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Abstract

Preliminary results are presented of a study of the in-
stantaneous structure of disturbances in a hypersonic
boundary layer. The experimental data suggest that the
flow is dominated by two-dimensional second mode in-
stability waves; no evidence of skewed first mode waves
was found.

1 Introduction

Wave packets appear to be a universal feature of ‘nat-
ural’ transition in a relatively low-disturbance environ-
ment. For a low-speed, flat-plate boundary layer flow,
for example, the oscillograms presented in the fam-
ous experiments of Schubauer and Skramstadt [1] show
a low-level signal alternating intermittently with high-
amplitude ‘bursts.” At the opposite end of Mach number
range, Potter and Whitfield [2] observed packets of ‘rope
waves’ in schlieren photographs of a hypersonic flow over
a cone.

A number of researchers have examined a simplified
wave packet problem, in which a short, localized pulse
is introduced into a laminar boundary layer flow (e.g.,
see References [3, 4, 5, 6]). The resulting wave packet is
studied as it travels downstream in the boundary layer.
A short input pulse has a very broad and flat spectrum in
frequency-wavenumber space, so all unstable modes tend
to be excited evenly. After the transient component dies
out, the wave packet takes on an asymptotic form that
1s independent of the initial conditions. In incompress-
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ible boundary layers, this form appears as a corrugated,
kidney-shaped patch [3, 7).

A complication arises for wave packets in a hypersonic
boundary layer: linear stability theory has identified two
important unstable modes that are distinquished by their
characteristic functions, or profiles along the wall-normal
direction [8]. The first mode is the compressible flow
counterpart of the Tollmien-Schlichting wave, and is usu-
ally described as vortical in nature. The second (Mack)
mode has no counterpart in incompressible flow, and is
often described as acoustical in nature. Linear stability
theory also predicts that the most unstable first mode dis-
turbance becomes increasingly skewed to the freestream
direction as the Mach number increases from zero to
the supersonic range, but that the most unstable second
mode disturbance is oriented normal to the freestream.

As a disturbance of constant frequency travels down-
stream through increasing values of the Reynolds num-
ber, a skewed first mode component is initially most
amplified, and later a two-dimensional second mode com-
ponent is most amplified (see the discussion in Pruett
and Chang [9]). This result suggests that the develop-
ment of a wave packet in a hypersonic boundary layer
is significantly different from the analogous problem in
incompressible flow, and that the asymptotic form of the
wave packet is a strong function of Mach number and the
streamwise station where the disturbance originates.

Further, the phenomenon of transition, in contrast
to stability, depends on the total growth of boundary
layer disturbances. Point disturbances are introduced
randomly all over the boundary layer, and transition is
caused by the flow that results from a sum over the histor-
ies of all the resulting wave packets (e.g., see Mack [10],
p. 3-27).



1.1 Kinematic Approach

A kinematic approach to the study of boundary layer
disturbances is of interest because of the complexity of
the dynamics of the transition process. Boundary layer
transition data can be difficult to interpret in terms of
normal modes when the disturbances are in the form
of wave packets or when they grow into the nonlinear
regime. Important kinematic features include the fre-
quency of occurance of the packets, as well as their length
scale, lifetime, orientation, and velocity. Valuable data
for transition modelling can be obtained by tracking the
changes in these features from the initial onset of in-
stability, through the formation of Emmons spots, to the
development of the organized structures observed in fully
developed turbulent boundary layers.

A kinematic approach to describing wave motion was
developed independently by Landau and Lifshitz [11] and
Whitham [12]. This approach generalizes the idea of a
travelling plane wave to a slowly-varying, quasi-planar
wave train. A wave train ¥ is assumed to have the form:

U(&,t) = A(Z,t) cos ¢(Z, 1) (1)
where A is the amplitude function and ¢ is the phase
function.

The basic assumption is that, over space and time
scales corresponding to one cycle of cos ¢, the amplitude
function A is approximately constant and the phase func-
tion ¢ is nearly linear. (See Segel [13] for a more pre-
cise statement of this restriction.) In consequence, the
extrema of the wave train W (the crests and troughs) co-
incide approximately with extrema of cos ¢, so that lines
of constant phase can be associated with wavefronts.

The angular frequency is defined to be the rate of de-
crease of the phase function with time (w = —8¢/8t ),
while the wavenumber vector is defined as the gradient
of the phase function (k = V¢). Since the amplitude
A has been assumed to be a slowly-varying function, the
quantity w/(27), which represents the instantaneous rate
at which cycles of cos ¢ cross a given point, can be in-
terpreted as the instantaneous rate that waves cross that
point. Similarly, k/(27) can be interpreted as a local
measure of the number of waves per unit length along
the direction normal to a wave front.

The speed of a crest or trough identified with a partic-
ular value of the phase can be determined by taking the
time derivative of the equation ¢(&,t) = const:
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where z(t) describes the trajectory of a point on the
iso-phase surface, and ¢ = d&/dt is its velocity. Us-
ing the definition of the unit normal to the surface

(7= V¢/|V¢|), we get an expression fixing the normal
component of the velocity:

YYEY
V4l

Thus, an observer moving at a velocity with a compon-
ent normal to the iso-phase surface equal to w/k sees
a constant phase. The component of the observer’s ve-
locity tangential to the iso-phase surface is arbitrary —
wave motion parallel to the wavefront cannot be detec-
ted. Thus we define the phase velocity as ¥, = (w/k),
which is the velocity of the iso-phase surface normal to
itself.

If we add the time derivative of the wavenumber vector
to the gradient of the angular frequency we can derive
an equation relating the two quantities.
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Under the assumption of nearly-planar waves, Equa-
tion (4) can be interpreted as an expression of wave con-
servation. To see this result, we integrate Equation (4)
between two points £y and Z, over a path C, and divide

by 2.
gi = @(Eo) _ w(&)
ot ] o ars 2T 27 (5)

The term on the left-hand-side represents the time rate of
change of the total number of cycles of cos ¢ over the path
of integration. The terms on the right-hand-side repres-
ent the difference in rates at which cycles of cos ¢ cross
the points &5 and ;. Thus, under the nearly-planar wave
assumption, the equation can be interpreted as follows:
the rate of change of the number of waves along C is equal
to the rate at which waves enter at &, minus the rate at
which waves leave at &;. In other words, quasi-planar
waves retain their identity as they travel. .

If the group velocity is defined as ¥, = 8w/dk, and
we take the scalar product of the group velocity with
Equation (4), we get:

dw 0w

dt — ot
implying that an observer moving with the group velocity
sees a constant frequency. An analogous equation for the
wave number vector can be derived if w = f(k), other-
wise (e.g., w = f(k,Z)) the wavenumber vector changes
for an observer moving with the group velocity.

The quasi-planar wave assumption seems to be con-
sistent with experimental observations of boundary layer
disturbances upstream of the breakdown to turbulence.
Boundary layer properties typically vary slowly in the
direction of propagation of a disturbance, and experi-
mental data seem to be consistent with a nearly constant

+Vw=0 (4)
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amplitude and approximately linear phase. Many flow
visualization experiments show convincing wave trains
(e.g., see Van Dyke [14], the schlieren photographs in
Kendall [15], or the beautiful photograph of a wave
packet in Benjamin [16]). Thus, the kinematic theory of
wave motion is applicable to disturbances in transitional
boundary layers, and can be used to define a number
of parameters describing experimental measurements of
wave packets. In particular, the frequency, wavenum-
ber, phase velocity, group velocity, and wave identity are
well-defined in the context of the kinematic wave theory,
without reference to the underlying dynamics that cause
the wave motion.

1.2 The Present Project

Here we present initial results in a program of research
on the intermittent, wave packet character of the flow
over a 7° half-angle cone at a freestream Mach num-
ber of 8. Detailed measurements with multiple hot-film
probes were made by Kimmel [17] across a range of Reyn-
olds numbers from the onset of instability in the laminar
boundary layer to nearly the fully turbulent state. Stabil-
ity theory indicates that the second mode is the dominant
instability at this Mach number [8].

The first part of the present report [18] investigates
the structure of the boundary layer disturbances in an
ensemble-averaged sense, while this part of the work em-
phasizes the instantaneous structure. The aim of both
aspects of the data analysis is to characterize the dis-
turbances in the boundary layer, particularly with regard
to their speed, length scale, and orientation. A physical
understanding of this aspect of transition will aid the de-
velopment of improved models of the transition process,
and may help to improve estimates of the increase in
thermal and fatigue loading associated with transition.

2 Experimental Procedure

The experiments were carried out in the von Kdrman Gas
Dynamics Facility (VKGDF) Tunnel B at the Arnold En-
gineering Development Center (AEDC). Tunnel B, which
is documented in detail in Reference [19], is a closed-
circuit, continuous-run facility with a 1.27 m diameter
test section. Incoming air is heated with a natural gas
combustion heater, and the tunnel itself is cooled with
external water jackets.

The facility is equipped with two axisymmetric nozzles
that allow the tunnel to be run at a nominal Mach num-
ber of either 6 or 8. At Mach 6, the tunnel can be run
with a stagnation pressure in the range of 0.14 MPa
to 2.07 MPa, and at Mach 8, between 0.35 MPa and
6.21 MPa. The present tests were carried out at a meas-
ured freestream Mach number of Ma,, = 7.93, and

Uso [Voo (m™") | Rey = UezJve | U./26 (kHz)
1.64 x 10° 2.3 x 10° 79
3.28 x 10° 4.6 x 108 94
3.94 x 10° 5.5 x 10° 101
4.92 x 108 6.8 x 108 124
6.56 x 108 9.1 x 108 74

Table 1: Unit Reynolds number in freestream and length
Reynolds number based on boundary layer edge condi-
tions and a reference distance along the model surface of
2 = 895 mm.

a stagnation temperature of T = 728 K in the set-
tling chamber. Unit Reynolds numbers in the wind tun-
nel freestream between Uss/Voo = 1.64 x 10° m™! and
Uso [Voo = 6.56 x 10° m~! were obtained by varying the
tunnel stagnation pressure (See Table 1).

The experimental model was a 7° half-angle cone, ori-
ginally designed for Stetson et al. [20]. The cone is
1.016 m long, with a 250 mm base diameter. Although a
number of interchangeable nose sections are available for
use with this model, the present study used only a sharp
nose with a spherical radius of 38 um. The model was
tested under near-adiabatic wall conditions.

The wind tunnel model and the coordinate systems
used in the present paper are illustrated in Figure 1. The
coordinates (z',y', z') are Cartesian, and oriented along
the wind tunnel freestream, the vertical, and the span-
wise directions, respectively. The coordinates (z,y, z)
are an orthogonal curvilinear system aligned with the ra-
dial direction on the surface of the cone, the normal to
the cone surface, and the circumferential direction.

The primary flow measurements were made us-
ing custom-built hot-film probes operated in constant-
current mode. Up to three channels of data were ob-
tained simultaneously, band-pass filtered between 10 Hz
and 500 kHz, and recorded using a Bell and Howell model
VR3700B analog FM tape recorder. The data were later
digitized from the FM tapes using a CAMAC data ac-
quisition system from Kinetic Systems, Inc., and stored
on a Pentium PC for analysis. The two or three chan-
nels of data were digitized simultaneously at an effective
sampling rate of 1.0 MHz in records of 22! = 2097152
contiguous samples per channel.! The software for con-
trolling the CAMAC crate and analyzing the data was
written by the authors in the C++4 and FORTRAN 77
programming languages; most of the data analysis al-
gorithms were adapted from the book by Bendat and
Piersol [21].

Two probe drive mechanisms were available for po-

1For convenience, the tape was typically replayed at half-speed
and sampled at 500 kHz.



sitioning the hot-film probes in the wind tunnel. An
overhead probe drive, which could be retracted into an
air lock above the test section, allowed motion of the
probe mount along the vertical (y') and streamwise (z')
directions. An on-board probe drive mounted on the
model sting provided motion normal to the model center-
line, while rolling the model allowed probe displacements
along the circumferential (2) direction. In order to reduce
the interference of the strut holding the on-board probe
with the flow over the cone, a frustum was added to the
basic cone model, with a slot to accommodate the probe
mount. The frustum had the same 7° half-angle as the
original model, and increased the size of the model to a
length of 1.283 m with a base diameter of 315 mm.

Experiments involving circumferential probe separa-
tions were carried out using a single probe mounted on
the on-board probe drive and a rake of up to four ad-
ditional probes mounted on the overhead probe drive.
The 2’ location of all the probes was held fixed at a loc-
ation 889 mm downstream of the tip of the cone (z =
896 mm), and the y' location was fixed at that position
in the boundary layer where maximum signal energy was
recorded. Different circumferential separations between
the probes were obtained by rolling the model, and thus
the on-board probe, away from the rake.

Streamwise probe separations were obtained using a
similar configuration. The on-board probe was held
fixed at 2’ = 889 mm (z = 896 mm) at the y’ loca-
tion of maximum signal energy. The rake was held at a
fixed circumferential separation from the on-board probe
(é: = 6.35 mm between the two nearest probes), but shif-
ted to different downstream locations using the overhead
drive. At each streamwise station, the rake of probes was
relocated to the y’ station of maximum signal energy.

An additional set of experiments was carried out with
a pair of hot-film probes mounted on the rake with a
fixed vertical separation of £, = 1.47 mm. This pair of
probes was traversed along the y' direction though the
boundary layer with the overhead probe drive.

3 Results

3.1 General Character of Signal

Sound radiation from the turbulent boundary layers on
the tunnel side-walls is believed to be the primary source
of disturbances driving transition for experiments in con-
ventional supersonic and hypersonic wind tunnels [22].
For compressible flow, linear stability theory [8, 10] pre-
dicts that boundary layer disturbances will be amplified
in two frequency ranges, corresponding to the first and
second modes. Measurements in the freestream of AEDC
VKGDF Tunnel B [22] indicate that most of the energy
content of the tunnel background noise is concentrated

in a frequency range much lower than the characteristic
frequency of the second mode instability (f ~ U./24).
In experimental data one would thus expect to see a
second mode component arising from this ‘quiet’ fre-
quency range, a relatively lower frequency first mode
component driven by the tunnel background noise, and a
modulation arising from the random nature of the tunnel
noise.

Figure 2 shows sample time-series plots at Reynolds
numbers Re, of 2.3 x 10°, 4.6 x 10%, 6.8 x 10°, and
9.1 x 10°. These data were obtained at the value of
' /8 where the highest signal energy was detected. The
streamwise station was held constant at z = 896 mm,
and the Reynolds number was varied by changing the
tunnel stagnation pressure.

The lowest Reynolds number case (Figure 2a) shows
the expected wave-packet character. There is a domin-
ant periodic component in the signal with a relatively
low frequency modulation, and relatively quiescent peri-
ods alternate with packets of high-amplitude fluctuations.
At a somewhat higher Reynolds number (Figure 2b), the
quiescent periods are less frequent and the packets more
prominant. As the Reynolds number is increased still
further, the signals acquire a less regular character (Fig-
ures 2c and 2d), although some of the features of the
initial instability are still detectable even at the highest
Reynolds number.

Plots of the corresponding power spectral densities are
shown in Figure 3. The two lower Reynolds number cases
(Figures 3a and 3b) are dominated by a strong peak at
the characteristic second mode frequency. Weak harmon-
ics of this frequency are also evident in the plots, possibly
indicating the initial onset of non-linearity in the trans-
ition process. There is suprisingly little energy content in
the frequency range below the second mode. For higher
values of the Reynolds number, the disturbance energy
begins to be distributed over a range of frequencies (Fig-
ure 3c), and eventually the instability breaks down into
turbulence (Figure 3d).

Figures 4 and 5 show, respectively, time-series plots
and probability density functions for four different sta-
tions in the boundary layer at a Reynolds number of
Re, = 4.6 x 10°. For the lowest station shown (Fig-
ure 4a), the most striking features are high-amplitude,
predominantly negative ‘spikes’ in the signal. The prob-
ability density function (Figure ba) shows a correspond-
ing negative skewness. Higher in the boundary layer
(Figures 4b and 5b), the negative spikes become more
frequent, and the negative skewness of the PDF becomes
quite striking.

Between y'/6 = 0.76 and y'/é = 0.78 there is a qual-
itative change in the behavior of the signal: the negative
tail on the PDF is balanced by a positive tail (Figure 5¢c)
and both positive and negative ‘spikes’ are seen in the



time series plots (Figure 4c). The highest intensity of
fluctuations are detected in the vicinity of this change
in behavior. (The maximum signal energy occurs at
y'/0 = 0.78 £ 0.02.) Still farther from the wall (Fig-
ures 4d and 5d), the PDF fills out, eventually forming a
symmetric, Gaussian distribution.

In summary, the single-point time-series data are dom-
inated by the second mode instability. The signals are in-
termittent, consisting of a random modulation imposed
on a periodic signal. Power spectra are dominated by a
peak at the characteristic frequency of the second mode,
with surprisingly little energy at lower frequency, where
wind tunnel background noise would be expected to drive
the first mode. A qualitative change in the signal beha-
vior was observed across the y'/d station of maximum
energy, presumably corresponding to the critical layer.

3.2 Disturbance Wave Orientation

One interesting aspect of the disturbance structure is the
orientation in a surface parallel to the wall (z-z) rep-
resented by the skewness angle . Over a range of su-
personic and hypersonic Mach numbers, linear stability
theory predicts that the most unstable second mode dis-
turbance is oriented normal to the freestream (¢ = 0),
and that the most unstable first mode disturbance is
skewed to the freestream direction (45° < 3 < 65° over
1 < Ma < 10). Wave skewness was investigated exper-
imentally by acquiring data from probes with a circum-
ferential separation (&,).

Figure 6 shows an example of the broad-band cross-
correlation for a Reynolds number of Re, = 4.6 x 108.
The cross-correlation displays a periodic component with
a time scale characteristic of the second mode instability
and a larger scale decay in time reflecting the limited
streamwise coherence of the disturbance wave packets in
the flow. If skewed waves were present in the flow, a
pair of extrema, symmetric about zero time delay, would
be expected in the cross-correlations. For a convection
velocity of 0.9U, =~ 41000 in/s, a probe separation of
& = 0.5 in, and a wave angle of ¢ = 7 /4, there should
be maxima at time delays of © &~ + 12 us. Instead,
the optimal correlation occurs at zero time delay for the
present case as well as for the other Reynolds numbers
for which data is available (not shown).

The skewness of the different disturbance modes may
not be apparent in the cross-correlation because it con-
tains no frequency-dependent information about the sig-
nals — the skewness may ‘wash out’ in the calculation.
An alternate way of looking at the two signals is through
the cross-spectrum. Plots of coherence (e.g., Figure 7)
do show that the signals have frequency-dependent fea-
tures: a low-frequency component that may be related
to the first mode and/or wind tunnel noise, the second

mode, and the first harmonic of the second mode.

If, over a range of frequencies, there were a constant
time shift 7 between the two signals, we would expect to
see a linear segment with slope 277 in a plot of the phase
versus frequency. Figure 8 shows the phase of the cross-
spectrum for the Re, = 4.6 x 10° case. Surprisingly,
there is no time delay detectable in the data.

To examine the possibility that the instantaneous ori-
entation of the boundary layer disturbances was differ-
ent from the esemble-averaged orientation, the probab-
ility density function (PDF) of the phase of the cross-
spectrum was computed. The phase PDF was computed
by dividing each pair of contiguous records into windows
of 2° = 64 points?, computing the cross-spectrum and
its phase for each pair of windows, and incrementing a
two dimensional array with indices corresponding to the
phase and the frequency. For the present circumferential
probe separation, a bimodal distribution of the phase
would be expected if skewed waves were present in the
flow.

Figure 9 shows the PDF of the phase for a Reynolds
number of Re, = 2.3 x 10%, plotted with frequency as a
parameter. In this figure the horizontal axis corresponds
to frequency in Hertz, the vertical axis corresponds to the
phase, which ranges from — to 7, and the contours cor-
respond to the probability density. At the higher frequen-
cies, there is essentially a uniform distribution of phase,
as would be expected for uncorrelated noise. In the vi-
cinity of the second mode frequency, however, there is a
clear peak evident in the distribution of phase, centered
near zero. A second peak is apparent at lower frequency.

Figure 10 shows the corresponding results for a Reyn-
olds number of Re, = 4.6 x 10%. Again, a uniform
distribution of phase is observed for relatively high fre-
quency, and a distribution peaked near zero phase is
seen in the vicinity of the second mode frequency. The
low-frequency peak apparent in the previous case is also
present here. The major difference between the two cases
is that for the high Reynolds number case the distribu-
tion is broader in the second mode frequency range and
there is more separation in frequency between the second
mode and the low-frequency component of the data.

These results are consistent with two-dimensional
waves travelling in the direction of the freestream: each
crest or trough of such a horizontal wave would intersect
both hot-film probes simultaneously, creating no phase
difference in the two signals. There is no evidence of
oblique waves in the data.

2The window size was selected to correspond approximately to
the characteristic time scale of the autocorrelation.



4 Conclusions

Two-dimensional, second-mode waves were detected in
the Mach 8 flow over a 7° half-angle cone studied in the
present project. No evidence of the first mode was found:
little energy was detected in the lower frequency range,
and no evidence of wave skewness was apparent.

According to stability theory [8, 9], the amplification of
a boundary layer disturbance is very history-dependent
in compressible flow. As a disturbance of constant fre-
quency travels downstream in a compressible boundary
layer, it is first amplified in the region of first mode in-
stability, and farther downstream is amplified in the re-
gion of second mode instability. If disturbances originate
at different streamwise stations (Reynolds numbers), as
would be expected in a wind tunnel with background
noise, early first mode growth might be averaged out
by second mode amplification of disturbances originat-
ing farther downstream.

The problem with conventional transition experiments
is that the origin — in space and time — of the disturbances
entering the boundary layer is not known, so that it is not
possible to examine a disturbance at a known stage in
its amplification history. This question could be resolved
by carrying out an experiment in a hypersonic flow sim-
ilar to the experiment of Gaster and Grant [3], in which
a localized, short-duration disturbance was introduced
into an incompressible boundary layer, and synchonized
measurements were made downstream:.
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Figure 1: Experimental configuration. (a) Model and
coordinate system. (b) Hot-film probe configuration.
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Figure 2: Time-series plots of the hot-film signal at the maximum energy station. (a) Re; = 2.3 x 10%. (b) Re, =
4.6 x 10%, (c) Re; = 6.8 x 10°. (d) Re, = 9.1 x 10°.
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Figure 3: Power spectra at the maximum energy station. (a) Re, = 2.3x10°

(d) Re; = 9.1 x 105
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Figure 4: Time series plots for four stations across the boundary layer at Re. = 4.6 x 10°. (a) y//é = 0.64. (b)
¥ /6 =0.76. (c) ¥/§ = 0.78. (d) ¥/d = 0.86.
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Probability Density

Figure 5: Probability density functions for four stations
across the boundary layer at Re, = 4.6 x 10°. (a) y/ /6 =
0.64. (b) ¥//d = 0.76. (c) ¥'/6 = 0.78. (d) ¥’ /6 = 0.86.
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Figure 6: Broad-band cross-correlation for Re; = 4.6 x
10%and £,/8 = 2.1:
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Figure 7: Coherence derived from the cross-spectrum for
Re; = 4.6 x 10° and €, /6 = 2.1.
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Figure 8: Phase of the cross-spectrum for Re, = 4.6x 10° - 0 - . )
and £, /6 = 2.1. < ; : @
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Figure 10: PDF of the phase as a function of frequency
for Re; = 4.6 x 10° and €,/6 = 2.1. Contour interval
0.05.
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Figure 9: PDF of the phase as a function of frequency
for Re, = 2.3 x 10° and &, /6 = 1.3. Contour interval
0.05.
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