0-F2-F4-F6-F4-F2-F0
E4-AC4-C6-AC4-E4 F0-FB2,6-FB3,8-FB4,8-F8-FB4,8-FB3,8-FB2,6-F0 F0-F2-F4-F6-F8-F6-F4-F2-F0
E6-AC6-C6-AC6-E6 – –

Table 2. Compact difference schemes and corresponding filters. Notation of Gaitonde and Visbal. 7

Scheme a0 a1 a2 a3 a4 Order

F2 1+2αf

2
1+2αf

2 0 0 0 2
F4 5+6αf

8
1+2αf

2
−1+2αf

8 0 0 4
F6 11+10αf

16
15+34αf

32
−3+6αf

16
1−2αf

32 0 6
F8 93+70αf

128
7+18αf

16
−7+14αf

32
1−2αf

16
−1+2αf

128 8

Table 3. Coefficients for filter schemes at interior points. Adapted from Gaitonde and Visbal. 7

9 of 14

American Institute of Aeronautics and Astronautics



Number of Points

L 2
N
or
m

100 101 102 103 104 105 106
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

E2-DE2-E2-DE2-E2
E4-DE4-E4-DE4-E4
E4-AC4-C4-AC4-E4
E4-AC4-C6-AC4-E4
E6-AC6-C6-AC6-E6

(a) L2-norm for full domain.
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(b) L2-norm for interior points only.

Figure 1. Accuracy of (sin x)′ with various compact difference schemes (see Table 2).
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Figure 2. Shock structure in argon at Mach 1.2.
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Figure 3. Evolution of transient sheath.
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Figure 4. Steady-state plasma-sheath problem.
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Figure 5. Three-species model of shock structure.
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