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A Meshless Stochastic Algorithm for the Solution of the
Nonlinear Poisson-Boltzmann Equation in the Context of
Plasma Discharge Modeling: 1D Analytical Benchmark
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This paper presents a new floating random-walk algorithm for the solution of the
nonlinear Poisson-Boltzmann equation in the context of plasma discharge modeling.
Previous studies using the floating random-walk method have examined only the linearized
Poisson-Boltzmann equation, producing solutions that are only accurate for small values of
the potential. This is due to the absence of analytical expressions for volumetric Green’s
functions for nonlinear equations. In this work, an approximate expression for a volumetric
Green’s function has been derived with the help of a novel use of iterative perturbation
theory, and this expression has been incorporated within the floating random-walk
framework. The floating random-walk method is based on probabilistic interpretations of
deterministic equations and needs no discretization of either the volume or the surface of the
problem domains. Hence the memory requirements are expected to be lower than
approaches based on spatial discretization, such as the finite-difference or the finite-element
method. Another advantage of this method is that the random-walks are statistically
independent, so that the computational procedure is highly parallelizable and a nearly linear
increase in computational speed is expected with an increase in the number of processors. In
this paper, we present the preliminary results in one dimension where excellent agreement
has been obtained with an analytical benchmark solution.

Nomenclature
E = Electric field
Ap= Debye length
&,= permittivity of vacuum
k = Boltzmann constant
T = Temperature
n,= number density of electrons
r, = number density of ions
p = charge density
¢ = potential
m, = electron mass
m; = ion mass
e = electronic charge
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I. Introduction

In recent years, plasma actuators have shown great promise as a means of flow control in aerospace
applications'”. Fundamentally, these flow control systems involve a plasma discharge between electrodes and the
transformation of the associated electrical energy into kinetic and thermal energy in the air flow. The addition of
such a system to an aerospace vehicle can introduce significant penalties in additional weight and power
consumption. Accurate modeling of these systems is thus essential for determining whether the benefits outweigh
the penalties*®. However, the modeling of a plasma discharge in an air flow is computationally intensive. This is
primarily because of the vast differences in fluid dynamic and electromagnetic time scales®. Iterative solutions of
the Poisson equation for the electric potential constitute an important part of the computational effort, as this
equation has to be converged at each time step.

In this paper, we develop a floating random-walk algorithm’ for the nonlinear Poisson-Boltzmann equation.
This method is based on probabilistic interpretations of deterministic equations and is completely meshless requiring
no discretization of either the volume or the surface of problem domains. Consequently, the memory requirements
for complicated problem geometries are expected to be significantly lower than discretization-based methods.
Furthermore, the method is inherently parallelizable and a linear increase in computational speed is expected with an
increase in the number of processors. The linearized version of the Poisson-Boltzmann equation and other equations
has been studied extensively '™ '' with the floating random-walk method. However, the floating random-walk
method has not been widely applied in the numerical solution of nonlinear partial differential equations. This is
because of the absence of analytical expressions for volumetric Green’s functions'? for nonlinear partial differential
equations of significance. In this paper, we present a new technique that eliminates this restriction and extends the
method to the numerical solution of the nonlinear Poisson-Boltzmann equation. We will describe the fundamentals
of the algorithm in one dimension and demonstrate the agreement of this algorithm to an analytical benchmark
solution. We believe that with additional work, the algorithm can be extended to two and three dimensions and to
other nonlinear equations.

II. Problem Formulation

In this section, we present a simplified model for the space-charge boundary layer (plasma-sheath transition) that
occurs in an ionized gas in the neighborhood of an electrode. The formation of this layer is attributed to the vast
difference in electron and ion mobility and the fact that in the steady-state, the flux of the positive and negative
charge carriers to the wall need to be balanced"’.

From Gauss’s law, the electric field E due to a charge density p is given by

Gl = (1)

The electric field can be expressed as the gradient of a scalar potential, ¢ in the absence of a time-varying
magnetic field, and is given by

E=-Vg. 2)

If the electrons are assumed to be in thermodynamic equilibrium, the electron number density #,(r) follows the
Boltzmann distribution' given by

n,(r)= ne® (3)



Above, n represents the number density at a reference point with zero potential. Assuming that the positively
charged ions are also in thermodynamic equilibrium and the ions have the same temperature as the electrons, the
number density #,(r) of the ions is given by

n,(r)= ne~e#tNHT, “

Asp=e(n, —H,), substitutions of Egs. (2)- (4) into Eq. (1) give the governing equation for the scalar
potential ¢ , written as
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where W is the domain of the problem. In this work, a floating random-walk algorithm will be developed for the
numerical solution of Eq. (5) in one dimension, subject to Dirichlet boundary condition:

p=g(r), recow (6)

where & is the boundary of the domain W .

III. The Floating Random-Walk Algorithm
In the one-dimensional test problem, the potential ¢ depends on one independent variable x , and is given by the
normalized equation

= =¢’ —¢”. (7)
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where 4, is the Debye length"’. The value of gfa is assumed to be known at the two end-points of the problem

domain. The development of a floating random-walk algorithm requires the evaluation of the Green’s function of
Eq. (7) given by the solution of the equation

d*G(x|%,)
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Above, G(xx,) is a volumetric Green’s function at %, given a delta function at %,, and defined on the
problem domain —L < ¥ < L. The boundary conditions imposed on this Green’s function are: a) G(L | X, )= Oand b)
G(— L|x, ) = 0. Under these conditions, based on Green’s theorem'* we can write a solution to Eq. (5) at a point %,
inside the problem domain given by

9(s,)= [d—ch ¢(L)—[§]x

= ) g(=L). (10)

Based on iterative perturbation theory, we can now develop an approximate solution for Eq. (9), and this
approximate expression will be used in Eq. (10) to form the basis of our floating random-walk algorithm. The

zeroth-order approximation to the solution of Eq. (9), G'” (J? | %, ) , is given by the solution to the equation
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under the same boundary conditions as that of Eq. (9). Eq. (11) represents the Green’s function equation for
Laplace’s equation and its solution is given as"*

(12)

Based on the zeroth-order approximation given in Eq. (12), the first-order approximation, G (% | %,) to Eq. (9)
can be expressed as the solution of the equation

2~
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the solution to which, based on Green’s theorem'* can be written as
+L ; .
GOGI%,)=GOR1%,) + [ 12 ){60E 1%,)), (14)
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where f{y}=e* —e™ . Using a zero-centered notation, (i.e. X, = 0) in Eq. (14) and differentiating both sides of that
equation with respect to x, the derivatives of the volumetric Green’s function at x = +L can be calculated and are
given by
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The one-dimensional floating random-walk can now be formulated based on Egs. (10) and (15). The random
walks are started at a point where we want to know the solution to Eq. (7) and with the help of a random-number
generator a hop is made either to the left or right with equal probability. Associated with every such hop is a
multiplicative weight factor w . Based on Eqs. (10) and (15), this weight factor is given by

1 1
w=1-4L2[e2+e 2—2]. (16)

To maintain the validity of the first-order approximation in the volumetric Green’s function in Eq. (14), the size
of a hop, L, has to be restricted to a pre-determined upper limit. A particular random-walk terminates at one of the

two end-points of the problem domain with the reward for that walk being the known value of ¢ at that end-point.
For any particular walk, the overall weight factor, obtained by multiplying the weight factors of the individual hops,
is multiplied by the reward at the end-point to give the contribution for that walk. The estimate of the solution ¢5 at

a particular point in the problem domain is the average of the contributions, g;,, from a statistically large number ()
of random walks originating from that point and is given by

|
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In the next section, the random walk solution to this one-dimensional problem will be presented and it will be
shown that this random-walk solution is in excellent agreement with an exact, analytical solution of Eq. (7).

IV. Results

The one-dimensional benchmark problem is shown in Fig. 1, where a region of plasma is enclosed between two
flat plates of infinite area, maintained at fixed potentials. The results of computations with the one-dimensional
random-walk algorithm have been compared with an exact analytical solution given by

(18)

where the imposed boundary conditions are: a) é(ﬁ = 0)= ;5‘, and b) 45 =0, % =0 as x — . For the verification

of the random-walk algorithm, the problem domain has to be finite and is assumed to be equal to54,. The

random-walk results are computed by imposing the boundary conditions: a) é(x =0)= ¢A,, and b) qﬁ(i =54,)=0.



The random-walk algorithms were coded in MATLAB 6.5™, and run on a 1.8 GHz personal computer. In this
work, 20000 random walks were performed per solution point, while the length of the hop has been restricted to five
percent of the Debye length to maintain the validity of the first-order approximation in the derivation of the

volumetric Green’s function. Assuming gﬁa =1, it was observed that that the mean absolute deviation between the

analytical and random-walk solution points was equal to 0.0019 and the solution profile is plotted in Fig. 2. From
the solution profile and the magnitude of mean absolute error, it can be noted that there is excellent agreement
between the results from the random-walk algorithm and the exact analytical solution.
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Figure 1. Plasma enclosed between two flat N “
plates of infinite area maintained at fixed e, ;
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Figure 2. Potential plotted against position in normalized
coordinates.

V. Conclusion

In conclusion, we have developed a new floating random-walk algorithm for the solution of the nonlinear
Poisson-Boltzmann equation. The problem of the absence of an analytical expression for a volumetric Green’s
function has been remedied by the help of an approximate (yet accurate) expression based on a novel use of iterative
perturbation theory. Excellent agreement was found between the results of random-walk calculations and an exact
analytical solution for a one-dimensional benchmark problem. Our literature survey shows that the newly developed
algorithm appears to be the first application of the floating random-walk method to a nonlinear problem of physical
significance. This algorithm has the advantages of being highly parallelizable and requiring no discretization of the
problem domain.

The application area of interest is in the modeling of plasma discharges in aerospace applications, and in
particular, the simulation of the space-charge boundary layers (sheaths) that occur near electrode surfaces. Our
future work in this area will involve the extension of this new floating random-walk solution to Dirichlet problems
in two and three dimensions and also to Neumann and mixed boundary condition problems. The ultimate objective
of this research is to develop floating random-walk algorithms for the solution of plasma flow equations and also to
address the efficient implementation of the algorithms on parallel processor computer platforms.
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