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Computational Studies of
Magnetic Control in Hypersonic Flow

J. Poggie*
D. V. Gaitondef
US Air Force Research Laboratory
Wright-Patterson AFB, OH 45433-7521

Computational and theoretical studies of a Mach 5 flow over a hemisphere were carried
out to examine the possibility of heat transfer mitigation through magnetic control. Com-
putations employing the low magnetic Reynolds number approximation were compared
to a local solution for the stagnation point flow developed by W. B. Bush. Both models
indicate that an imposed dipole field can slow the flow in the conductive shock layer
and consequently reduce the wall heat flux in the vicinity of the stagnation point. The
theoretical model predicts a somewhat higher level of heat transfer than that obtained
computationally, but there is good agreement between the two models in the fractional
change in heat transfer with increasing strength of the applied magnetic field. For both
models, nonuniform electrical conductivity was found to reduce the effectiveness of a
given applied field. Magnetic flow control is seen to have a sound physical basis, and may
prove to be a useful technology for heat transfer mitigation.
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Roman Symbols
= sound speed
magnetic field
= constant pressure specific heat
internal energy
electric field
enthalpy
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= electric current
thermal conductivity
= pressure

= charge density

= heat flux

= spherical coordinates
= radius

= time

= temperature

= Cartesian velocity components
= fluid velocity

= Cartesian coordinates
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Greek Symbols

0% = specific heat ratio

A = shock standoff

€0 = permittivity of vacuum

n = magnetic diffusivity, 1/ouo
A = second viscosity coefficient
I = dynamic viscosity
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= permeability of vacuum
density

electrical conductivity
= stress tensor

vorticity
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Subscripts

= reference value

= body

= boundary layer edge
= imposed conditions
magnetic

= shock

= wall

= freestream
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Introduction

HE extremely high temperatures in the shock

layer at the blunt nose of a hypersonic vehicle
remain one of the prime impediments to routine trans-
atmospheric flight. Given the ionization associated
with these high temperatures, it is natural to consider
electromagnetic control of this class of flows. Since
the Lorentz force tends to oppose fluid motion across
magnetic field lines, a magnetic field applied to the
conductive shock layer would tend to increase the drag
of a vehicle (a desirable effect for atmospheric entry),
and, by slowing the flow near the surface of the body,
reduce heat transfer and skin friction.

The origin of this idea dates to the mid 1950s.173
Various system concepts envisioned both local flow
control for stagnation point heat transfer reduction
and large-scale, self-powered magnetogasdynamic sys-
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tems®> %7 which would increase the drag of a vehicle,

reducing the overall heat load during atmospheric en-
try.® Vehicle control through asymmetric forces®? or
the Hall effect” was also proposed, as was a combi-
nation of ablative and magnetic heat transfer mitiga-
tion.'0

Enthusiasm for the practical application of these
ideas waned by the early 1960s, and publication on the
subject tapered off after that decade. In a comprehen-
sive review of the literature on electromagnetic control
of heat transfer, Romig wrote: “Eventually ...it was
concluded that the field strengths necessary to pro-
vide sufficient shielding against high-heat fluxes dur-
ing atmospheric flight were not competitive (in terms
of weight) with other methods of cooling” (Ref. 11,
p- 269). Particular problems included increased ra-
diative heat transfer under magnetic control, Joule
heating in the electromagnet, and the extremely strong
magnetic fields needed for the low conductivity lev-
els of thermally-ionized air. Many authors, however,
held out the possibility that artificial ionization and
superconducting magnets could change the situation
to the point where electromagnetic control could be-
come practical.'’ Considerable improvement in these
technologies has occurred in the forty-five years since
the first suggestion of electro-magnetic control for hy-
personic flight, and it is now appropriate to reconsider
this technique.

Magnetogasdynamic Blunt Body Flow

The first analytical models for this problem involved
similarity solutions for a stagnation point flow.'2716 A
uniform magnetic field, unaffected by the flow, was
taken to be oriented normal to the wall. A model for
the inviscid outer flow was considered in which the
pressure gradient was fixed and the magnetic force set
the velocity gradient. Compressibility effects in the
shock layer were neglected. Shear stress and heat flux
at the wall were found to be strongly reduced as the
imposed field strength was increased, primarily due
to the decreased streamwise velocity gradient at the
boundary layer edge.'®
Later studies'” 22 improved the model of the in-
viscid outer flow by modifying the constant density
theory developed for non-magnetic blunt body flow.23
The imposed magnetic field was taken to be an ax-
isymmetric dipole, a fairly realistic model for the field
generated by an electromagnet. These models elimi-
nated the fixed pressure gradient approximation used
in the earlier studies, and also predicted an increase in
shock standoff.

The improved inviscid-flow models were matched
to similarity solutions?4 2% for the stagnation point
boundary layer which avoided the constant property
assumption of earlier studies. The combined model
again predicted a significant reduction in stagnation
point heat transfer. An interesting result of the vari-

able property boundary layer calculations®® was that,

under certain conditions, variable electrical conduc-
tivity could reduce the effectiveness of control and
produce overshoot boundary layer profiles. This effect
is a result of the diminished magnitude of the mag-
netic force due to reduced electrical conductivity near
a cold wall.%”

Early numerical studies attempted to address some
of the approximations in the analytical inviscid-
flow models.?8-3% The computations showed the same
trends as the analytical studies: increased shock stand-
off and reduced stagnation point velocity gradient.
Computations using more recent methods®!>32 seem
to confirm these trends.

Experiments have at least qualitatively confirmed
the theoretical predictions. Shock standoff, inferred
from photographs of the glowing shock-layer plasma
in wind tunnel tests, has been found to increase with
applied field strength.!7-33-36 A reduction in heat
transfer rate®” and an increase in drag®4~3% have also
been observed experimentally.

A number of complicating effects have been exam-
ined in theoretical studies. Magnetic control was stud-
ied in the low Reynolds number, merged shock layer
regime using thin shock layer theory,% 3844 and it
was found that the effect of magnetic control may be
reduced for very low Reynolds numbers. The Hall cur-
rent, which becomes significant under high altitude,
low density conditions, also tends to reduce the effec-
tiveness of control.*>46 Similarly, the induced mag-
netic field tends to oppose the applied magnetic field
and diminish control effectiveness when the magnetic
Reynolds number is relatively high.'8 4647

In the present study, we have considered the prob-
lem of a Mach 5, ideal gas flow over a hemisphere,
which was addressed in the early inviscid computations
of Coakley and Porter.3! Both inviscid and viscous
computations were carried out using a low magnetic
Reynolds number model, and the results were com-
pared to the theory developed by Bush!® 2% as well as
the Coakley-Porter computations. In particular, we
have examined magnetic control of the heat transfer
in the vicinity of the stagnation point, and the influ-
ence of conductivity variation on the efficacy of this
technique.

Physical Model

A very general continuum model for a flow affected
by electromagnetic forces would include the full set of
Maxwell’s equations coupled to the fluid conservation
equations. The conservation equations of mass, mo-
mentum, and energy are expressed as:

%+V-(pﬁ) =0 @
Qi +v-Gis-%) = F @

ot
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O E) 4V (B, -2 5+0) = P (3)

ot
where E; = e + v?/2, f is the electromagnetic body
force, and P is a power source term. Maxwell’s equa-
tions can be expressed as follows using SI units:

«©V-E = ¢ (4)
V-B = 0 (5)
. 0B
- - OF
V x B/po 7+ €0— o (7)

These are Gauss’s law, conservation of magnetic flux,
Faraday’s law, and the Ampere-Maxwell law, respec-
tively. The charge conservation equation

@+v-3:0 (8)

can be derived from these equations. Neglecting mag-
netization and polarization of the fluid, the total cur-
rent is the sum of the convected charge and the con-
duction current: ] =qU+ J the force per unit volume
of matter (Lorentz force) is f = ¢E + j x B, and the
power delivered to matter by the field is P = E. J.

In the case where typical flow length scales are much
larger than the Debye length, flow time scales are
larger than the reciprocal of the plasma frequency, and
flow velocities are much less than the speed of light,
a simplified magnetogasdynamic (MGD) model is ap-
plicable. The displacement current e;0F /8t and the
convected charge ¢’ are neglected as small compared
to the conduction current J. Since charge separation
is small, the force due to the electric field and the un-
steady term in Eq. (8) are also neglected. Maxwell’s
equations can be reduced to:

-

v-J =0 (9)
V-B = 0 (10)
VxE = -8B/ot (11)
VxBlu = J (12)

The force on the fluid is f = J x B and the power
delivered to the fluid is P = E - J.

For simplicity, we assume in the present work that
the current is given by Ohm’s law:

J=0(E+7x B) (13)

A scalar electrical conductivity is a good approxima-
tion if the collision frequency is much greater than the
cyclotron (gyro) frequency, as in a relatively dense gas.
Equations (9)-(13) can be combined to eliminate the
electric field, giving the magnetic induction equation:

This level of model is the starting point for the theory
that will be described later.

An order of magnitude analysis of the terms in
Eq. (14) reveals that the ratio of the magnitudes of
the convective and diffusive terms is given by the mag-
netic Reynolds number Re,, = ougV L. This quantity
is small in many aerospace applications. For example,
consider a blunt body of 1 m nose radius, flying at
8 km/s at an altitude of 61 km. Assuming chemical
equilibrium downstream of the bow shock, the elec-
trical conductivity is about 300 (€2 - m)~! and the
magnetic Reynolds number is oo Voo Ry = 3.

For small magnetic Reynolds numbers, the distor-
tion of the magnetic field by the flow can be neglected,
and only the imposed field has a significant influence
on the flow. The source terms in the conservation
equations are given by:

f= oE
P = o(E

where the electric and magnetic fields are considered
known.

For the numerical calculations presented here, we
adopted the low magnetic Reynolds number model for
the magnetic field. Coupling this model, (15)-(16),
with the conservation equations, (1)-(3), a complete
set of governing equations for the flow is obtained. The
usual constitutive equations for the stress and heat flux
in a Newtonian fluid were employed:

Ou; 6u,> 4 A@uk

oz; " 02 ) T " om

UxB)xB (15)
UxB)-E (16)

Eij = p(sz] + 14 ( 613‘ (17)

oT

Qi = _kami

(18)

Viscosity was computed using the Sutherland formula
for air, and Stokes’ hypothesis was adopted: A =
—2u/3. The Prandtl number was taken as constant.

An ideal gas with constant specific heats was as-
sumed as a simple thermodynamic model to illustrate
the basic flow physics without the additional com-
plexity of chemically-reacting air. The corresponding
equations of state are:

ya
Rp

_p
‘T - (20)

T = (19)

Electrical conductivity was assumed to be a function
of temperature alone.

Numerical Formulation

For the numerical computations, the governing
equations (1)-(3) were cast in nondimensional form.

6B . . The equations were nondimensionalized by the refer-
Bt V x (’17 X B —nV x B) (14) ence quantities p, V;., L, B, po, pir, Ty, and o,. The
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nondimensional variables are then:

hre 3

t* =tV, /L, p* = p/pr 7 =7/V;
B =B/B. p*=p/(pV2) e =¢/V2 (D)
u* = p/ o* =o0/o, T =T/T,

In the present work, the reference values for the mag-
netic field and the electrical conductivity were taken to
be those at the stagnation point. The reference length
scale was the body radius, and the other reference val-
ues corresponded to the freestream conditions. In the
subsequent discussion of the computations, the super-
script (*) will be dropped and all quantities will be
assumed to be nondimensional unless explicitly stated
otherwise.

The overall form of Egs. (1)-(3) is unchanged by
nondimensionalization. The magnetic source terms
become:

x B (22)

= Qo
P -E (23)

g
g

= Qo

S
o B

~—

+ U x
+U x

T =

where Q = 0, B2L,./(p,V,) is the magnetic interaction
parameter. The nondimensional flux terms become:

Eij = —p(s,;j-f'
1 au, 6’&]' a'LLk
sl ( o+ 2u) +32%5) (29
1 oT
@ = " PrEcRe kBT,"i (25)

where Pr = uCp/k is the Prandtl number, Ec =
V.2/(C,T.) is the Eckert number, and Re = p,.V,. L./ 1,
is the Reynolds number. For the present computa-
tions, we assumed that the electric field was zero, and
that the magnetic field was an axisymmetric dipole
with its origin at the center of the hemispherical body.

The governing equations were solved by first writ-
ing the flux-vector form of the governing equations
in general curvilinear (£,7,(¢) coordinates.*®*° Each
derivative in transformed space (A = Anp=A( =1)
was approximated with a standard second-order cen-
tered formula, e.g.:

9 _ it1 — dia (26)
0¢ 2
A popular second- and fourth-order blend of damp-
ing®® was used to enforce stability. Evolution of the
governing equations in time was carried out using the
classical four-stage Runge-Kutta method.5!

Standard boundary conditions on the velocity and
temperature, appropriate for the inviscid flow and vis-
cous flow calculations, were used. Axial symmetry was
imposed on a three-dimensional grid by using a small
number of points (5) in the symmetry direction, and
enforcing symmetry at the end of each time step.

Fig. 1 Schematic diagram of blunt body with im-
posed magnetic field.

Theoretical Model

Here we describe a local solution'® 26 for the vicinity
of the nose of an axisymmetric blunt body in steady
hypersonic flow. We assume that the Reynolds num-
ber is high enough that the flow can be divided into
an inviscid outer flow and a viscous boundary layer.
We take the imposed magnetic field to be a dipole lo-
cated at the center of the sphere, and solve for the
induced field. Figure 1 is a schematic diagram of the
configuration. The coordinate system is such that
T = rcos¢sing, y = rsin¢gsind, and z = rcosé,
where the z-axis is directed opposite the freestream
flow.

Inviscid Flow

The model'® of the inviscid outer flow uses a modifi-
cation of the constant density theory originally applied
to non-magnetic, hypersonic flows.2? The solution as-
sumes that both the body and its corresponding bow
shock have a spherical shape in the vicinity of the cen-
terline. We also assume that the density and electrical
conductivity are constant within the shock layer, and
that the freestream electrical conductivity is zero. As
a consequence of the assumption of steady flow and
axial symmetry, the electric current must flow only in
the azimuthal (¢) direction, and the electric field must
be zero.

The equations are cast in nondimensional form using
the freestream velocity Vi, the shock radius Ry, and
the centerline magnetic field strength at the shock Byg.
With no electric field, Maxwell’s equations reduce to:

-

V-B = 0 (27)
VxB = Rem,sﬁxﬁ (28)

For the constant density flow in the shock layer, the
continuity equation and the vorticity transport equa-
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tion (curl of the momentum equation) become:

Vd o= 0 (29)

%v x [(Tx B) x B] (30)

where the only non-zero component of vorticity is in
the ¢-direction: & = wég.

Several nondimensional parameters appear in
these equations: the interaction parameter @}; =
0B%,R;/(pooVo), the shock density ratio K =
p/poo, and the magnetic Reynolds number Re,, ; =
opuoRsVs. We will also use analogous parameters
that only depend on information known before solv-
ing the problem: Q = 0B Ry/(pooVeo) and Rep =
oo Ry Voo. Here By is the field intensity at the nose
of the body in the absence of flow.

The magnetic fields just downstream of the shock
(r = 1) and at the body surface (r = rp) provide
boundary conditions for the induction equation (see
Ref. 47 for details). For the present work, we as-
sume that the freestream and the body consist of
non-conducting and non-magnetic material. We re-
quire that the magnetic field approach zero far away
from the body, so the nondimensional freestream field
becomes:

sin @ & (31)

~

e+
r3 273

Similarly, the nondimensional field inside the body has
the form:

~ By r3 .
B = (BzZr_g+C> cosf é, +

90 7'2 . ~
By 1y _ 2
(Bs(] 573 C ) sinf ég (32)

where C is a constant related to the distortion of the
imposed dipole field by the flow.

Another set of boundary conditions is provided by
the velocity and vorticity just downstream of the
shock. In the limit of small conductivity considered
here, the magnetic field does not have a direct effect
on the shock jump conditions. (It does, however, in the
infinite conductivity limit.52) Using mass conservation
across the shock, we find that the nondimensional ra-
dial velocity component is v,.(1,6) = —cosf/K. The
tangential velocity is continuous across the shock, so
vg(1,8) = sind. The vorticity just downstream of the
shock is a function of the shock curvature, the density
ratio, and the tangential component of the Lorentz
force.?® In nondimensional terms, the vorticity just
downstream of the shock can be expressed as:

(K —1)?

Wy = K

. 1 .
sinf + Qs (1 + ﬁ) sinfcosf (33)

The problem is solved in an inverse manner, spec-
ifying the conditions at the shock, and solving for

the location of the corresponding body. We write
Egs. (27)-(30) in spherical coordinates, impose inflow
boundary conditions at the downstream side of the
shock, and march the solution downstream until invis-
cid wall conditions are satisfied, indicating the location
of the body surface. Once the solution has been deter-
mined for a given magnetic field at the shock (Byo),
we can calculate the net magnetic field strength at the
nose of the body (Byo = Bso|B(rs,0)|) and the corre-
sponding imposed field strength (Byo).

Introducing a magnetic potential of the form
M (r)sin? § and an analogous stream function of the
form F(r)sin?#, we find magnetic and velocity fields
that satisfy Eqgs. (27) and (29) and are consistent with
the boundary conditions at the shock. Substituting
these forms into Egs. (28) and (30), we find that a
f-dependence remains, unless we use the small angle
approximations sin & 6 and cosf = 1 for the trigono-
metric functions. Under these conditions, a self-similar
form is obtained, and the vorticity transport and in-
duction equations reduce to ordinary differential equa-
tions. (See Ref. 18 for the full equations.)

In the example calculations that will be presented
later, these ordinary differential equations were inte-
grated using an adaptive Runge-Kutta-Fehlberg 4-5
method, from the initial conditions at the shock until
vanishing normal velocity was obtained at the body
surface. Calculations were carried out for a fixed @)
and Re,,; iteration was used to find the corresponding
values of ; and Rey, 5.

Limitations

The constant density theory is based on the assump-
tion that, for a strong bow shock, the flow in the
vicinity of the nose of a blunt body is effectively in-
compressible, since the Mach number in that region is
very low. A local solution is developed for the vicinity
of the stagnation point, assuming constant density in
that region.

The major drawback of the constant density ap-
proach is that the density ratio varies along the bow
shock in a real blunt body flow, so that the flow
is more realistically modeled as a stratified, rather
than constant density, flow (Dp/Dt = 0, rather than
p = const). Nevertheless, constant density theory
gives a reasonable estimate of the shock standoff dis-
tance for large shock density ratios at the nose.

Figure 2, for example, compares theoretical pre-
dictions?® to an experimental correlation®® for shock
standoff in non-magnetic air flow over a sphere. The
prediction tends to be a bit low, but improves as the
shock density ratio is increased. For density ratios of
K > 3, the predicted standoff is within 15% of the
experimental data.

Viscous Boundary Layer

We examine the flow near the wall using laminar
boundary layer theory.?6 If we assume that there
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theory: sphere
14k — = experiment: sphere

Fig. 2 Standoff distance versus shock density ratio
for sphere: non-magnetic constant density theory
and experiment.

are no electrodes to introduce a potential difference,
then it is valid to take the electric field as zero in
steady flow. We assume that current only flows in
the transverse direction, and that there is no fluid
flow in that direction. Making the usual assumptions
of boundary layer theory, we can show that only the
wall-normal component of the magnetic field has a sig-
nificant influence on the boundary layer flow. We use
an orthogonal, curvilinear coordinate system (z,y, 2)
with the origin at the stagnation point, and y = 0 on
the body surface.

In the MGD boundary layer approximation, the
equation for conservation of mass is:

9 oy O my_
3 Pur )+a—y(pv7“ )=0 (34)

where r(z) is the body radius, and m = 0 for planar
symmetry and m = 1 for axial symmetry. The conser-
vation of momentum is expressed as:

Ou Ou dp 0 Ou 9

— —=——+—|pu— | —0B 35
pu6x+pv8y d:z:+6y (“ay) oByu (35)
where By = By(z). In the freestream, the momentum
equation reduces to:

dp du, 9
__ (Me% + oeByue> (36)
The equation for the conservation of energy has the

form:

Oh Oh d,
pum + pv— - (37)

i oy dz

o (,8T ou\’

-~ il = B2 2
dy (kay)+u<8y> ToBy

The boundary conditions at the wall are no slip and
no temperature jump. At the boundary layer edge,
the solution must match the inviscid outer flow.

For an axisymmetric stagnation point boundary
layer, m = 1, r = z, and v, = Gz, where G =
(due/dz)g is constant. For a uniform magnetic field
(By = Buo), a similarity solution can be obtained with
the introduction of new independent variables

{(z) = mﬂeﬂesz(mH) (38)
n(z,y) = \/%/jﬂdﬁ (39)

and dependent variables u = wu(§)f'(n) and h =
he(£)g(n). The resulting set of ordinary differential
equations is given in Ref. 26.

Example boundary layer calculations were carried
out for the edge conditions predicted by constant den-
sity theory. The adaptive Runge-Kutta-Fehlberg 4-5
method was again used to numerically integrate the or-
dinary differential equations of the similarity solution.
The boundary conditions were satisfied by a shooting
scheme based on Newton-Raphson iteration.

Results

The case of a Mach 5, ideal gas flow over a hemi-
sphere was chosen to match the inviscid computations
of Coakley and Porter.3! The results were compared
to these early computations and to the inviscid theory
of Bush!® (with Re,, = 0). Additional viscous calcu-
lations were carried out to examine the influence of
magnetic control on the heat transfer in the vicinity of
the stagnation point. To allow comparison with Bush’s
boundary layer theory,?® a relatively high Reynolds
number, pooVooRb/ftoc = 80000, was chosen, with an
assumption of laminar flow. The corresponding di-
mensional conditions are a body of 10 mm radius and
a freestream temperature of 100 K.

Inviscid Flow

The conditions for the baseline inviscid flow case
were M = 5 and v = 1.4, with a corresponding shock
density ratio of K = 5. (Here M = V/ax is the
Mach number.) The inviscid computations were car-
ried out on a grid of 60 x 40 x 5 points distributed,
respectively, in the directions along the body surface,
normal to the body, and in the circumferential direc-
tion.

The basic flow structure is illustrated in Fig. 3,
which shows the pressure field predicted by the nu-
merical computations for two cases: ) =0 and @) = 6.
(Note that the coordinate system is different from that
in Fig. 1.) With the application of a strong magnetic
field, there is a dramatic increase in the shock standoff,
but little qualitative change in the flow structure.

The increase in shock standoff with interaction pa-
rameter is quantified in Fig. 4. The predictions
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Fig. 3 Pressure field p/p. for inviscid flow (con-
tour interval 2). (a) Q=0 (b) Q=6

0.1

| ] present computations

I Bush (1958) theory

l —— = Coakley and Porter (1971)

O Ambrosio and Wortman (1962)

1
4 6

o
V=

Q

Fig. 4 Effect of applied magnetic field on shock
standoff (M =5, v =1.4).

of Bush’s theory,'® Coakley and Porter’s computa-
tions,3! and the correlation of Ambrosio and Wort-
man®? are shown for comparison with the results of
the present computations. The computed standoff in-
creases from a value of A/R;, = 0.163, consistent with
the empirical correlation for the non-magnetic case, to
a value of 0.280 at () = 6.

As expected for a constant-density calculation, the
prediction of the Bush theory tends to be too low
for the non-magnetic case (about 14% below the em-
pirical value), whereas the results from Coakley and
Porter and the present computations are close to the
empirical correlation. Although all methods predict
higher standoff with increasing interaction parameter,

0.3

| ] present computations

Bush (1958) theory

02

AR,
|

Fig. 5 Effect of applied magnetic field on shock
standoff (M =5, v =1.2).

0.8
Bush (1958) theory
0.7 | inviscid computation
. Newtonian impact theory
0.6
8
> 054
~
o
o
= 04
X
3 m
S -
3 0.3 L
0.2
0.1F
1 1 1 1 1
00 1 2 3 4 5 6
Q

Fig. 6 Effect of applied magnetic field on surface
velocity gradient (M =5, v = 1.4).

the present computations show a more rapid rise.

Noting that the predictions of constant-density the-
ory should become more accurate with increasing
shock strength, we investigate this phenomenon fur-
ther by examining a stronger shock case, as shown in
Fig. 5. For this case the Mach number is held fixed
at M = 5, but the adiabatic exponent is reduced to
v = 1.2, giving a shock density ratio of K =~ 7.9.
Here the prediction of Bush’s theory and the predic-
tion of the numerical computations are significantly
closer. These results suggest that the primary source
of the discrepancy between the computational and the-
oretical results is associated with the constant density
assumption in the theoretical approach.

Since the magnetic force tends to oppose flow across
the magnetic field lines, the effect of the applied field

7 OF 12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2001-0196



Fig. 7 Pressure contours p/ps for viscous compu-
tations (fine grid, contour interval 2). (a) Q = 0.

(b) Q =6.

is to slow the flow. This effect is illustrated in Fig. 6,
which shows a significant reduction in the stagnation
point velocity gradient with increasing field strength.
The solid line indicates the prediction of Bush’s the-
ory, and the filled symbols indicate results derived
from the inviscid-flow computations. For reference,
the open symbol locates the prediction of Newtonian
impact theory. The computational results are seen to
fall somewhat below the values predicted by the Bush
theory, but there is excellent agreement in the trend
with increasing interaction parameter. For the non-
magnetic case, the Newtonian impact theory predicts
a velocity gradient slightly below that derived from the
corresponding computations.

Viscous Flow

A corresponding set of viscous computations was
carried out for Mach 5 flow with v = 1.4 and Re =
80000. Two grids were used: a baseline case with
60 x 80 x 5 points, and a finer grid of 120 x 160 x 5
points. For these calculations electrical conductivity
was taken to be constant through the boundary layer
— the issue of variable conductivity will be considered
in the next section.

Although some theoretical studies have shown a de-
crease in effectiveness of magnetic control under con-
ditions where viscous effects are very strong,35 3844
the overall flow structure is essentially unchanged by
viscous effects in the present high Reynolds number
case. Figure 7 shows the pressure contours for the vis-
cous computations on the fine grid. The viscous-flow
pressure field is seen to be very similar to that shown
previously in Fig. 3 for the inviscid case, and again the
shock standoff distance increases significantly with an

(@)

0.015
Q=0
0.01
o
s
0.005
theory
. coarse grid
. fine grid
0 1 L 1 L
0.08 0.1 0.12
(b)
0.015
I theory
- . coarse grid
| - fine grid
0.01 |
a L
£
S, L

0.005 -

Fig. 8 Boundary layer profiles, § = 6.6°.

applied magnetic field.

Figure 8 shows boundary layer profiles of velocity
and temperature for a station close to the center-
line (8 = 6.6°). (Here, following the usual boundary
layer notation, y is the wall-normal coordinate.) The
circular and square symbols show, respectively, the re-
sults from the coarse and fine grid computations. The
solid lines indicate the predictions of Bush’s similarity
solution.2® Since the inviscid theory tends to under-
estimate the velocity gradient at the boundary layer
edge (see Fig. 6), the edge conditions from the inviscid
computation were used as input for the similarity solu-
tion. Excellent overall agreement is obtained between
theory and computation, and it is evident that results
of the computations are practically mesh-independent.

Both computation and theory reproduce the ‘full’
velocity profile expected for the non-magnetic stag-
nation point boundary layer (@ = 0 case in Fig. 8a).
With the application of a strong magnetic field (Q = 6
case in Fig. 8a), the magnetic force effectively counter-
acts the favorable pressure gradient, decelerating the
freestream and strongly reducing the velocity gradient
Ou/0y at the wall. A similar trend is seen with the
temperature profiles (Fig. 8b). The applied magnetic
field causes a reduction in the temperature gradient
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Fig. 9 Effect of applied magnetic field on surface
heat transfer profile.

0T /0y at the wall, with a corresponding reduction in
the wall heat flux.

Figure 9 shows the computed Stanton number (St =
Guw/[PootooCp(Tw — Too)]) profile around the body sur-
face. The lines indicate the computational results
(coarse-grid) for different values of the interaction pa-
rameter, whereas the symbols indicate the stagnation
point value computed using the Fay-Riddell®* cor-
relation and using a similarity solution of the non-
magnetic boundary layer equations. For the latter two
calculations, the boundary layer edge velocity gradient
is taken to be the value predicted by Newtonian im-
pact theory (see Ref. 55, pp. 596-600).

The heat transfer profile in the non-magnetic case
(@ = 0) is typical of that seen for hypersonic flow
over spheres and cylinders (see Ref. 56, p. 258). As
0 is reduced, the computed profile approaches closely
the values predicted by the correlation and similarity
solution.

An applied magnetic field is seen, in the compu-
tations, to reduce the level of heat transfer over the
major portion of the hemisphere, with the greatest re-
ductions in the vicinity of the stagnation point. The
heat transfer does not change near § = 90° because
the velocity vector and magnetic field vector are nearly
collinear in this part of the flow.

A small bump is detectable in the portion of the
computed profile near § = 0°: this is a numerical ar-
tifact produced by the finite difference method near
the Jacobian singularity at the axis of symmetry. This
issue is examined in more detail in Fig. 10, which com-
pares the Stanton number profiles obtained for the
coarse and fine grid computations. The close agree-
ment of the two sets of computations indicates that
adequate computational resolution is achieved with
the coarse grid solution, and it is seen that the center-

0.02
coarse grid, @ =0
coarse grid, Q =6
— — — — finegrid,Q=0
— — — — finegrid,Q=6

0.015

0.005

T T T T

0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90

0 (deg)

o

Fig. 10 Effect of grid resolution on computed sur-
face heat transfer profile.

0.025
0.02@\
(]
0.015
(]
-
(]
0.01
Bush (1958,1961) theory
0.005 |- | | computations
] Fay & Riddell (1958)
O similarity solution
1 1 1 1 1
00 1 2 3 4 5 6
Q
Fig. 11 Effect of applied magnetic field on stag-

nation point heat transfer.

line anomaly diminishes with mesh refinement.
Figure 11 shows the Stanton number at the stagna-
tion point as a function of the interaction parameter.
The solid line represents the predictions of the com-
bined constant density and boundary layer theories of
Bush, the filled symbols are the results of the coarse-
grid computations, and the open symbols represent the
Fay-Riddell correlation and corresponding similarity
solution. In the non-magnetic case, the computations
are in good agreement with the latter heat transfer
theories, whereas the prediction of Bush’s theory is
somewhat higher. Both theory and numerical compu-
tation predict a significant decrease in the heat transfer
rate with increasing strength of the applied field, and
there is good agreement between the two models in the
fractional change in heat transfer. Again, the overall
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Fig. 12 Effect of variable conductivity on bound-
ary layer velocity profiles at § = 6.6°. (a) Com-
putational results (coarse grid). (b) Predictions
of combined constant-density theory and boundary
layer theory.

higher value predicted by Bush’s theory is probably
due to an overestimate of du./dz (see Fig. 6).

Variable Conductivity

The variable-property boundary layer calculations
of Bush?® showed that variable electrical conductivity
tended to reduce the effectiveness of control, and to
produce overshoot velocity profiles under certain con-
ditions. Bush showed, using an asymptotic expansion,
that overshoot profiles occur for a cold-wall boundary
layer when o.B%,/(pe du./dz) > 1/n if the conduc-
tivity is given by ¢ o« T™. The physical mechanism
for this overshoot is related to the balance of forces in
the boundary layer: for the low electrical conductivi-
ties near a cold wall the retarding magnetic force may
not be able to overcome the accelerating effect of the
favorable pressure gradient.

This issue was examined computationally in this
work for the case 0 = (T/Tp)*. Here o is the nondi-
mensional conductivity and Tp is the stagnation tem-
perature. This formulation allows convenient compar-

ison with the constant conductivity case (¢ = 1 ev-
erywhere) because the conductivity between the shock
and the boundary layer edge is 0 & 1, since T' = Tj.

Figure 12 shows the computed velocity profiles at
0 = 6.6° (Fig. 12a) and the corresponding profiles
predicted by the combined viscous and inviscid the-
ories (Fig. 12b). Excellent agreement is seen between
computation and theory in the shape of the boundary
profiles. As discussed earlier, the inviscid theory tends
to over-predict the edge velocity gradient, so there is
some discrepancy between computation and theory in
the values of the edge velocity. (Note that disagree-
ment in the edge velocity was not present in Fig. 8
because the inviscid computations rather than the in-
viscid theory were used as input to the boundary layer
theory calculations.) In both the computational and
theoretical results, an overshoot in the velocity profile
is seen to develop gradually as the interaction param-
eter is increased.

Bush’s boundary layer theory also predicts, for the
variable conductivity case, a diminished effectiveness
of magnetic control in mitigating the stagnation point
heat transfer. This trend was also observed compu-
tationally. For the constant conductivity case, the
stagnation point heat transfer was reduced by 17% at
@ = 3 and 28% at Q = 6; the corresponding results
with variable conductivity were only 12% and 23%. A
similar trend was seen for the shock standoff. The
computed standoff increased over the non-magnetic
case by 39% at Q = 3 and 83% at Q = 6; the corre-
sponding results with variable conductivity were 24%
and 56%.

Conclusions

Computational and theoretical studies of a hyper-
sonic flow over a hemisphere were carried out to exam-
ine the possibility of heat transfer mitigation through
magnetic control. The flow was studied in the low
magnetic Reynolds number approximation, with an
imposed dipole field. Both theory and numerical com-
putations indicate that the applied field can slow the
flow in the conductive shock layer and consequently re-
duce the wall heat flux in the vicinity of the stagnation
point.

Excellent agreement was obtained between the vis-
cous computations and boundary layer theory, whereas
only fair agreement was found between the inviscid
computations and the constant density theory. This
discrepancy is consistent with the fact that the asymp-
totic constant density theory is accurate only for very
high shock density ratios (Fig. 2), and tends to over-
predict the stagnation point velocity gradient (Fig. 6).
The combined theory predicts a somewhat higher level
of heat transfer than that obtained computationally,
but both theory and computation predict a similar
change with increasing interaction parameter.

Nonuniform electrical conductivity was found, in
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both theory and computation, to reduce the effec-
tiveness of magnetic control. The significant effect of
conductivity variations on the flow structure indicates
the need in computations for an accurate electrical
conductivity model in order to obtain good agreement
with experimental data.

Magnetic control is seen to have a sound physical
basis, and may prove to be a useful technology for
heat transfer mitigation. In ongoing work, we are at-
tempting to verify some of the other trends predicted
in early theoretical studies (see the Introduction). Of
particular interest are the effects of low Reynolds num-
ber, high magnetic Reynolds number, boundary layer
separation, and the Hall current.
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