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Calculations were carried out with a computer code developed at the Air Force Re-
search Laboratory Computational Sciences Center to model ionized gases with significant
charge separation. First, the role of the frictional drag due to ion-neutral collisions in
low pressure (~ 0.1 Pa) sheaths was examined. Numerical solutions were compared with
experimental data for cathode sheaths with wall potentials of the order 30-100 V. The
frictional drag resulting from ion-neutral collisions was represented by a model incor-
porating both linear and quadratic terms. Good agreement was obtained between the
computations and experimental data, and collisional drag was found to have a significant
effect on the ion velocity profile and on the overall sheath thickness. The second part of
the paper addresses DC glow discharges at relatively high pressure (~ 100 Pa), where ion
inertia can be neglected. Preliminary calculations of a nitrogen discharge were carried
out, and the solution displayed features in qualitative agreement with standard behavior

of DC glow discharges.

Introduction

Over the past few years, the Air Force Research
Laboratory Computational Sciences Center has been
developing a set of computational tools to study pos-
sible electromagnetic flow control techniques.!™? A
fully three-dimensional magnetohydrodynamic code
(£d13di-mhd) suitable for computations at both rel-
atively high and low magnetic Reynolds numbers has
been developed.!>>* In addition, a prototype code
(ps3d) has been written in which the assumption of
quasi-neutrality is relaxed in order to examine the
plasma sheaths present on electrode surfaces.5® 1In
recent work,’ this code has been extended to three
dimensions and applied to problems with an imposed
magnetic field. A newly developed version of the code,
described here, introduces the option to model each
species either with continuity and momentum equa-
tions including inertia, or with a single continuity
equation under the drift-diffusion model.

Particle inertia has important effects on the ions in a
low-pressure sheath. This physical model is studied in
the section “Plasma-Wall Transition,” where compu-
tations are compared to available experimental data,
and the role of the frictional drag due to ion-neutral
collisions in low pressure (~ 0.1 Pa) sheaths is exam-
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In contrast, ion inertia can be neglected at higher
pressures. The work reported in the section “Glow
Discharge” exploits this approximation to study DC
glow discharges at relatively high pressure (~ 100 Pa).

Plasma-Wall Transition

In this section, the computer code is applied to one-
dimensional cathode sheath problems, in the regime
where ion inertia is significant. Computational results
are compared to available analytical solutions and ex-
perimental data, and the influence of the frictional
drag due to ion-neutral collisions is examined for the
low-pressure (~ 0.1 Pa) regime.

Physical Model

The particle conservation and momentum conserva-
tion equations for the ions are:

67’L,’
ot

)
a(nimiui) + V- (ngmiuiu; + piI) = ¢inE + F
2)

where n; is the ion number density, u; is the ion ve-
locity vector, m; is the mass per particle, p; is the
ion pressure, and E = —V¢ is the electric field. The
equation of state is:

+ V- (n,u,) = W; (1)

pi = nikpT; (3)
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Fig. 1 Diagram of the bounded plasma problem.

where the ion temperature T; is taken to be con-
stant. We assume singly-ionized atoms: ¢; = +e. The
charged particles are assumed to be produced by ‘di-
rect’ ionization:

Wi = 2N (4)

where 2z is a constant ionization frequency and n. is the
electron number density. The frictional force due to
collisions between the ions and the neutral background
gas is taken to have the form:!!

2v3 |kpT;  m2uyf?
F,=- ¥ :“z + LSZl n;m;u; (5)

where \; is the ion mean free path.

Equation (5) has two limiting forms, depending on
the parameter M = |u;|/\/kpT;/m;, which is a Mach
number based on the ion temperature. The constant
ion mobility regime occurs for M? < 48/7?, which is
the typical case for relatively high pressure plasmas.
The friction drag becomes F; = —v.n;m;u;, where
v, = 2¢/3/Xi \/kBT;/m; is the ion collision frequency
under weak electric fields, and p; = |g;|/(m;v.) is the
corresponding ion mobility. The ion-charge exchange
regime occurs for M2 >> 48/7%, which is the typical
case for low pressure plasmas. In this case, the friction
term becomes F; = —r|u;|/(2A;) nymiu;.

The electrons are assumed to be in Boltzmann equi-
librium with the electric field:

6
kBTe) ( )
where the electron temperature T, is assumed to be
constant.

The electric potential is determined by the Poisson
equation:

(i
Ne = N €XP

V2 = —(/e (7)
where €y is the permittivity of free space, and ( =
qin; — en. is the space charge density.

Computations vs. Theory

We consider a problem in which an ionized gas is
confined between a pair of electrodes a distance 2R

apart. The electrodes are assumed to be maintained
at a constant negative potential, and to draw an ion
current that is maintained by ionization in the plasma.

The configuration is shown in Fig. 1. The problem
is symmetric about the plane x = 0, where the ion and
electron number densities have a maximum value ng.
Because of this symmetry, the ion current is zero at
the center plane, but increases farther away, flowing
into the walls (cathodes) on either side at z = +R.

Number density profiles, representative of a colli-
sionless case, are included in the diagram, along with
some nomenclature describing various regions in the
profiles. The ion and electron number densities, indi-
cated respectively as solid and dash-dot-dot lines, are
essentially equal in the perturbed plasma near the cen-
ter. Closer to the electrodes in the space charge layer,
the electron number density falls significantly below
the ion number density. Eventually, the electron num-
ber density becomes negligible in the ion sheath, which
is a subset of the space charge layer.

Theory

Assuming a one-dimensional, steady-state problem,
the governing equations (1), (2), (6), and (7) reduce
to the following form:

d
7 (Mitki) = 21 (8)
d \ dn; dé
—(miniu; Ti—— = —en;——
dx(mnuz)+k3 Ir eni o
2\/3 kBT; w22 1/2 (9)
B )\i |: m; + 48 ] nifmiti
Ne = Ng €Xp (k:;“ ) (10)
d2
0T = —e(ni —n) @

We assume the following boundary conditions, which
represent symmetry about the center plane and an im-
posed potential at the wall:

n; (0) =Ng U; (0) =0
$p(0)=0 ¢'(0)=0 (12)
$(R) = du

where £ = 0 is the plasma center and x = R is the
position of the wall (right hand cathode in Fig. 1). For
¢y specified, this is a boundary value problem with an
eigenvalue z.

We change to the following nondimensional vari-
ables, with reference quantities based on the number
density at the center plane, the Bohm velocity up,
and a characteristic potential based on the electron
temperature:

T =zxjup 1= —ed/(kpTe)
y=mn;/ng U=u;/up (13)
Ye =Ne/no  up = \/kT:/m;
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Note the sign change on the potential. Dropping the
over-bars on z and wu, the resulting equations are:

(yu)' =y (14)
(yu?) + 1y = yn'
9 971/2 15)
B 22! (
2\/5610.771,, T+ ) yu
Ye = exp(—n) (16)
(2070)°7" =y — ye (17)

where 8 = Apo/Ai, @0 = Apo/R, ®w = zR/us,
T =T;/T,, and Apg = \/eokpTe/(nge?) is the Debye
length. The corresponding nondimensional boundary
conditions are:

y(0)=1  w(0)=0
n(0) =0 n'(0) =0 (18)
N(Tw) = Nw

As was discussed in conjunction with Eq. (5), the be-
havior of the friction force due to ion-neutral collisions,
the last term in Eq. (15), depends on M = u//7. If
M? « 48/72, Eq. (15) reduces to a form with linear
friction:

wu?)' + 7y =yn' — a1 yu (19)

where a; = 28v37/(goxw). On the other hand if
M? > 48/7? and 7 < 1, Eq. (15) reduces to a form
with quadratic friction:

(yu®)' = yn' F azyu’ (20)

where ay = m0/(2¢ox), and the negative sign is taken
for positive velocities.

A plasma solution is available for each of these lim-
iting forms. Self and Ewald!? found a solution for
the quasi-neutral plasma with a linear friction term,
Egs. (14), (16), (17), and (19), with y = y.. Note
that only the center (z = 0) boundary conditions are
satisfied, and the sheath is lost, in the plasma approx-
imation to the full model. The solution is:

VI+7(24+ 1)
V- TrTeTR
(1+ a;)3/?
(21)
14+ o U
arctan u| —
147 1+ o
1 _22:;1
+ oy *1
= |1 22
Y [ + 1+TU] (22)
n=—Iny (23)

In the other limit, an analytical plasma solution has
been found for quadratic friction (N. Sternberg, un-
published work). This is a solution of Eqgs. (14), (16),
(17), and (20), with y = y.. It is a generalization of
the solution found by Godyak and Maximov,'® who
neglected ion inertia.

The result is:

z =BlIn(u — up)
1+ asB ( s U 1 )
———In{mu - —5 - —
209 uz  Uo

2ai0u9 + 3asB + 1

az/3 + 4ul

200udu — 1
arctan | ————
V3 +4uf

-C
(24)
n=Aln(u — ug)
1-A 5 U 1
+ In{ou” - — — —
2 w3 up (25)
1- 2apudu — 1
arct e Se—
3+ 4ud V3 + 4ud
with
y = exp(—n) (26)
where
1—u?
= 27
3+ u? (27)
ud — g
B=-25 28
ud +3 (28)
B+1
c =202t Ly -

2042
2000ug + 3asB + 1 -1 (29)
arctan | ————
azy/3 + 4ud V3 +4ud
341
T2

K

In(—uo)+

1-34 —1 (30)
134 (T
V3 + 4ud V3 + 4ud

and the parameter ug is the root of the polynomial
aud +ud +1=0.

Results

A set of computations was carried out for the
bounded plasma problem using the computer code.
The bulk gas (argon) was assumed to be at rest,
one species of singly-ionized, positive ions was consid-
ered, and the electrons were assumed to be in Boltz-
mann equilibrium. The computational grid consisted
of 101 x 3 x 3 points. The boundary conditions for the
calculations were:

n:(0) = no, %1;" (0) = z,

$(0) =0, ¢(R)=¢u

The condition on the derivative of the ion velocity at
the center is derived from Eq. (8), using u;(0) = 0.
This form was more convenient for the numerical cal-
culations, and the ion velocity at the center was ob-
served to converge to zero as time increased.

(31)
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Fig. 2 Number density distribution computed for
various collision rates.

An outflow boundary condition, or perfectly ab-
sorbing wall, was imposed at the cathode, and other
boundary values were found by extrapolation. Unifor-
mity was imposed along the y- and z-directions.

A procedure based on the integral form of the par-
ticle conservation equation was used to estimate at
each time step in the computations the ionization fre-
quency z required to achieve a steady state. Integrat-
ing the continuity equation (8) from the plasma center
at £ = 0 to the electrode at x = R, we find:

y = (niui)z=r (32)

fOR nedx

The calculations were marched in time until the change
of the ionization frequency and the independent vari-
ables with each time step had reached a minimum.

Figures 2-4 show the profiles of the three dependent
variables n;, u;, and ¢ for several example calculations.
In each case, ¢ = 0.01, , = 50, and 7 = 0.026.
Values of the nondimensional collision parameter are
shown from B8 = 0 (collisionless) to § = 100 (highly
collisional). A typical set of dimensional conditions
corresponding to these values would be T; = 300 K
(0.026 eV), T, = 11600 K (1 V), ¢, = =50 V, ng =
1x10 m~3, and R = 74 mm. Under these conditions,
the Debye length is Apg = 0.74 mm, and the ion mean
free path ranges from A\; = 7.4 ym to 74 mm for the
collisional cases. For argon, m; = 6.63 x 10726 kg,
and the corresponding Bohm velocity is about up =
1600 m/s.

Figure 2 shows the number density distributions for
the ions and electrons. Near the center (z/R = 0),
quasi-neutrality prevails, and the number densities of
the ions and electrons match closely. Closer to the
cathode (z/R = 0.7 for the collisionless case), the elec-
tron number density falls to a value somewhat lower
than the ion number density, marking the beginning
of the space charge layer. Even closer to the wall

ufug

Fig. 3 Ion velocity distribution computed for var-
ious collision rates.

(x/R = 0.8 for the collisionless case), the electron
number density becomes completely negligible at the
beginning of the ion sheath.

For increasing collision rates (higher values of 3), the
sheath becomes thicker and the character of the num-
ber density distribution changes. The less collisional
cases reflect primarily the action of the quadratic term
in the friction drag, Eq. (5), and the more collisional
cases reflect the linear component.

Figure 3 shows the distribution of the ion velocity
for different levels of collisionality. The positive values
of ion velocity correspond to ion flow to the right, into
the cathode. One point of note is the extremely high
velocities that occur near the cathode for low collision
levels. For the collisionless case, for example, the ion
velocity at the cathode is about 16 km/s. As the colli-
sion rate increases, these values drop, and for  greater
than about one, the ion velocity is less than the Bohm
velocity throughout the solution domain.

Another result of interest is that for low collision
values (e.g., 8 = 0.01), the velocity distribution nearly
coincides with the collisionless case, except in the ion
sheath where speeds are reduced by the action of the
quadratic friction term. This contrasts with the usual
view of a collisional plasma adjacent to a collisionless
sheath, a situation that only holds when the wall is
near the floating potential.

The corresponding distributions of electric potential
are shown in Fig. 4. The major part of the potential
drop is seen to occur in the ion sheath. (Compare the
length scales with those in Fig. 2.) As also seen in the
previous figures, the sheath becomes thicker for higher
collision rates.

The relative importance of linear and quadratic fric-
tion was examined by comparing numerical solutions
of the full model with the analytical plasma solutions
for the two limiting cases. The values for the ionization
frequency z were taken from the numerical solution of
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Fig. 4 Distribution of electric potential computed
for various collision rates.

the full model, and used as inputs to the plasma solu-
tions. The results are presented in Fig. 5, which shows
a slightly collisional case (8 = 0.01) for several values
of the ion temperature. The other parameters are the
same as in Figs. 2-4: go = 0.01 and 7,, = 50.

Figure 5a compares the two plasma solutions to nu-
merical computations for cases in which the analytical
solutions are good approximations. The Sternberg so-
lution (24)-(30) is seen to agree well with the full model
for the cold ion (7 « 1) case. The Self-Ewald solu-
tion (21)-(23) is seen to agree with the full model for
the warm ion (7 = 1) case. The close agreement, in
their regime of applicability, between the analytical so-
lutions and the numerical computations indicates the
correct implementation of the mathematical model in
the computer code.

Figure 5b shows a more typical case: 7 = 0.026.
Here the Self-Ewald solution agrees well with the full
solution near the center, whereas the Sternberg solu-
tion has the same shape as the full solution closer in,
but is translated up due to its inapplicability near the
center. These results suggest that the use of the full
frictional drag model, rather than the limiting linear or
quadratic forms, may be necessary for accurate mod-
eling of experiments.

Computation vs. Experiment

Here we compare the theory represented by Egs. (1)-
(7), and Eqgs. (31)-(32), to two sets of experimental
data for low-pressure (~ 0.1 Pa) argon plasmas. In
contrast to the planar symmetry of the theoretical
model, which incorporates a pair of cathodes, only one
electrode was present in the experiments.

The configuration is shown in Fig. 6. Note that the
coordinated system has been changed to correspond to
that used in the experimental papers: the cathode is
now at x = 0.

A steady, one-dimensional solution is not possible

0.2 | s Sterberg (present paper) \
= = = Self & Ewald (1966) (R

n/n,

——s ngny i

0 1 1 1 |
0 0.2 0.4 0.6 0.8 1
xR

a) Very cold (7 = 9x 10~!!) and very warm (7 = 1) ions.
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=
s |
04
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F | —-—- nyn, \
o 1 L 1 ¥
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b) Typical case: 7 = 0.026.
Fig. 5 Plasma solution versus full model for a

slightly collisional case (8 = 0.01), with various ion
temperatures.

ion
current

Fig. 6 Schematic diagram of experimental config-
uration.

5 OF 13

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2004-0177



Property Case A Case B

p 59 mPa 133 mPa
T, 28000 K 5800 K

T; 800 K 800 K

ng 9.8 x10¥ m=3 4.4x10"“ m~3
Dw -32.6 'V -32.1V

i 70 mm 30 mm
ADo 1.2 mm 0.25 mm

Table 1 Test conditions in the experiments of Ok-
suz and Hershkowitz.'*

for a semi-infinite problem with the presence of ioniza-
tion, so the far-field plasma must be three-dimensional
in the experiments. Nevertheless, a one-dimensional
model is expected to be applicable in the near-field,
and one-dimensional calculations were carried out by
selecting an effective half-width R to fit the experi-
mental data.

Oksuz-Hershkowitz Ezperiments

The first set of experiments considered here was car-
ried out by Oksuz and Hershkowitz!* in a multi-dipole
argon plasma generated by DC-biased hot filaments.
The cylindrical test chamber was 350 mm in diameter
and 400 mm in height. A 75 mm diameter stainless
steel disk was positioned within the uniform portion of
the plasma (about 190 mm in diameter and 330 mm
high), at a location 100 mm from the sidewalls and
160 mm from the top of the test chamber. The plate
was maintained at -30 V with respect to the grounded
chamber walls.

The plasma potential was measured using an emis-
sive probe in the limit of zero emission. The probe
was traversed along the axis of the disk electrode to
obtain the centerline profile of electric potential. Data
were obtained at several working pressures; two cases
that displayed a wide variation in relative length scales
were selected by the present authors for comparison
with the computations.

The corresponding experimental conditions are
given in Table 1. The wall potential shown in Ta-
ble 1 is referenced to a value of zero in the bulk
plasma. The value is slightly lower than the value of
-30 V maintained between the electrode and ground,
because the the potential of the bulk plasma was a
few volts above that of the grounded chamber walls.
The authors report ion temperatures, measured using
laser-induced fluorescence, in the range of 500-1200 K
(0.04-0.10 eV), with higher values near the electrode
and lower values in the bulk plasma. A mid-range
value of T; = 800 K was taken for the computations.
The nondimensional parameters for Cases A and B
are respectively: f = 1.7 x 1072 and 8.4 x 1073,
nw = 14 and 64, go = 9.3 x 1072 and 2.0 x 1073,
and 7 = 0.029 and 0.14. Note that these are relatively
weakly collisional cases, and that the temperature ra-
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Fig. 7 Comparison of present computations with
experiments of Ref. 14.

tio 7 is relatively large in Case B.

Figure 7 compares computational results with ex-
perimental data for the plasma potential. As men-
tioned before, we have now changed coordinate sys-
tems so that £ = 0 at the cathode. The number
density distributions for ions and electrons are also
shown, in order to illustrate the characteristic widths
of the ion sheath and the space charge layer. For both
cases, R = 125 mm has been taken to fit the exper-
imental data. The agreement between computation
and experiment is seen to be excellent in both cases.
The thickness of the space charge layer is larger in
Case A, corresponding to the larger Debye length in
that case.

Figure 8 compares the velocity and potential pro-
files for the computations shown in Fig. 7 with a
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Fig. 8 Effect of collisions under the conditions of
the Oksuz-Hershkowitz experiments.

corresponding set of solutions that neglect the effect
of ion-neutral collisions. Despite the relatively large
ion mean free path in the baseline collisional cases,
B ~ 1072 — 1072, collisions are seen to have a signifi-
cant effect on the profiles of potential and ion velocity.
Note also the differences in the shape of the velocity
profiles between Case A (small 7) and Case B (rela-
tively large 7).

One of the main points of the Oksuz-Hershkowitz
experiments was to examine Riemann’s theory of a
collisionless sheath and a collisional transition layer.®
The results presented in Fig. 8 seem to show that col-
lisions can be important in the sheath even for small
values of 5. The potential is high enough here to ac-
celerate the ions to very high velocities, ~ 10* m/s,
near the cathode, so the quadratic collision term can

Property Value

P 50 mPa

T, 6100 K

T; 300 K

no 2.9 x 104 m—3
buw -100.46 V
i 81 mm
ADo 0.32 mm

Table 2 Test conditions in the experiments of
Goeckner, Goree, and Sheridan.'®

be quite significant.

Ezxperiments of Goeckner, Goree, and Sheridan

The second set of experiments considered here were
carried out by Goeckner, Goree, and Sheridan.'® The
experimental procedure for generating the plasma was
similar to that of Oksuz and Hershkowitz.!* Again,
an argon plasma was generated in a vacuum chamber
by primary electrons emitted from a set of DC-biased
hot filaments, and confined by a multi-dipole magnetic
field. The test chamber was 320 mm in diameter, and
the electrode was a 50 mm diameter disk. The elec-
trode was maintained at -100 V with respect to the
grounded sidewalls of the test chamber. Relative val-
ues of the ion number density and absolute velocities
of the ions were measured using laser-induced fluores-
cence (LIF).

The experimental conditions are listed in Table 2.
The authors reported that the ions were at room
temperature, based on previous LIF measurements.
The parameters in the bulk plasma were measured
using a Langmuir probe. The potential there was
+0.46 V with respect to the chamber sidewalls, and
the electron temperature was 0.53 eV. The ion mean
free path was estimated by the present authors to be
Ai = 1/(330cmtorr1p) = 81 mm. The correspond-
ing nondimensional parameters are: 3 = 3.9 x 1073,
Nw = 190, go = 4.6 x 1073, and 7 = 0.049.

Computational results for several different theoret-
ical models are compared to the experimental results
in Fig. 9. The effective plasma half-width was taken
to be R = 70 mm for these computations.

Figure 9a shows the ion number density profile.
The experimental measurements are shown along with
computations corresponding to the experimental con-
ditions. Goeckner et al. compared their experimen-
tal results to a collisionless model without ionization.
Here three different theoretical curves are shown, cor-
responding to three different assumptions: a model
with ionization and collisional friction, a model with
ionization but no collisions, and a model with nei-
ther ionization nor collisions. Ionization is seen to
play a significant role relatively far from the electrode
(z > 0.025 m), where the theoretical model without
ionization falls substantially below the experimental
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Fig. 9 Comparison of present computations with
experiments of Ref. 16.

data. Elsewhere, the difference between the theories is
comparable to the experimental uncertainty, but the
model with both ionization and collisions gives the
best overall fit.

Figure 9b compares the ion velocities measured by
Goeckner et al. with the predictions of the three the-
oretical models. For z > 10 mm, all three models
are consistent with the experimental data, within the
measurement uncertainty. Near the wall (z < 10 mm),
however, only the collisional theory accurately predicts
the velocity measurements. The frictional effect of
collisions is seen to have a significant effect on the the-
oretical prediction, despite the relatively small value of
the collision rate 8. The reason for this result is that
the nonlinear friction term again becomes very large
near the cathode due to the squared dependence on

velocity.

Glow Discharge

The present section addresses DC glow discharges at
relatively higher pressures (~ 100 Pa), in a regime in
which ion inertia can be neglected. Preliminary results
for a nitrogen discharge calculation are presented, and
the solution features are discussed. Future work will
address the quantitative verification and validation of
this version of the code.

Physical Model

The conservation of mass, momentum, and energy
for the overall gas is expressed as:

ap .
E—FV-(pu) =0 (33)
S+ V- (puu D) =(B+jxB (30
%-FV-(UE—E-u—}-Q):E-j (35)

where the total fluid energy is defined as £ = p(e +
u?/2), and € = C,T is the internal energy. The electric
and magnetic fields are E and B, and u is the fluid
velocity. The mass density, the charge density, and the
total electric current density are found by summing
over all species: p = Xymgng, ( = Ygqsns, and j =
Ysqsnsvs. The total stress tensor X is given by the
usual constitutive equation for a Newtonian fluid and
the heat flux Q follows Fourier’s heat conduction law:

Yij = —pbsj + Tij (36)
_ 8ui 3u]' 2 8uk B
oT
Qi=—k oz, (38)

where p and k are, respectively, the viscosity and ther-
mal conductivity, and the subscripts indicate Carte-
sian tensor components.

Neglecting acceleration terms and temperature gra-
dients, and defining the diffusion velocity and flux as
w, = vy, —u and I'y = ny,wy, respectively, the par-
ticle and momentum conservation equations for each
species are:

ong
ot

Ts—ssusTsxB =—D,Vns+ssnsus(E+uxB) (40)

where s is the sign of q.
We define the second-order tensor:

+V-(nsu+T;) =ws (39)

s 1

Taking the dot product of M*® with both side of (40),
we find:

T, =M°¢. [_stns + Ssnsllfs(E +ux B)] (42)
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Fig. 10 Computational grid of 101 x 51 points. Ev-
ery fourth grid line shown along the z-direction.

where the dot product corresponds to summation on
the second index of M.
Using E = —V ¢, substituting into (39), and rear-

ranging, gives:

ong

ot
where U = u + s;usM?® - (—=V¢ + u x B) is the sum
of the convection and drift velocities. Equation (43) is
the basic drift-diffusion equation.

For the present work, we take the charged particle
generation rate to be:

+V-(n,U)=V-(D,M? -Vng) +ws (43)

wie = a(E,n)le — fnin, (44)

where « is the ionization coefficient, 8 is the recom-
bination coefficient, E is the magnitude of the electric
field, I'. is the magnitude of the electron flux, and n
is the neutral gas number density.
The electric potential is determined from the Pois-
son equation:
V2% = —(/e (45)

where ¢ is the permittivity of free space.

Results

As an initial verification and exploration exercise, a
set of calculations was carried out for a glow discharge
in nitrogen, considering two species: singly-charged
ions and electrons. For this initial computation, a
very simple geometry was selected: a square domain,
10 mm wide by 50 mm high.

1.4E+15

3 - — - - N=51
——— - N=101
126415 N - 201
S no_ 777N
TE+IS R Tm T T e Q
A - \
&~ BE+14[ \
13 | \
2 W
€ BE+14| V)
L Y
R
4E+14 | W\
2E+14 - LT3~
oG
I s P N
- y
0 1 _ 1 . = L 1
0 0.002 0.004 0.006 0.008 0.01
x(m)
Fig. 11 Grid resolution study of one-dimensional

configuration. Conditions: p = 67 Pa, R = 100 kQ,
V =500 V.

The computational grid of 101 x 51 x 3 points is il-
lustrated in Fig. 10. (Uniformity was imposed in the
computation for the three points along the z-direction,
and the domain was 10 mm along that direction.) In
the figure, the cathode lies on the left at z = 0, and the
anode lies on the right at = 0.01 m. Points are clus-
tered near the electrode surfaces and also near the cen-
terline. Grid resolution studies of a one-dimensional
configuration (Fig. 11) showed that the resolution in
the z-direction between the electrodes was adequate.
Multi-dimensional grid resolution studies are under-
way.

The pressure was fixed at 67 Pa everywhere. The
electrode temperature was fixed at 300 K, and zero
heat flux was specified at the sidewalls. A no-flow
condition was imposed over the whole domain, in ef-
fect turning off Egs. (33) and (34), and leaving only
heat conduction in Eq. (35). Fluid property data were
obtained from Refs. 17 and 18. The electron temper-
ature was assumed to be 11600 K (1 eV).

The ion number density was taken to be zero on the
anode, and the electron number density on the cathode
was found from the relation:

Fz,e = ’71_‘:0,1 (46)

where v = 0.1 is the secondary emission coefficient,
and the flux T was computed by discretizing Eq. (42)
using one-sided, second-order spatial differences. The
electron number density at the anode and the ion
number density at the cathode were found by extrap-
olation. On the side boundaries, the number densities
of the charged particles were set to zero.

The potential at the anode was taken to be zero,
and the normal component of the electric field was set
to zero on the side boundaries. The cathode potential
V. was determined according to the circuit shown in
Fig. 12. The corresponding ordinary differential equa-
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Fig. 12 Circuit diagram of glow discharge.

tion is:
RCV,+V.=-V+IR (47)

where V' = 500 V was the applied voltage, R = 240 k2
was the resistance, and I was the total current at
the anode predicted by the partial differential equa-
tions. The value of the capacitance has no effect on
the steady-state solution, and for numerical conve-
nience was taken so that the circuit time constant was
RC = 20At, where At was the integration time step.
Equation (47) was solved using the same discretiza-
tion as in Eq. (51), and the solution was monitored to
determine if it had converged to V. = =V + IR.

Figures 13a-d show profiles of selected quantities
along the discharge centerline. The cathode is at the
left and the anode is at the right. Number density
profiles are shown in Fig. 13a. The cathode sheath is
apparent on the left as a region relatively free of elec-
trons, but with a high ion concentration. At right is
the anode sheath, which, in contrast to the cathode
sheath, is distinguished by a depletion of ions relative
to electrons.

A relatively strong electric field is present in the
cathode sheath, Fig. 13b, with a weaker field near the
anode. Outside the cathode sheath, the current is car-
ried almost entirely by electrons (Fig. 13c). Inside this
sheath, the ions make an increasing contribution to the
current as the electrode surface is approached.

The corresponding temperature profile is shown in
Fig. 13d. The heating is caused by the term E - j in
Eq. (35). The greatest heating occurs where this term
is largest, which is in the cathode sheath. Hence the
peak temperature occurs near the sheath edge, with
strong heat transfer to the cathode

Figures 14a-d show contour plots of selected quan-
tities in the z-y-plane. The number densities of ions
and electrons, Figs. 14a-b, are maximal near the cen-
ter of the domain, and decline toward the insulator
boundaries. The electric potential, Fig. 14c, is rela-
tively uniform along the y-direction. The temperature
distribution is shown in Fig. 14d. Again, we see that

heat is generated primarily in the vicinity of the cath-
ode sheath, and is conducted away toward the cold
electrodes. The strongest temperature gradients and
heat transfer occur near the cathode.

The solution is seen to display features in qualita-
tive agreement with standard behavior of DC glow
discharges.'®2° Provisions are included in the code
to model the effects of an applied magnetic field, and
future work will address this issue, as well as cases
with a gas cross-flow.

Discussion

Calculations were carried out with a computer code
developed at the Air Force Research Laboratory Com-
putational Sciences Center to model ionized gases with
the presence of significant charge separation. Two ma-
jor options are now available in the code: one to model
the motion of each species with continuity and momen-
tum equations, and the other with a single continuity
equation under the drift-diffusion model.

First, the role of the frictional drag due to ion-
neutral collisions in low pressure (~ 0.1 Pa) sheaths
was examined. Numerical solutions were compared
with experimental data for weakly-collisional (8 ~
1073 — 102) cathode sheaths with wall potentials of
the order 7,, ~ 10 —100. The frictional drag resulting
from ion-neutral collisions was represented by a model
incorporating both linear and quadratic terms (con-
stant and variable mobility). For suitable choices of
the domain half-width R (see the discussion associated
with Fig. 6), good agreement was obtained between
the computations and experimental data.

Despite the relatively small values of the nondi-
mensional collision parameter, a significant effect of
collisional drag on the ion velocity profile and on the
overall sheath thickness was found. In particular, the
results contrast with the common view of a collisional
plasma adjacent to a collisionless sheath, a situation
which only holds when the wall is near the floating
potential.

The second part of the paper addressed DC glow dis-
charges at relatively high pressure (~ 100 Pa), where
ion inertia can be neglected. Preliminary calculations
of a nitrogen discharge were carried out, and the solu-
tion displayed features in qualitative agreement with
standard behavior of DC glow discharges.

Provisions are included in the code to model the
effects of an applied magnetic field, and future work
will address this issue, as well as cases with a gas cross-
flow.

Appendix: Numerical Methods

The physical models governing the low pressure
and high pressure regimes were presented previ-
ously in the sections “Plasma-Wall Transition” and
“Glow Discharge.” The fluid flow equations (33)-(35),
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continuity-momentum equations (1)-(2), and the drift-
diffusion equation (43) have the common form:

ou oFE OF 0G O0FE, O0F, 0G,
- +5+S (48)

ot "oz "oy "9z oz oy

where U is the solution vector, E, F', and G are con-
vective fluxes, E,, F,, and G, are diffusive fluxes, and
S is the source term. We apply the standard trans-
formation from physical coordinates (z,v,2) to grid
coordinates (&, 7, () so that:

6U (‘3E oF % OE, +8E) N oG, +5 (49)
65 8 BC ¢ on 8¢
where S = S/J, E = (&, E + & F + £.G)/ J, etc.
Equation (49) can be written as:

U
ot

where R represents the convective fluxes, diffusive
fluxes, and source term. Discretizing Eq. (50) in time
we write:

-R (50)

1+0)T" — (1 +20T" +6U" " = AtR™! (51)

where § = 0 for an implicit Euler scheme and 6 =
1/2 for a three point backward scheme. We introduce
subiterations such that U™ — Up+1, with AU =
U"*' — U, The right hand side R"*! is linearized in
the standard ‘thin layer’ manner.

Collecting the implicit terms on the left hand side,
and introducing approximate factoring and a subiter-
ation time step Af gives:

= At
AU = ——— 2
LelyLAU = 1 +0R (52)
where L¢, Ly, and L¢ are implicit spatial difference
operators. For example:

Le=1- %(3 +6¢A+0cRé + Dig)  (53)
where B is the source Jacobian, A and R are com-
binations of the flux Jacobians, and D;: represents
an optional implicit damping operator. The term R
contains the explicit discretized form of the governing
equations:

1+ 0)T" — (1+2000" + 67"
At

R =

—R?—D,U" (54)
where D, is an optional explicit damping operator.
For the fluid and low-pressure sheath equations,
the spatial derivatives were evaluated using second
order central differences. For these cases, the sym-
bols D; and D, represent, respectively, variants of the

implicit and explicit damping operators described by
Pulliam.?! The explicit damping operator uses a non-
linear blend of second- and fourth-order damping.?2

For the drift-diffusion equations, the spatial deriva-
tives were evaluated using a second order upwind
method based on the drift velocity, employing the
MUSCL approach.?? The minmod limiter was used,
and damping was not applied.

Each factor in Eq. (52) was solved in turn using a
standard block tridiagonal solver, and AU was driven
to zero by the subiteration procedure. The Poisson
equation, species equations, and the fluid equations
were solved inside this subiteration loop in a loosely-
coupled fashion.

The Poisson equation was solved using an approx-
imately factored implicit scheme, adapted from the
approach described by Holst.2* The three-dimensional
Poisson equation (7) can be written in the form:

OF OF  9G _

dr Oy 0z
where E = 0¢/0x, F = 0¢/0y, G = 0¢/dz, and
S = —(/eo. Applying the standard transformation of
coordinates, this becomes:

(55)

—_+—+—_=§ (56)

where S = S/J, E = (&, E + & F + £,G)/J, etc.
Following the procedure described by Holst, we in-
troduce an artificial time term:

8(75 6E 6F 0G

ar L¢ = € + ac -8 (57)
and develop a procedure that drlves the numerical so-
lution towards L¢ = 0.

We write A¢g/AT = LgPH1 where Ag = ¢PH1 — ¢P,
then linearize the right hand side using the standard
‘thin layer’ approach. We also introduce a = 1/Ar,
an over-relaxation parameter w, and approximate fac-
toring:

LelpLeAg = wa_chzSp (58)
where, for example, the £-operator is:
»Cg =1 + OZ_I(D — (5§A(5§) (59)

and D and A are, respectively, the source and flux
Jacobians.

The spatial derivatives were evaluated using a cen-
tral difference approach, and the resulting tridiagonal
system for each factor was solved using the Thomas
algorithm.

In order to accelerate convergence, the pseudo-time
parameter was varied according to the procedure:

p—1

M-—-1

ap =amg (Z—L) (60)
H

where oy, and ag are the low and high bounds on a,,
and p cycles periodically between 1 and M.
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Fig. 13 Profiles along the discharge centerline. (a) Number density. (b) Potential and z-component of
electric field. (c) Total, ion, and electron current. (d) Temperature.
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Fig. 14 Contour plots of two-dimensional solution. (a) Ion number density, contour interval 1 x 10'* m™2,

(b) Electron number density, contour interval 1 x 10** m™3. (c) Electric potential (V). (d) Temperature
(K)-
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