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Magnetic Control
of Hypersonic Blunt Body Flow

J. Poggie*
D. V. Gaitondef
US Air Force Research Laboratory
Wright-Patterson AFB, OH }5433-7521

The possibility of magnetic control of hypersonic blunt body flows was explored
theoretically and computationally. A theoretical model, developed by W. B. Bush, of
hypersonic flow over an axisymmetric, spherical-nose body with an imposed dipole field
was reviewed. A preliminary computational study of the flow over a two-dimensional
cylinder configuration with magnetic control was carried out employing a new, non-ideal,
magnetogasdynamics code. Using an inviscid model for the outer flow, both the theory
and the computations show than an applied magnetic field can slow the flow in the shock
layer. Boundary layer theory predicts a reduction in the stagnation point heat transfer.
The effectiveness of control was found to be sensitive to the electrical conductivity of
the ionized air in the shock layer. Magnetic field strengths on the order of 1 T (10 G)
or higher are needed for electrical conductivities corresponding to the natural levels of
ionization present in typical re-entry flows (~ 102/(Q-m)). Higher conductivity allows
correspondingly lower magnetic field strengths to achieve the same level of control. More
uniform conductivity also improves the effectiveness of magnetic control, and mitigates
the tendency of the stagnation point boundary layer to develop overshoot velocity profiles.

Nomenclature q = heat flux
Roman Symbols Q = magnetic interaction parameter
= r(z = body radius
B = magnetic field (z) B v .
r, 0, ¢ = gpherical coordinates
C = total stress tensor R — radius
c = a constant B .
. Ren, = magnetic Reynolds number
Cp = constant pressure specific heat g — Povnti tor. B x BB /
Cy = skin friction coefficient ; _ t.oyn mng vector, Ho
Ch = heat transfer coefficient = tme
= . T = temperature
E = electric field B . .
- u, v, w = Cartesian velocity components
f = body.forc'e o ) U = magnetic field energy, B2/2uq
F(r) = velocity similarity function % — fluid velocity
G = velocity gradient parameter 7 = fluid velocity
h_, = enthalpy T,Y,2 = Cartesian coordinates
H = total energy transport vector 7 = total energy of fluid and field
I = identity tensor, components 0;;
J = conduction current density Greck Svimbol
k = thermal conductivity reex Symbols ) )
K = shock density ratio 7 = specific heat ratio.
m = symmetry parameter ) = boundary layer thickness
M — Mach number i = Kronecker delta
M(r) = magnetic field similarity function A = shock s‘FanC.loff o
M = Maxwell stress tensor n = magnetlc‘ dlﬁl}swltyv 1/‘ THo
n = exponent in conductivity formula A = second viscosity coefficient
p = pressure n = dynamic.\{iscosity
P = power delivered by body forces to fluid Ho = permeability of vacuuml )
Pr = Prandtl number, uC,/k &n = sour{dary layer similarity variables
P = density

*Research Aerospace Engineer, Air Vehicles Directorate, o = electrical conductivity
AFRL/VAAC, 2210 Eighth Street. Senior Member ATAA. T = shear stress tensor

TResearch Aerospace Engineer, Air Vehicles Directorate, T = magnitude of shear stress at wall
AFRL/VAAC, 2210 Eighth Street. Associate Fellow ATAA. v — st functi
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Subscripts

0 = reference value

b = body

e = boundary layer edge

em = electromagnetic

g = imposed conditions

m = magnetic

nm = non-magnetic

s = shock

v = boundary layer parameter
w = wall

00 = freestream
Superscripts

* = nondimensional variable

~

= unit vector

Introduction

IVEN the high temperatures in the shock layer
in hypersonic flight, and the concomitant electri-

cal conductivity due to weak ionization, it is natural
to consider whether an electromagnet fixed in the nose
of a blunt body can be used to control the flow. Since
the Lorentz force tends to oppose fluid motion across
magnetic field lines, magnetic control would tend to
increase the drag of a vehicle (a desirable effect for at-
mospheric entry), and, by slowing the flow near the
surface of the body, reduce heat transfer and skin fric-
tion. (A magnetic field imposed upstream of the bow
shock could, in principle, reduce the shock pressure ra-
tio, but control by this means is not considered here.)

Interest in the electromagnetic control of hypersonic
flows seems to have arisen independently among sev-
eral research groups in the late 1950’s. Kantrowitz'
suggested this idea in an early paper, and Resler
and Sears®>* reviewed the prospects of magnetogas-
dynamic control, including the use of magnetic drag
on re-entry vehicles and the reduction of heat transfer
and skin friction on a blunt body.

A relatively complete theory of hypersonic flow over
a sphere with an imposed dipole field was developed
by Bush.’>® The imposed field was found to increase
shock standoff and reduce heat transfer to the nose
of the sphere. The change in shock standoff was con-
firmed experimentally by Ziemer.> 10

Bush®7 modeled the inviscid outer flow using a
modification of the constant density theory. It should
be noted that Kemp''™'* developed a very similar
model at about the same time, but Ziemer and Bush®
seem to have priority for a correct theoretical model
and its experimental confirmation. Lykoudis!® also de-
veloped an inviscid-flow model using a modification of
the Newtonian theory.

Bush modeled the viscous flow near the body surface
using boundary layer theory.®? REarlier studies!6-20
considered the viscous stagnation point problem, but
assumed constant property boundary layer flow and a
fixed inviscid outer flow, which produced somewhat
misleading results. Later work!'!13:14:21,22 nointed
out the importance of the interaction of the inviscid
and viscous portions of the stagnation point flow; Bush
generalized these results.

Cambel et al.2372¢ carried out additional calcula-
tions and experiments on the magnetically-controlled
hemisphere/cylinder configuration. In particular, they
made detailed measurements of the increase in total
drag and shock standoff, and compared them with
available theory.

Wu et al.2”3! considered the fully viscous shock
layer problem. These calculations appear to have
been controversial;?*3% Nowak et al.?® indicate that
the change in shock standoff is diminished for low
Reynolds numbers.

The Hall current was neglected in early studies; it
tends to reduce the overall effect of magnetic control.
Levy®? showed with a simple example how this phe-
nomenon reduces the force exerted on the flow by a
given magnetic field. Porter and Cambel®® extended
Bush’s inviscid-flow analysis to include the Hall ef-
fect, and found a significant reduction in the change in
shock standoff and drag for a given applied magnetic
field under atmospheric entry conditions. It may be
possible, however, to exploit the Hall effect to produce
rolling moments.*

A number of authors have considered the practical
application of magnetic control. Goulard® pointed
out that as the shock standoff distance is increased, the
radiative heat transfer to the body may also increase,
and that an optimum imposed magnetic field strength
may exist that minimizes the heat transfer to the body.
Phillips® considered the effect of magnetic drag on the
total heat load of an aerospace vehicle during atmo-
spheric entry, and concluded that a substantial benefit
could be obtained from increased drag alone. Ericson
and Maciulaitis®? investigated the possibility of flight
control using asymmetric magnetic forces.

More recent interest in electromagnetic flow control
for hypersonic flight has arisen following the public
disclosure of the Russian AJAX concept vehicle.?®
At least four physical mechanisms have been iden-
tified®**! that may explain the effects observed in
plasma flow control experiments: aerodynamic effects
of injected plasma (the jet spike concept), energy stor-
age in thermodynamic nonequilibrium and its subse-
quent release, thermal inhomogeneity, and magneto-
gasdynamic effects. Aerodynamic effects,*! thermal
effects,?>*3 and nonequilibrium energy release*>~4°
have been addressed in other studies by our research
group. Here we address magnetogasdynamic effects.
In particular, we examine the physics of magnetically-
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decelerated hypersonic blunt body flow, using Bush’s
theoretical model and a recently-developed computer
code® for three-dimensional, non-ideal magnetogasdy-
namics.

Physical Model

For the present work, we adopt a magnetogasdy-
namic (MGD) model of the weakly-ionized flow over
an aerospace vehicle. Detailed discussion of the ap-
proximation of magnetogasdynamics is given in stan-
dard texts on magnetohydrodynamics*” and plasma
physics.*® For an MGD model to apply, typical flow
length scales must be larger than the Debye length,
corresponding time scales must be larger than the re-
ciprocal of the plasma frequency, and the speed of the
fluid must be small compared to the speed of light.

Under these conditions, Maxwell’s equations can be
written as:

vV-J =0 (1)
V-B = 0 (2)
VxE = —08B/ot (3)
VxBlp = T (4)

The force on the fluid is f;m = J x B and the power
delivered to the fluid is P,,, = E-J. The displacement
current and the convected charge have been neglected
as small compared to the conduction current. The un-
steady term in the charge conservation equation and
the force due to the electric field have also been ne-
glected.

We assume that the current is given by Ohm’s law:

-

J=0(E+7xB) (5)

A scalar electrical conductivity is a good approxima-
tion if the collision frequency is much greater than the
cyclotron (gyro) frequency, as in a relatively dense gas.
Egs. (1) to (5) can be combined to eliminate the elec-

tric field, giving the magnetic induction equation:
0B S L
EZVX(Q_J’XB—UVXB) (6)

Conservation of mass, momentum, and energy can
be expressed as:

Op e
5 TV (D) = 0 (7)
%(pv)-{—V'(pﬁv—C) =0 (8)
oz . S 7
5tV (#Z-C-i+H) = 0 9)

where we have introduced a total energy of the fluid
and field together: Z = p(e +v?/2) + U, a total stress
tensor due to contact and body forces: C = —pI+ 7+
M, and a total energy transport vector due to heat

transfer and magnetic diffusion: H=q+ nV -M. The
Maxwell stress tensor is:
1 B?
M;; = o B;B; S0 0ij (10)
Equations (8)-(9) express the conservation of mo-
mentum and energy for the fluid and field together,
and contain no source terms. In the momentum equa-
tion an additional stress arises due to the magnetic
body force. The rate of change of the magnetic field
field energy appears in the energy conservation equa-
tion, along with an associated energy flux represented
by the Poynting vector. The Poynting vector can, in
turn, be separated into terms that are interpreted as an
addition to the total energy, work done by the Maxwell
stress, and an addition to the heat flux:

S=U¢-M-G+3V-M (11)

For viscous-flow calculations, we use the usual con-
stitutive equations for the viscous stress and heat flux
in a Newtonian fluid:

_ Ou;  Ou; Ouy,
Tij = K <61'] + 8:rz> + )\adel] (12)
oT
6:@

% = —k (13)
Viscosity was computed using the Sutherland formula
for air, and we take A = —2p/3. Prandtl number was
taken as constant. For the analytical studies, electrical
conductivity was taken as: o o T", where the expo-
nent is either n = 4.1 for a rough approximation for
air, or n = 0 for constant conductivity. For the numer-
ical effort, conductivity was assumed to be constant.

An ideal gas, with constant specific heats (p = pRT'
and p = (v — 1)pe), is assumed as a simple thermody-
namic model to illustrate the basic flow physics with-
out the additional complexity of chemically-reacting
air. Reacting gas effects are being addressed in ongo-
ing work.444?

Theoretical Model

Here we review the theoretical model developed
by Bush%™® for this problem. We assume that the
Reynolds number is high enough that the flow can
be divided into an inviscid outer flow and a viscous
boundary layer.

Inviscid Flow

Bush®” modeled the inviscid outer flow using a
modification of the constant density theory originally
applied to non-magnetic, hypersonic flows over spheres
and cylinders.**53 The basic idea of the constant den-
sity theory is that, for a strong bow shock, the flow in
the vicinity of the nose of a blunt body is effectively
incompressible (V - ¥ & 0), since the Mach number in
that region is very low.
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A local solution is developed for the vicinity of the
stagnation point, assuming constant density in that re-
gion. The major drawback of this approach is that the
density ratio varies along the bow shock in a real blunt
body flow, so that the flow is more realistically mod-
eled as a stratified, rather than constant density, flow
(Dp/Dt = 0, rather than p = const). Nevertheless,
the constant density theory gives a quite reasonable
estimate of the shock standoff distance for large shock
density ratios at the nose. At p/p~ = 3, for example,
the standoff predicted by the non-magnetic constant
density solution for a sphere**! is within 15% of ex-
perimental data obtained in air,”* and the agreement
improves for stronger shocks.

We consider a steady, axisymmetric flow over a
sphere, assuming that that the effects of viscosity and
compressibility are negligible and that the electrical
conductivity is constant within the shock layer. The
freestream electrical conductivity is taken to be zero.
We require that the azimuthal (¢) component of the
magnetic field and of the fluid velocity be zero. In
consequence, the electric current must flow only in the
azimuthal direction, and the electric field must be zero.

We cast the equations in nondimensional form us-
ing the freestream velocity V., the shock radius Ry,
and a reference magnetic field strength By = Bso/2,
where By is the centerline magnetic field strength at
the shock. With no electric field, Maxwell’s equations
reduce to:

V-B = 0 (14)
VxB = Re,#xB (15)

For the constant density flow in the shock layer, the
continuity equation and the vorticity transport equa-
tion (curl of the momentum equation) become:

V-7 o= 0 (16)

Q L o= _
=V x[(@x B)x B] (17)

V x (& x ¥)
where the only non-zero component of vorticity is in
the ¢-direction: & = weéy. We have introduced the
nondimensional parameters: Q = 0 B3 Rs/pooVoo, K =
p/poo, and Rey, = oo RsVeo.

Here we consider the inverse problem, specifying
a spherical shock and solving for the corresponding
body, which is also a sphere for a reasonable range
of flow conditions. To solve the problem, we write
Eqs. (14)-(17) in spherical coordinates, impose in-
flow boundary conditions at the downstream side of
the shock, and march the solution downstream until
inviscid wall conditions are satisfied, indicating the
location of the body surface. We take the imposed
magnetic field to be a dipole located at the center of
the sphere, and solve for the induced field. Figure 1 is
a schematic diagram of the configuration. Note that
r = rcos¢sing, y = rsin¢gsind, and z = rcosé,

Fig. 1 Schematic diagram of blunt body with im-
posed magnetic field.

where the z-axis is directed opposite the freestream
flow.

For a non-zero magnetic Reynolds number, the
boundary conditions on the magnetic field require
careful treatment.?* If we assume that both the
freestream and the body consist of non-conducting and
non-magnetic material, then the magnetic field must
satisfy a Laplace equation in these regions. With the
symmetry assumed in the present problem, the solu-
tion for both regions has the form of a dipole. We
require that the magnetic field approach zero far away
from the body, so the nondimensional freestream field
becomes:

sinf |

L 2cosf
B= +T—3€0 (].8)

= er
T3

This equation, evaluated just downstream of the
shock (r = 1), provides an initial condition for the
downstream-marching solution. Similarly, the nondi-
mensional field inside the body has the form:

— B 7'3 N
B= <B—g00r_g +C’> cosf é, +
(@i_

B o >sin0 éo (19)

where C is a constant related to the distortion of the
imposed dipole field by the flow, and By is the field
intensity at the nose of the body in the absence of
flow. Once the solution has been marched from the
shock to the body, we can determine the magnetic field
strengths at the nose of the body in flight (Byo) and
on the ground (By) that correspond to the field at the
shock (Bsp).

Another set of boundary conditions is provided by
the velocity and vorticity just downstream of the
shock. In the limit of small conductivity consid-
ered by Bush, the magnetic field does not have a
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direct effect on the shock jump conditions. (This
is not the case in the infinite conductivity limit.>®)
Using mass conservation across the shock, we find
that the nondimensional radial velocity component is
vp(1,8) = —cosf/K. The tangential velocity is con-
tinuous across the shock, so wvg(1,6) = sinf. The
vorticity just downstream of the shock is a function
of the shock curvature, the density ratio, and and
the tangential component of the Lorentz force.?” In
the present problem, the nondimensional vorticity just
downstream of the shock can be expressed as follows:

(K - 1)*
We = ————

1
sin 6 + 40Q) <1 + ﬁ) sinfcosf (20)
Assuming a stream function of the form ¢ =
F(r)sin? §, we obtain:

7= [2F(r) cos0/r?)é, + [—F'(r)sinf/rles  (21)

This form satisfies Eq. (16) and is consistent with the
velocity boundary conditions at the shock. Similarly, a
function of the form M (r)sin® @ satisfies Eq. (14) and
the boundary conditions at the shock. The magnetic
field becomes:

B =[2M(r) cos8/r?)é, + [—-M'(r)sin0/r)és  (22)

Substituting Eqs. (21) and (22) into Eqgs. (17) and (15),
we find that a f-dependence remains, unless we use the
small angle approximations sin § &~ 6 and cosf =~ 1 for
the trigonometric functions.

Under these conditions, the vorticity transport and
induction equations become:

2 2 8
" " ’ _
F —;F _r_2F +r_3F_ (23)
Q 2 M I n 4 ! 4 !
———— |\F"M - FM" —-F'M+ -FM
Kr2 F r +r

and
M" — —2 M = —Re —2 (—FM'+ F'M) (24)
2 ™2

with the boundary conditions:

FQ) = -1/2K (25)
F'(1) = -1 (26)
F'(1) = —K+2(1-1/K)

—4Q(1 + 1/2K) (27)
M) = 1 (28)
M'(1) = -1 (29)

The solution must be marched to the body surface
r = r such that:

lim F(r) =0 (30)

T—Tp

Matching Egs. (19) and (22) at the body surface
gives:

By _ AM(ry)  2M'(ry) (31)
BO 37‘? 37'17

Bbg 2M(T‘b)

== = 32
BO T‘g ( )

We define parameters, analogous to @ and Re,,,
that only depend on information known before solv-
ing the problem: Q, = 0B Ry/pocVeo, and Rej, =
oo Ry Voo With the solution known, the two forms of
the interaction parameter and the magnetic Reynolds
number can be related: Q, = Qry(Byo/Bo)? and
Re;, = mRep,

The nondimensional stagnation point velocity gra-
dient is given by:

(%%) S (33)

b Ty

The nondimensional pressure gradient along the body
surface is given by:

rod), ry 3

The inviscid-flow Eqs. (23)-(24) were integrated us-
ing an adaptive Runge-Kutta-Fehlberg 4-5 method,
from the initial conditions, Egs. (25)-(29), until
Eq. (30) was satisfied. Calculations were carried out
for a fixed @, and Rey,; iteration was used to find the

corresponding values of @) and Re,,.

Viscous Boundary Layer

Following Bush,®® we examine the flow near the
wall using laminar boundary layer theory. If we as-
sume that there are no electrodes to introduce a po-
tential difference, then it is valid to take the electric
field as zero in steady flow. We assume that current
only flows in the transverse direction, and that there
is no fluid flow in that direction. Making the usual as-
sumptions of boundary layer theory, we can show that
only the wall-normal component of the magnetic field
has a significant influence on the boundary layer flow.
We use an orthogonal, curvilinear coordinate system
(z,y,z) with the origin at the stagnation point, and
y = 0 on the body surface.

In the MGD boundary layer approximation, the
equation for conservation of mass is:

0 m 0

— (pur™) + — (pvr™) =0 35
5z (pur™) 5 (por™) (3)
where r(z) is the body radius, and m = 0 for planar
symmetry and m = 1 for axial symmetry. The conser-
vation of momentum is expressed as:

8u__@ a(au

ou 9
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where By = By(z). Note that the magnetic force will
tend to oppose the flow, no matter what the sign of B,,.
In the freestream, the momentum equation reduces to:

Z—‘Z (peuedd + O'eBQUe) (37)
For a uniform freestream velocity and non-zero con-
ductivity in the freestream, a favorable pressure gradi-
ent must exist to balance the magnetic retarding force.
In general, the magnetic force slows the flow within
the boundary layer, but the pressure gradient set up
by the effect of magnetic forces on the freestream can
accelerate the flow.
The conservation of energy has the form:

puzs— + pv—y =u—+ (38)

o (.0T ou\’
e el e B2 2
oy (kay)Jrﬂ(ay) o

The boundary conditions at the wall are no slip and
no temperature jump. At the boundary layer edge,
the solution must match the inviscid outer flow.

For an axisymmetric stagnation point boundary
layer, m = 1, r = z, and ue = Gz, where G =
(due/dz)o is constant. For a uniform magnetic field
(By = Byo), a similarity solution can be obtained with
the introduction of the following variables:

) = mpeue&r“m*” (39)
n(z,y) = 4 mpjut / pdj (40)

We look for solutions of the form: u = u. () f'(n) and
h = he(&)g(n). Once the solution is known, the trans-
formation can be inverted using the following equation:

/ _ /1 LA
YV peG/ e = m—-i-l/o P~ dn (41)

We introduce an interaction parameter @, =
0B}, /p.G, and a nondimensional conductivity o* =
o/oe. (Note that Q, = KG*Q,(Byo/B)?, where
G* = GRy/Vs.) The momentum equation becomes:

M + f'+ (42)

RN £12) —
m+1{P [+Qu(1-0"f)] - f*} =0
The enthalpy equation is:
C ! ' !
- - 4
(Prg> +f9'=0 (43)

The terms in Eq. (38) representing the effects of the
pressure gradient, viscous dissipation, and Joule heat-
ing are negligible here due to the low flow speed in the
stagnation point region.

The velocity boundary conditions are: f(0) = 0,
f'(0) =0, and f'(c0) = 1. The corresponding condi-
tions on the enthalpy are: ¢g(0) = g, and g(o0) = 1.

With the solution known, the skin friction and wall
heat transfer can be found from:

Cy = Vvm+1f"(0)Cy (44)
vm+1g (0) Cuw
Ch " 1-g(0) Pry (43)
where
@ = o
Cp = T (47)

(hw - he) VpelteG

The shear stress and heat flux relative to the non-
magnetic case are given by:

3/2
Tw,m — Gm Cf,m (48)
Tw,nm Gnm Cf,nm

1/2
quw,m — Gm Ch,m (49)
quw,nm Gnm C(h,nm

Boundary layer calculations were carried out, for
conditions corresponding to the inviscid flows found by
solving Eqgs. (23)-(24). The boundary layer equations,
(42)-(43), were also integrated, using the adaptive
Runge-Kutta-Fehlberg 4-5 method. The boundary
conditions were satisfied by a shooting scheme based
on Newton-Raphson iteration.

Example Calculations

As an example, consider an aerospace vehicle of 1 m
nose radius, flying at an altitude of 61 km at a Mach
number of 25. The pressure and temperature at this
altitude in the standard atmosphere are about 180 Pa
and 250 K, respectively. The corresponding velocity is
about 8 km/s.

If we assume that chemical equilibrium exists down-
stream of the bow shock at the nose of the body, the
density ratio across the shock is K = 15.8. The elec-
trical conductivity, based on a simple model for air,?¢
is roughly o = 300/Q-m (Rej, = 3.01).

(It should be noted that the Hall effect is expected to
be important under these conditions,®® and will tend
to reduce the efficiency of the control scheme. The
present example should be interpreted as giving an
upper limit on the effectiveness of magnetic control in
the absence of artificial ionization used to increase the
electrical conductivity.)

Figure 2 shows contours of the nondimensional
streamfunction for the inviscid outer flow. Corre-
sponding streamlines are added in the freestream
for completeness. The upper plot, Fig. 2a, shows
the case with no applied magnetic field; the results
agree well with the analytical solutions of Hida and
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Fig. 2 Effect at Mas, = 25 of magnetic control

on streamlines, v; contour interval 2 x 107°. (a)
Undisturbed flow. (b) Applied field of By, = 0.86 T.

Lighthill.#*-5! The flow pattern is similar to the clas-
sic incompressible flow stagnation point solution, with
an additional acceleration of the fluid around the curve
of the body. With the application of a strong magnetic
field (0.86 T or ), = 11.4), there is a dramatic increase
in the shock standoff, but little qualitative change in
the flow pattern.

Plots of the nondimensional magnetic field and
nondimensional current are shown in Fig. 3. For the
present case, the induced magnetic field is relatively
small, so that the magnetic field lines, Fig. 3a, fol-
low the imposed dipole field closely. At higher values
of the magnetic Reynolds number, the magnetic field
lines tend to be bent toward the centerline. The cor-
responding current distribution is shown in Fig. 3b;
the vector is directed out of the page. The current
increases away from the stagnation streamline, corre-
sponding to the increasing angle, along that direction,
between the velocity vector and the magnetic field vec-
tor.

One of the important conclusions of the non-
magnetic constant density theory is that the flow in
the vicinity of the nose of a blunt body is a func-

()

0.98

(b)

0.98

Fig. 3 Applied field of By,o = 0.86 T at Mao, = 25.
(a) Magnetic field lines, M (r) sin® §; contour interval
1072. (b) Current distribution, J,;/cVs Bo; contour
interval 1072,

tion of geometry and the shock density ratio only,
and is independent of the detailed thermodynamics
and chemistry of the shock wave. Thus, for exam-
ple, the shock standoff distance can be expressed as:
A/Ry = f(K). In the magnetogasdynamic case, the
parameters (), and Re;, must be also be considered.

The shock standoff predicted by the inviscid-flow
theory is shown in Fig. 4a. To illustrate the influence
of magnetic Reynolds number, two cases are shown:
one corresponding to the example case discussed pre-
viously, and other corresponding to a body twice as
large. The shock standoff increases rapidly with the
interaction parameter (),, with a relatively weak ef-
fect of the magnetic Reynolds number.

Since the magnetic force tends to oppose flow across
the magnetic field lines, the effect of the applied field
is to slow the flow. This effect is illustrated in Fig. 4b,
which shows a significant reduction in the stagna-
tion point velocity gradient, determined from Eq. (33),
with increasing field strength.

In a non-magnetic flow, a reduction in the magni-
tude of the stagnation point velocity gradient would
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Fig. 4 Effect of varying magnetic field strength at
Mas, = 25. (a) Shock standoff. (b) Stagnation point
velocity gradient.

imply a reduction in the magnitude of the pressure
gradient. This is not true in the present case, as il-
lustrated in Fig. 5. The stagnation point pressure
gradient is negative (favorable), and increasing the
strength of the applied field increases the magnitude of
the pressure gradient, because the pressure must force
the fluid across the magnetic field lines to go around
the sphere.

The change in pressure gradient is not very strong
relative to the outer flow variables, Fig. 5a, but with
the reduction in the boundary layer edge velocity, the
relative effect in the boundary layer is strong, Fig. 5b.

The magnetic Reynolds number is seen in Figs. 4-5
to have a modest effect on the flow, generally tending
to reduce the effectiveness of magnetic control. This is
a consequence of Lenz’s law: when a conducting ma-
terial moves through a magnetic field, currents set up
in the conductor generate an induced field that tends
to oppose the applied field. Figure 6 shows the ratio
of the total magnetic field to the applied field at the
nose of the body. With increasing magnetic Reynolds
number, the induced field becomes stronger, reducing
the overall field and thus the effectiveness of magnetic

()
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I — — — - Re,= 6.021

dp/dx/ (p, V* x)

R

(b)

Re = 3.011

— — — - Re,= 6.021

%)

2&dp/de/ (p, u

Fig. 5 Effect of varying magnetic field strength on
wall pressure gradient at Ma., = 25. (a) Outer flow
nondimensionalization. (b) Boundary layer nondi-
mensionalization.
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Fig. 6 Effect of magnetic Reynolds number at Q, =
11.4.
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Fig. 7 Profiles through the stagnation point
boundary layer. (a) Nondimensional velocity. (b)
Nondimensional enthalpy.

control.

Example boundary layer profiles are shown in Fig. 7
in nondimensional coordinates. In these coordinates,
magnetic control appears to increase the gradients
at the wall. This manner of presenting the data is
misleading, however, because the values of G and u,
are not the same in the two cases: the freestream is
substantially slower with magnetic control. The cor-
responding dimensional profiles in Fig. 8 show that
the dimensional gradients are actually reduced with
flow control. Figure 8 also shows that the stagnation
point boundary layer thickness is an order of magni-
tude smaller than the shock standoff distance (Fig. 4),
which justifies the use of boundary layer theory.

One interesting feature of the boundary layer so-
lutions is the appearance of overshoot profiles under
some conditions. The presence of an inflection point
in such a profile should lead to an inviscid instability
and promote transition, possibly eliminating the de-
sired reduction in heat transfer. The overshoot profiles
are the result of the competing effects of the favorable
pressure gradient, which tends to accelerate the flow
in the boundary layer, and the magnetic force, which

()
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Fig. 8 Profiles through the stagnation point

boundary layer at z = 0.05 m. (a) Dimensional ve-
locity. (b) Dimensional temperature.

tends to retard the flow. The electrical conductivity
falls off with the reduced temperatures near a cold
wall, so the effects of the pressure gradient predom-
inate in that region. The magnetic force is stronger
near the boundary layer edge. Thus the jet-like fea-
ture appears near the middle of the boundary layer.
Bush® found, using an asymptotic expansion, that the
overshoot profiles occur for a cold wall when n@Q, > 1
(where o o< T™).

Calculations (for the sake of brevity, not shown)
were also carried out with uniform electrical conduc-
tivity, or n = 0. In this case no overshoot profiles
were found, as predicted by Bush’s analysis, and a sig-
nificantly greater reduction in the wall gradients was
obtained.

These results are quantified in Fig. 9, which shows
the heat transfer and skin friction relative to the case
with no imposed magnetic field. In each plot two
curves are shown: one corresponding to a baseline case
of variable electrical conductivity (n = 4.1), and the
other corresponding to constant conductivity (n = 0).
In all cases, increasing the strength of the imposed
magnetic field significantly decreases the skin friction
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Fig. 9 Effect of magnetic control at the stagnation
point. (a) Skin friction. (b) Heat transfer.

and heat transfer relative to the non-magnetic flow. A
substantially greater effect of magnetic control is seen
in the uniform conductivity case.

As with the nondimensional profiles in Fig. 7, plots
of the traditional boundary layer skin friction coeffi-
cient and heat transfer coefficient shown in Fig. 10 give
the false impression that magnetic control increases
the wall fluxes. The apparent increase is due to the de-
crease in the edge velocity gradient, GG, used to nondi-
mensionalize the fluxes. In the context of the nondi-
mensional boundary layer coordinates, the increase in
the nondimensional pressure gradient produces fuller
boundary layer profiles (Fig. 7), and increases the rel-
ative skin friction and heat transfer. With uniform
conductivity (dash-dot lines in Fig. 10), the magnetic
force in the boundary layer is better able to resist the
pressure gradient, and this effect is reduced.

Numerical Studies

A number of assumptions were required to obtain
an analytical solution for the magnetically-controlled
blunt body flow. In particular, the constant density
assumption, the imposition of a spherical shock wave
shape, and geometrical constraints limit the general-
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Fig. 10 Effect of magnetic control at the stagna-
tion point. (a) Skin friction coefficient. (b) Heat
transfer coefficient.

ity of the solution. Numerical simulation of the full
magnetogasdynamic equations provides an alternative
approach which does not require these restrictive as-
sumptions. We now describe a preliminary effort di-
rected at obtaining the blunt body solution with a
direct numerical simulation.

The present effort differs from those those of other
research groups®” in that we consider the non-ideal
equations, including Joule heating terms arising out of
finite conductivity. We also avoid imposing a magnetic
field at the far-field boundary, an unrealistic bound-
ary condition in the frame of reference of a moving
aerospace vehicle. Rather, the field is imposed on the
surface of the body and is allowed to diffuse and con-
vect into the flow. This situation corresponds more
closely to that which could be obtained in an actual
flight test.

For simplicity, the flow is assumed in these pre-
liminary computations to be inviscid and thermally
non-conducting. The primary mechanism examined is
thus the interaction between the inertial and magnetic
stresses. As another simplification, the electrical con-
ductivity has been assumed to be constant.
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We write the governing equations of non-ideal mag-
netogasdynamics in terms of non-dimensional quanti-
ties normalized by prer, Vier, @ length scale L, Bier,
and oper. In terms of the non-dimensional variables:

__ _tL _ 1
t* = V=1V

Vier R
% v * B
v = B =
Veet Bt (50)
pr= pt=
Pref pret Ve
* [ * a
e = -5 o =
|4 Oref

2

re

the governing equations, (7)-(9), become:

op*
* . * =k — 1
6t*+v (p*v™) =0 (51)
% +Vr [p*f)”"ﬁ'* + P Rbé*é*] =0 (52)
YA

A [(z* + PYG — Ry(B* - 7)B*+

Ry ((E* ) v*)g* _ (V*B’*) E*)] =0 (53)

Re,,o0*

and the induction equation, (6), is:

ag* * —k D% %
S AV (7B - B ) +

Lo x| Lo x| =0 (54)
Re., o* -

We have introduced the parameters:

B

P* = p"+ Ry (55)
* (k)2 B* 2

Z* — p*e* _+_ p (;) ) _|_ Rb( 2) (56)

Ry = B2 /[pretUZs110] is the magnetic force (or pres-
sure) number and Re,,, = LU,efto0rer s the magnetic
Reynolds number. For convenience, the superscript
(*) will be dropped in subsequent discussions of the
numerical computations, and all quantities will be as-
sumed to be non-dimensional unless explicitly other-
wise stated.

The governing equations are solved by first writ-
ing the flux-vector form of the governing equations
in general curvilinear (£,7,() coordinates.*%:°® Each
derivative in transformed space (A{ = An = A( = 1)
is approximated with a standard second-order centered

formula:
09 _ i1 — di1
oE 2
In order to enforce stability, a popular second- and
fourth-order blend of damping®® was extended to the
magnetogasdynamics equations by adding terms per-
tinent to the induction equation in a straightforward
fashion. A steady state is assumed to exist and is
obtained by evolving the governing equations in time

(57)

Bow shock Streamline

Induced
/’Current

Control
circuit

~o “Body

Fig. 11 Configuration for numerical computations.

with a standard four-stage Runge-Kutta method%® en-
hanced with local time-stepping techniques to improve
the convergence rate.

The configuration for the problem is depicted in
Fig. 11. A cylindrical body is placed in an incom-
ing Mach 16 flow. The source of the imposed field is
assumed to be an electrical circuit located inside the
body. The circuit is assumed to be “compensated,” in
the sense that B, is the only field component. B, and
B, are zero in the initial condition and, for this two-
dimensional case in which the velocity vector lies in the
z-y plane, it is straightforward to show that these com-
ponents remain zero at all times. Thus, B, = By, =0
and B, = B.(z,y). The B, field is assumed to decay
to zero at the far-field boundary, and simple extrap-
olation and symmetry conditions are applied at the
downstream and symmetry boundaries, respectively.

In specifying the value of B, at the surface, we take
an approach similar to that of Bush, and assume that
the net field due to the effects of the electrical circuit
and the induced currents (which, due to the geometri-
cal arrangement of the B- and v-fields lie in the z — y
plane) is such as to yield B, = 1 on the surface. If
required, the precise nature of the control circuit can
be determined afterwards.

The imposed E-field is assumed to be zero. Induced
E-fields arise during transients but decay as the steady
state is approached. The fluid dynamic boundary con-
ditions are straightforward: the incoming flow field is
specified, symmetry is assumed along the stagnation
line, and zero gradient is assumed at the downstream
end of the domain. The normal velocity at the cylin-
der surface is set to zero, and the tangential velocity
is extrapolated from the interior. The surface pressure
is determined by satisfying OP/0n = 0.

Although this approach is one of several well-posed
techniques of specifying the boundary conditions at
the body surface, it can nevertheless yield unphysical
negative surface pressures due to over-expansion near
the shoulder, when the magnetic interaction parame-
ter is large. To address this problem, the B-field is
allowed to diminish, such that the surface pressure al-
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d) R, =1.0

Fig. 12 Pressure contours.

ways exceeds 0.5prer. Note that the imposition of a
B-field large enough to yield near-vacuum conditions
is precluded in a viscous flow by the appearance of
phenomena such as flow separation, which redistribute
the velocity field and limit the drop in pressure. Since
viscous forces are ignored in the present work, it is
necessary to reduce the B-field near the shoulder as
specified above.

Features of the pressure field are shown in Figs. 12-
14, for a magnetic Reynolds number of Re, = 100,
and for several values of the interaction parameter:
Ry, = 0.1, 0.5 and 1.0. The quantity plotted is
P/Po = p*yMZ, where M, = 16 is the freestream
Mach number.

The overall features of the pressure field re-
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Fig. 13 Surface pressure; every fourth point

marked with symbol.
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Fig. 14 Static pressure along stagnation stream-
line; every fourth point marked with symbol.

main qualitatively similar at all interaction strengths
(Fig. 12). The shock standoff is seen to increase
continuously with increasing interaction parameter.
Although the pressure contours assume orientations
increasingly aligned with the body surface as the in-
teraction parameter R; is increased, no new clearly
identifiable features appear in the field.

A more quantitative assessment is presented in
Figs. 13-14 which depict the static pressure along the
body surface and stagnation streamline, respectively.
In each figure, the solution without any magnetic in-
teraction is plotted, along with surface pressures at
various interaction parameters. For the largest in-
teraction case (R, = 1), the solution is plotted on
two meshes of 35 x 61 and 35 x 121 points. These
solutions suggest that mesh independence has been
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achieved; ongoing computations are focused on in-
creasing streamwise spacing as well.

The static pressure on the entire surface drops sub-
stantially with increasing magnetic interaction param-
eter. Note, however, that for R, = 0.5 and 1.0, the
pressure around the shoulder is prevented from drop-
ping below 0.5ps by reducing the surface magnetic
field. In the absence of a magnetic field, the pressure
rise at the surface ppo/poo & 330 is consistent with
the anticipated value from theory as obtained with the
Rayleigh supersonic Pitot formula.5!

Figure 14 shows that, even though the shock stand-
off distance increases, the strength of the shock, mea-
sured in terms of the pressure ratio across it, is not
diminished perceptibly due to the imposition of the
magnetic field. This observation is consistent with the
features of the magnetic field shown in Figs. 15-16.
The magnetic field is highest near the surface and de-

cays away from the body. It is relatively small near
the shock location, and thus has minimal impact on
the shock pressure ratio. The region of significant
magnetic field strength increases with the interaction
parameter. Although the non-dimensional gradient of
B, increases with a drop in the interaction parameter,
it is important to note that the dimensional current
is also proportional to the reference value of B, which
diminishes with interaction parameter. In the limit of
Ry = 0, the magnetic field has no impact on the fluid
dynamics, but persists as an essentially passive vector
field, convected, stretched, and diffused according to
the induction equation.

Finally, the total drag on the body is dependent not
only on the static pressure, but also on the magnetic
pressure. A preliminary computation suggests that no
perceptible change is obtained in terms of overall fore-
body drag. Since the surface magnetic field is known
(B. = 1), a straightforward calculation of the term
0.5YM2Rp B2, ace/ o yields a value of 179.2 Ry, which,
when added to the plotted static pressure, yields sim-
ilar sums of static and magnetic pressures, regardless
of the interaction parameter. An assessment of the
change in drag for an overall aerospace configuration
cannot as yet be performed, because the impact of the
magnetic field on the base region has not been consid-
ered in this work.

Conclusions

The possibility of magnetic control of hypersonic
blunt body flows was explored theoretically and com-
putationally. A theoretical model, due to W. B.
Bush,%® of hypersonic flow over an axisymmetric,
spherical-nose body with an imposed dipole field was
reviewed. A preliminary computational study of the
flow over a two-dimensional cylinder configuration
with magnetic control was carried out employing a
new, non-ideal, magnetogasdynamics code. Using an
inviscid model for the outer flow, both the theory and
the computations show than an applied magnetic field
can slow the flow in the shock layer. Boundary layer
theory predicts a reduction in the stagnation point
heat transfer.

The effectiveness of control was found to be sensi-
tive to the electrical conductivity of the ionized air in
the shock layer. Magnetic field strengths on the or-
der of 1 T (10* G) or higher are needed for electrical
conductivities corresponding to the natural levels of
ionization present in typical re-entry flows (~ 102/(2-
m)). Higher conductivity allows correspondingly lower
magnetic field strengths to achieve the same level of
control. (Although increasing the conductivity in-
creases the deleterious effects of the induced field that
come with increased magnetic Reynolds number, the
effect through the interaction parameter is very much
greater, and there is a strong net gain for increased
electrical conductivity.) More uniform conductivity
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also improves the effectiveness of magnetic control,
and mitigates the tendency of the stagnation point
boundary layer to develop overshoot velocity profiles.

The electrical conductivity in the shock layer could
be augmented through artificial ionization. Various
forms of energy addition, such as microwave discharges
and electron beams, have been considered elsewhere
for this purpose. It will be necessary to develop com-
putational tools to study the engineering tradeoffs as-
sociated with these techniques.
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