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1 Introduction

Many problems arising in practical situations have boundary constraints and can only be
described in the setting of Riemannian manifolds with boundary. This justifies our focus
in this report on various geometric aspects of manifolds with boundary. In particular, we
are interested in those results concerning the properties of geodesics in such manifolds. A
related problem is the geometry of wavefront propagation around an obstacle in an isotropic
medium, since the orthogonal trajectories of the wavefronts are geodesics in the appropri-
ate Riemannian manifold with boundary. In the last section, we will give as an example a
problem of multiple aircraft conflict resolution, which can also be reduced to the problem of
finding the shortest geodesics between two points in certain manifold with boundary. There-
fore, although the results concerning manifolds with boundary are sometimes less elegant
than their counterparts for manifolds without boundary, the study of this area is of both
theoretical and practical interest.

In the following, M will denote a C∞ Riemannian n dimensional manifold with boundary B,
an n− 1 dimensional manifold. Unless otherwise stated, B will be assumed to be smooth.

2 Geodesics

2.1 Regularity

As in the case of manifolds without boundary, a geodesic in M is a curve which is locally dis-
tance minimizing and parametrized by arc length. The existence and regularity of geodesics
between any two points in M are studied in [9] from the general viewpoint of elliptic varia-
tional problems with constraints. A more geometrical approach is adopted in [2]. Due to the
existence of the boundary, one can no longer write a single second order differential equation
governing the evolution of geodesics. Even for manifolds with smooth boundary, geodesics
are in general not C2. For example, consider the shortest paths in the Euclidean plane with
the open unit disc removed. They are, however, C1 by the following theorem proved in [2].



Theorem 1 Let M be a Riemannian C3-manifold-with-C1-boundary and γ be an arbitrary
geodesic in M . Then γ is C1, and at any point where it touches the boundary, γ has an
osculating plane normal to the boundary.

It is shown independently in [10] that any geodesic in M is C1 even if one weakens the
hypothesis that B = ∂M is C1 by require only that every point of B has a neighborhood in
M which is C2-diffeomorphic to a convex set in Rn. A large class of examples belonging to
this category can be constructed by removing from R

n the union of a finite number of open
convex sets with non-empty interiors and C2 boundaries. For example, consider M obtained
by removing from R

2 the union of two intersecting disks. The boundary of M is not C1, yet
geodesics in M are C1.

One can look deeper into the structure of the geodesics in M . In the terminology of [3], a
geodesic segment can be decomposed into

1. Geodesic segments of the interior of M , whose accelerations vanish.

2. Geodesic segments of the boundary B, whose accelerations are outwardly normal to
B.

3. Switch points, where geodesic switches from a boundary segment to an interior segment
or vice-versa.

4. Intermittent points, which are the accumulation points of switch points.

In [3] it is shown that the acceleration at an intermittent point exists and must be zero.
Thus a geodesic fails to have acceleration only at the switch points, and at those points the
velocities are continuous, and one-sided accelerations exist.

The existence of intermittent points makes the variational analysis of geodesics in M difficult.
In [1] an example is given of a geodesic whose intermittent points constitute a Cantor set
of positive measure. On the other hands, by focusing on those M obtained from R

n by
removing a locally analytic obstacle, i.e. an obstacle with boundary locally of the form
xn = f(x1, · · · , xn−1) for a real analytic function f , [1] shows that a geodesic can have,
in any segment of fine arc length, only a finite number of distinct switch points, hence no
intermittent points at all. This is summarized in the following theorem.

Theorem 2 Let n > 1 and let M be an (n+2)-dimensional analytic manifold-with-boundary
embedded in Rn+2 and equipped with the induced Riemannian structure. Denote the boundary
surface of M by B and let γ be a geodesic on M parametrized by arc length s, with γ(0) =
p ∈ B. Then there exists an ε > 0 such that γ has no switch point for 0 < s < ε.

The conclusion of Theorem 2 is trivial when n = 1, i.e. when the ambient space is R2. In
fact, for an analytic boundary B in R2, a geodesic cannot have an accumulation of switch
points, since between any two switch points there must be a point of B of zero Euclidean
curvature. An infinite set of points of curvature zero, necessarily clustering at a point p,
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Figure 1: Example of manifold with boundary where bipointwise uniqueness fails

implies that all the derivatives after the first of B vanish at p and hence by analyticity the
boundary B is a straight line. This argument fails in Rn for n > 2 since we may have
vanishing directional second derivatives, but in different directions. It is not clear whether
the conclusion of Theorem 2 can be generalized to the case of nonflat M .

The regularity analysis is carried one step further in [3] by considering geodesics near the
boundary B. Let xn be the distance from B. Starting from arbitrary (local) coordinates
x1, · · · , xn−1 of B, we can extend them locally to be constant on geodesics normal to B.
Let γ be an arbitrary geodesic in M with coordinates (x1, · · · , xn). The curve on B with
coordinates (x1, · · · , xn−1) is the normal projection of γ to B and called the tangential part
of γ. The normal part of γ is simply xn. it is proved in [3] that the tangential part of a
geodesic is C2 with locally Lipschitz second derivative. Some convexity condition is also
given for the normal part.

2.2 Uniqueness

Unless some bound is imposed on the curvature of the boundary B, there is no hope of
getting bipointwise uniqueness of geodesics in M , even locally. Figure 1 shows an example
due to [4], in which two spherical caps are glued together along a common circle (not great
in either sphere). Between points a and b there are numerous geodesic segments, most of
which oscillate back and forth across the edge. The segment along the edge is not a geodesic
since it is nowhere locally distance minimizing but it is a limit of geodesics. Although the
boundary is nonsmooth in this case, we can smooth the sharp edge to make the surface C1

but with infinite normal curvature, and the above observations remain valid.

To get bipointwise uniqueness, the notion of tubular radius is introduced in [4]. Suppose M
can be isometrically embedded in some Euclidean space N of the same dimension.

Definition 1 (Tubular radius) A positive number r is a tubular radius for M in N if
every point at distance r or less from M is the center of a closed ball which meets M at a
single point.

For M with tubular radius r, the Euclidean curvature of any geodesic γ on the boundary B
is bounded above by 1/r, i.e. γ̈ = kNγ for some k < 1/r, where Nγ is the unit normal to B
at γ.

Using a tubular radius, we can obtain an estimate of how fast two different geodesics starting
from the same point converge. Suppose r = 1/k is a tubular radius for M . Let γ and σ be

3



geodesics in M having speed no more than one. Let f(t) = ‖γ(t) − σ(t)‖ be the Euclidean
displacement between corresponding points. Then except at the countably many points
where f ′′ fails to exists, we have a differential inequality:

f ′′ ≥ −k2f (1)

with strict inequality when f > 0. Since g(t) = A sin(kt+ b) is a solution of g′′ = −k2g, it is
not hard to see that if f and g agree at t = t0 and t = tf for properly chosen A and b, then
g dominates f . In particular,

Theorem 3 ([4]) If r is a tubular radius of M , then two different geodesics in M starting
from the same point must each travel more than πr before they can meet again.

Considering the example of R3 with a ball of radius r removed, then πr is a sharp estimate.

As a result of the preceding theorem, one can prove the following version of bipointwise
uniqueness of geodesics for manifold with positive tubular radius.

Theorem 4 (Bipointwise uniqueness neighborhood) Suppose M has positive tubular
radius. Then every point of M has a neighborhood U such that for every p, q in U ,

1. there is a unique minimal geodesic segment joining p and q, and

2. there is no other geodesic segment joining p and q and lying in U .

Although it was claimed in [4] that a stronger result was obtained by making U convex, i.e.
the unique segments in condition 1 are contained in U , a formal proof has never appeared.

In another paper [3], Cauchy uniqueness is also examined. For manifolds without boundary,
we have Cauchy uniqueness, which means that for arbitrary p ∈ M and v ∈ TpM , there is
a unique geodesic (up to reparameterization) γ such that γ(0) = p and γ′(0) = v. This is
not the case for manifold M with boundary. For example, whenever there is a boundary
direction in which the boundary bends away from the interior, there will be a one-parameter
family of distinct geodesics of a given sufficiently small length which start in that direction.
They are all involutes in the following sense.

Definition 2 (Involute) An involute of a geodesic β in M is another geodesic with the
same initial position, initial velocity and length as β, which consists of a segment in common
with β followed by a nontrivial segment of the interior.

It is shown in [3] that this is the only case Cauchy uniqueness can fail in manifold with
boundary, at least locally.

Theorem 5 (Cauchy uniqueness for manifold with boundary) Every boundary point
of M has a neighborhood in which: if two geodesic segments with the same initial point, ini-
tial tangent vector and length do not coincide, then one of them has its right endpoint in the
interior and is an involute of the other.
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2.3 Convergence

Convergence of geodesics is studied in [4]. Suppose that M has tubular radius r. Consider a
sequence γ1, γ2, . . . of unit speed geodesic segments parametrized by [0, l] such that l < πr.
Moreover, suppose that the γi’s are contained in a compact region.

Lemma 1 If γi(0) and γi(l) converge, then γi and γ̇i converge uniformly on [0, l] to a geodesic
segment γ and its velocity field γ̇.

Uniform convergence of γi to γ follows from equation (1) and the discussion thereafter in
Section 2.2, while the convergence of γ̇i is proved by using the estimate

‖(γ(s)− γ(u))/(s− u)− γ̇(u)‖ ≤ |s− u|/2

and the triangle inequality. In general the speed of convergence for ‖γi−γ‖ is asymptotically
quadratic compared to that for ‖γ̇i − γ̇‖. From this lemma, we get the global result:

Theorem 6 (Convergence of geodesics) If a sequence of geodesics γi converge point-
wise, then the limit function is a geodesic γ, and the convergence of both γi and γ̇i to γ and
γ̇ is uniform on closed bounded segments.

3 Jacobi field

In manifold without boundary, A Jacobi field along a geodesic is obtained as the variation
field of a deformation by a family of geodesics. Jacobi fields for manifolds with boundary
are obtained in much the same way in [5].

We follows the notation of [5]. A vector field J along a geodesic γ in M will be called a
Jacobi field if there is a sequence of geodesics γi converging to γ in the uniform topology,
and a sequence of positive numbers ui approaching 0 for which

‖J‖ = limu−1
i d(γ, γi),

and the unit vector in the direction of J(t) is the limit of the initial unit vectors of the
minimizing geodesics from γ(t) to γi(t). We say that the parametrized sequence (γi, ui)
approaches γ tangentially to J . Compared with the classic definition of Jacobi field, the
one presented here is a “snapshot” of the differentiable deformation at a discrete sequence
of epochs approaching 0. It is obvious that from a differentiable deformation by geodesics,
we can always obtain (γi, ui) satisfying the above conditions by taking snapshots, and the
reverse is also true, i.e. every such (γi, ui) can be “embedded” in a differentiable deformation.
So this version of definition of Jacobi field is indeed equivalent to the classic one.
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3.1 Existence

The main results in [5] regarding the existence of Jacobi fields in M can be summarized as
follows: If a parametrized sequence of geodesics (γi, ui) approaches a geodesic γ tangentially
to well-defined vectors at either endpoint, and if no subsequence approaches with infinite
speed at any intermediate point (i.e. if d(γ(t), γi(t)) ≤ Cui for some finite constant C), then
some subsequence approaches γ tangentially to a Jacobi field.

3.2 First variation formula

The first variation formula for manifolds with boundary is derived in [5]. Assume without
loss of generality that all the geodesics are defined on the interval [0, 1].

Proposition 1 For any geodesic γ of M and any parametrized sequence (γi, ui) of geodesics
converging to γ tangentially along a Jacobi field J ,

limu−1
i [l(γi)− l(γ)] = l(γ)−1[〈J(1), γ̇(1)〉 − 〈J(0), γ̇(0)〉]

where l denotes arc length.

Using the first variation formula, one can show that

Corollary 1 The tangential component of a Jacobi field J is linear. Its normal component
is again a Jacobi field (except possibly if the base geodesic γ meets J in an acute angle at a
boundary end point of γ).

3.3 K-convexity

Definition 3 (K-convexity) A Jacobi field J along γ is K-convex if it satisfies the differ-
ential inequality ‖J‖′′ ≥ −Kv2‖J‖, where v is the speed of γ.

K-convexity condition can be interpreted as: if K > 0, then on any parameter subinterval of
length less than πv/K, the sinusoid a sin(

√
Kvt−b) that coincides with ‖J‖ at the endpoints

is an upper bound for ‖J‖. If K ≤ 0, then the appropriate linear function or hyperbolic
sinusoid is used instead of the sinusoid, with no bound on the parameter subinterval.

The following results is claimed in [5] regarding the regularity of Jacobi fields in M : A
Jacobi field J in M is K-convex for some sufficiently large positive constant K. Moreover,
J is continuous on the interior of its interval of definition and ‖J‖ is upper semicontinuous
at the endpoints. It follows from K-convexity and continuity that ‖J‖ has the regularity
properties of a convex function on the interior of its domain. In particular, ‖J‖ has left and
right derivatives everywhere; there are only countably many points where ‖J‖′ fails to exist
and at these points ‖J‖′ has a positive jump; and ‖J‖′′ exists almost everywhere.

There is a concept closely related to K-convexity. A space has curvature bounded above by
K, in the sense of Alexandrov, if every point has a neighborhood in which any minimizing
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geodesic triangle with vertices in the neighborhood has perimeter less than 2π/
√
K (if K >

0), and has each of its angles at most equal to the corresponding angle in a triangle with the
same side lengths in the standard surface SK of constant curvature K.

The following theorem is proved in [5].

Theorem 7 (Characterization Theorem) Let M be a Riemannian manifold with bound-
ary B. Then the following conditions are equivalent:

1. M has curvature bounded above by K in Alexandrov’s sense.

2. All normal Jacobi fields in M are K-convex.

3. The sectional curvatures of the interior of M and the outward sectional curvatures of
the boundary B do not exceed K (where an outward sectional curvature of B is one that
corresponds to a tangent section all of whose normal curvature vectors point outward).

When the boundary is empty, the above theorem corresponds to the Alexandrov’s basic
theorem equating upper bounds on Alexandrov curvature to those on sectional curvature [6],
and is its extension to manifolds with boundary.

The characterization theorem places manifolds with boundary in the setting of Alexandrov’s
theory of spaces of curvature bounded above, and its extensions within Gromov’s theory of
hyperbolic groups. By a theorem of Gromov which extends the Hadamard-Cartan theorem
to geodesic metric space with curvature bounded above by 0, one has the following immediate
implication.

Corollary 2 If for a simply connected, complete, connected Riemannian manifold with
boundary, the sectional curvatures of the interior and the outward principle curvatures of
the boundary are nonpositive, then any two points are joined by a unique geodesic, and the
distance between any two geodesics is convex.

Compared with Theorem 4, the condition in this corollary is intrinsic in the sense that M
does not necessarily need to be embedded in a Euclidean space of the same dimension.

4 An interesting example

The following problem has its origin in aircraft conflict resolution. Given a set of n points
a1, . . . , an in some Riemannian manifold M such that the distance (in the Riemannian
metric) between any two of them is greater than or equal to some positive constant r (we
say that they satisfy the r-separation condition). Let b1, . . . , bn be another set of n points
satisfying the r-separation condition. The problem is to find a set of n piecewise smooth
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Figure 2: Correspondence between resolution maneuvers and braids

curves γ1, . . . , γn in M such that γi(0) = ai, γi(1) = bi for i = 1, . . . , n, and for any t ∈ [0, 1],
γ1(t), . . . , γn(t) satisfy the r-separation condition, and such that

1

2

n∑
i=1

∫ 1

0

‖γ̇i(t)‖2 dt

is minimized.

The presence of the separation constraints makes the usual variational analysis infeasible.
However, by “piling” the state together, we transform the problem into finding the curve
γ = (γ1, . . . , γn) in M (n) = M × . . . ×M connecting a = (a1, . . . , an) to b = (b1, . . . , bn)
with the least energy. The separation constraint implies that γ cannot enter the region W
defined by

W = {(p1, . . . , pn) : d(pi, pj) < r for some i 6= j}

Evidently the optimal γ is a distance minimizing geodesic from a to b in M (n)\W , a manifold
with complicated and nonsmooth boundary.

The case when M = R
2 is studied indirectly in [7] using the notion of braids. It is found

that the fundamental group of M \ W in this case is isomorphic to the group of pure
braids PBn. In fact, for each resolution maneuver γ = (γ1, . . . , γn), one can build its braid
representation in the following way: Let βi : [0, 1] → R

2 × [0, 1] be the curve defined by
βi(t) = (γi(t), t), ∀t ∈ [0, 1] for i = 1, . . . , n. Then {βi}ni=1 is a set of n disjoint strings
in R2 × [0, 1] connecting n points {(ai, 0)}ni=1 at the bottom to n points {(bi, 1)}ni=1 on the
top. Such a set of strings is called a pure braid. Figure 4 shows the correspondence between
a 3-aircraft resolution maneuver and its braid representation. Fixing the end points of all
the strings, two pure braids are called isotopic if one can be deformed continuously to the
other in such a way that the end points are fixed and no two strings intersect each other
anywhere during the deformation. Then there is a one-to-one correspondence between the
isotopy classes of pure braids (which can be made into the group PBn by the operation of
concatenation) and the homotopy classes of paths in R2n \W connecting a to b.

The method proposed in [7] to find the optimal homotopy class of resolution maneuvers is
a randomized algorithm based on the model of Brownian motion, hence irrelevant to this
survey. Suppose we fix the homotopy class, the problem of finding the shortest curve from a to
b within this particular class is also studied in [7]. Denote with G the orientation-preserving
isometry group of R2, which is a Lie group consisting of translations, rotations and their
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compositions. Let g : [0, 1] → G be a piecewise smooth curve in G such that both g(0) and
g(1) are the identity map. Then for each piecewise smooth curve γ : [0, 1] → R

2n \W , the
new curve g(γ) defined as

g(γ)(t) = (gt(γ1(t)), . . . , gt(γn(t))), ∀t ∈ [0, 1]

is also a piecewise smooth curve in R2n \W connecting a to b and of the same homotopy
type as γ. g(γ) can be thought of as a local perturbation of γ if g is close to the identity.
The shortest curve γ∗ should satisfy the condition that the energy of g(γ∗) is never smaller
than the energy of γ∗ for any such g. Using this observation, a set of necessary conditions
for the optimality of γ∗ are derived in [7]. These necessary conditions are sufficient in the
sense that the geodesic equations on different smooth components of the boundary ∂W can
be derived from them. Obviously this method can be generalized to the case when M is a
Lie group.

Many problems remain unsolved even in this case. For example, we have the following
conjecture.

Conjecture 1 Suppose M is obtained by removing from R
n a finite number of convex cylin-

ders, which may or may not intersect. Then there is a unique geodesic within each homotopy
class of paths connecting two arbitrary points a and b of M .

Loosely speaking, if one can define the “universal covering” M̃ of M , which is itself a manifold
with boundary, then the above conjecture can be alternatively stated as: any two points in
M̃ are connected by a unique geodesic. In the above example, the obstacle W is the union of
n(n− 1)/2 cylinders intersecting in a complicated way, hence a special case of Conjecture 1.
Some preliminary results are reported in [8].
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