
SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 1

Distributed Solution of Networked Convex-Concave
Games with Coupling Constraints

Jianghai Hu, Member, IEEE, Yingying Xiao, Student Member, IEEE, and Xiaodong Hou

Abstract—In this paper, we study the convex-concave games
played by two teams on a network. The two teams have their
decision variables scattered across all the nodes of the network.
At each node there is a local convex-concave (saddle) payoff
function that depends on the decision variables of not only
that node but also its neighboring nodes. In addition, there are
constraints that couple the decision variables of each team at
nodes within a neighborhood and/or across the whole network.
The goal is to design distributed algorithms so that each team
iteratively updates its decision variables using only locally avail-
able information so that collectively the decision variables of both
teams converge to a Nash equilibrium (saddle point) of the global
payoff function (sum of local payoff functions) while satisfying all
the coupling constraints. Using the notion of saddle differential
operators and operator splitting techniques, we propose several
distributed algorithms with guaranteed convergence to saddle
point solutions under mild assumptions. As a special instance,
these algorithms can lead to new primal-dual solution algorithms
for the distributed optimization problems on networks. Several
examples, including the networked Cournot competition, are
provided to illustrate the proposed algorithms.

Index Terms—Convex-concave games, networked optimization,
distributed algorithms, operator splitting.

I. INTRODUCTION

Saddle point problems have many important applications in,
e.g., constrained optimization, zero-sum games, partial differ-
ential equations, machine learning (see the survey [1]). Meth-
ods developed for computing saddle points include iterative
methods such as the Arrow-Hurwicz and Uzawa method [2]
and their variants, Krylov subspace methods and associated
preconditioning techniques [3], Hermitian and skew-Hermitian
splitting based methods [4], best response dynamics [5],
to name a few. Many (sub)gradient-based algorithms have
also been developed, e.g., smoothing techniques [6], prox
method [7], primal-dual gradient flows [8], and approximating
the saddle point using the running average with a constant
stepsize [9]. The saddle point problems studied and the algo-
rithms proposed in these work are all centralized.

This paper studies the distributed solution of saddle point
problems on a network. We consider zero-sum games between
two teams (x-team and y-team) whose decision variables
(xi’s and yi’s) are distributed among all the nodes of the
network. Each node i is associated with a local payoff function
Ki that depends on the decision variables of both team not
only at node i but also at neighboring nodes. In addition,
for each team, its decision variables could be subject to

J. Hu, Y. Xiao, and X. Hou were with the Department of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN, 47907 USA
e-mail: {jianghai,xiao106,hou39}@purdue.edu.

either local coupling constraints involving nodes from the
same neighborhood or global coupling constraints involving
all nodes of the network. The goal is to compute a Nash
equilibrium, or equivalently, a saddle point of the global payoff
function K =

∑
iKi satisfying all coupling constraints via

properly designed distributed algorithms that update the local
decision variables at each node using only information at the
node and from its neighboring nodes. A special instance of
the game is when each node is allowed to have the decision
variables from only one team. In this case, the network nodes
are partitioned into two disjoint groups; nodes in the same
group form a coalition and coordinate with one another to
compete against nodes in the other group. Another special
instance is, when studying networked constrained optimization
problems, the Lagrange functions can be deemed as the payoff
functions for a game between the primal and dual variables.

Compared with existing work, a distinct feature of the
networked games studied here is that they are truly ubiquitous
over the network: not only is the global payoff function
distributed as local payoff functions, each player’s decision
variables are also distributed on all the nodes. The latter allows
for the coexistence of cooperation and competition among
nodes and, together with general network topology, gives arise
to intriguing local and global behaviors in the resulting Nash
equilibriums. In comparison, in the games studied in [10]–
[14], each player’s decision variables are confined to a single
node that selfishly competes against the rest of the nodes. The
aggregate games studied in [15]–[18] can also be considered
the same with the introduction of a central (and neutral) node
that stores the aggregate information. In [19], [20], the games
considered are played between two subnetworks with bipartite
connections. As described in the previous paragraph, they are
special instances of the games studied here.

Another notable feature of our game formulation is that it
allows general coupling constraints both locally and globally:
the decision variables of both teams at nodes in the same
neighborhood can have arbitrary convex constraints as in (9);
the decision variables of the same team from the whole
network can be subject to a sum-of-convex-functions type of
global constraint as in (26). The presence of these coupling
constraints, especially the global ones, makes it challenging
to design distributed algorithms where the update by each
team at any node can rely on only local information, e.g.,
only a local portion of the global constraints relevant to
that node. Among the existing work, [11], [17], [19], [20]
did not consider coupling constraints; [12] considered only
local coupling constraints; [16] considered constraints on the
aggregate value; and [13]–[15], [18] considered only global

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 2

constraints that are affine in the decision variables. It should
be pointed out that the coupling constraints in these existing
work involve decision variables from different players, while
in our case they only involve decision variables from the same
player (though located at different network nodes). Inter-player
couplings are necessary when different players compete for the
same pool of common resource; and intra-player inter-node
couplings can model situations where each player has its own
limited resource to be allocated across the network, e.g., army
deploying forces over strategic locations, company managing
inventory across multiple markets.

In this paper, we focus on zero-sum convex-concave games
where each local payoff function Ki (hence the global payoff
K) is convex in the variables of one team and concave in the
variables of the other. Such games were also studied in [5],
[19]–[21]. Recently, non-zero-sum multi-player games and in
particular monotone games on networks have received a lot
of attention [22]. Their solutions, called Generalized Nash
Equilibriums (GNEs) [23], are in general not unique and
difficult to compute. A common strategy is to formulate the
games as variational inequality problems [24] and solve for the
so-called variational GNEs, a special class of GNEs with eco-
nomic interpretation. Many distributed algorithms have been
proposed for computing variational GNEs [10], [12], [14],
[25]. Our focus on convex-concave games has the following
motivations. First, their saddle points exist under very mild
conditions (see, e.g., Sion’s Minimax Theorem [26] in Propo-
sition 1) and can be computed by distributed algorithms with
guaranteed convergence under much weaker assumptions than
monotone games. Second, convex-concave games encompass
several general classes of important problems. For example,
the distributed optimization problems on node networks [27],
[28] formulated in the primal-dual framework is equivalent
to finding a saddle point of the Lagrange function K that is
convex-affine in the primal and dual variables [29]. Thus, the
distributed algorithms developed in this paper can be adopted
directly for solving the networked optimization problems with
local and global coupling constraints. It should be noted that
convex-concave games are much broader than networked opti-
mization with many practical applications such as, e.g., power
allocation in multi-channel communication [21], networked
Cournot game [30].

The main contributions of the paper consist of: 1) for-
mulation of a new class of games on networks with gen-
eral local and global coupling constraints; 2) development
of synchronous and randomized distributed algorithms that
can compute Nash equilibrium points under local coupling
constraints; 3) development of synchronous distributed al-
gorithms for computing the Nash equilibrium points with
the presence of both local and global coupling constraints.
This paper significantly extends the preliminary results in the
authors’ conference paper [31]; particularly, the consideration
of coupling constraints and networked Cournot competitions
are new additions. The main theoretical tool used for algorithm
development is the operator splitting techniques, specifically,
the preconditioned Douglas-Rachford splitting methods [32],
[33] ([31] used canonical D-R splitting). Such techniques
have been successfully applied in the distributed optimization

and game solution [14], [16]. Compared to (sub)gradient-
based methods such as the ones in [9], [10], [12], [18],
[19], our method has several advantages: general nonsmooth
payoff functions, general convex constraints (not necessarily
bounded), constant step size (no need for tuning), to name
a few. A similar preconditioned operator splitting method
has been proposed in a recent work [14] for the distributed
computation of GNEs for monotone games on networks
with coupling constraints. Comparing our work with [14],
the games under study and the operator splitting methods
used are different (Douglas-Rachford splitting vs. forward-
backward splitting). The algorithms proposed in [14], while
more computationally efficient, converge under more stringent
conditions: differentiable payoff functions with strongly mono-
tone and Lipschitz continuous pseudo-gradients. None of these
conditions are required for the convergence of our algorithms.

This paper is organized as follows. Some useful facts on
convex-concave (or saddle) functions and saddle points are
reviewed in Section II. In Section III, operator splitting meth-
ods are introduced to compute the saddle points of composite
saddle functions. Section IV formulates the convex-concave
games on networks with only local coupling constraints and
propose two distributed solution algorithms. The case with
global coupling constraints is studied in Section V. Simulation
results are given in Section VI. Finally, Section VII concludes
the paper.

II. SADDLE FUNCTIONS AND SADDLE DIFFERENTIAL
OPERATORS

A. Preliminaries

We first briefly review some basic facts from convex anal-
ysis. An extended-real-valued function f : Rn → R :=
R∪{±∞} is convex if, for all x1, x2 ∈ Rn and all λ ∈ [0, 1],
f(λx1 +(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2) holds whenever
{f(x1), f(x2)} 6= {±∞}. A convex function f is called
proper if: (i) f(x) > −∞ for all x; and (ii) f(x) < +∞ for at
least one x. It is called closed if its epigraph {(x, t) | f(x) ≤ t}
is a closed set, or equivalently, if f is lower semicontinuous.
A convex function satisfying both the above properties is
called convex, closed and proper (CCP). For a convex subset
C ⊂ Rn, its (convex) indicator function 1C(·) is defined such
that 1C(x) = 0 if x ∈ C and 1C(x) = +∞ if otherwise. 1C(·)
is closed if and only if C is closed and proper if C 6= ∅.

Let Z = Rn. A set-valued operator T : Z → 2Z has
the domain domT := {x |T (x) 6= ∅}. Its inverse map
T−1 : Z → 2Z is such that y ∈ T−1(x) if and only if
x ∈ T (y). T is monotone if (w2 − w1)T (z2 − z1) ≥ 0,
∀z1, z2 ∈ Z, w1 ∈ T (z1), w2 ∈ T (z2). It is maximally
monotone if it is monotone and its graph {(x, y) | y ∈ T (x)} is
not properly contained in that of any other monotone operator.
A well known fact is that the subdifferential operator ∂f of a
convex function f : Z → R, where ∂f(x) consists of all the
subgradients of f at x, is monotone and, if f is further CCP,
maximally monotone. See [34] for more details.

For an operator T : Z → 2Z and a constant ρ > 0,
the resolvent of T is the set-valued operator JρT defined by
JρT = (I + ρT)−1 where I is the identity operator on Z; and

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 3

its reflected resolvent is RρT := 2JρT − I . For a monotone
operator T , it can be shown that RρT is nonexpansive w.r.t. the
Euclidean norm ‖ · ‖, namely, ‖RρT (x)−RρT (y)‖ ≤ ‖x− y‖
for all applicable x and y. Thus, JρT is an averaged operator,
namely, JρT = αI+(1−α)S for some nonexpansive operator
S : Z → Z and some α ∈ (0, 1) (in this particular case we
have S = RρT and α = 1

2). Moreover, JρT and RρT have
the same fixed point set, Fix(JρT) = Fix(RρT), which also
coincides with the zero set of T , zerT := {x | 0 ∈ T (x)}. If
T is further maximally monotone, then dom JρT = Z. In this
case the resolvent iteration xk+1 = JρT (xk) is well defined for
all k and will converge to a point x∗ ∈ zerT if zerT 6= ∅. This
has important implications in optimization as the problem of
finding a minimizer of a convex function f on Z is equivalent
to finding a point in the zero set of its subdifferential operator
∂f , which is in turn equivalent to finding a fixed point of the
resolvent Jρ∂f . It is well known that the resolvent Jρ∂f for a
CCP function f is given by its proximal operator:

proxρf (x) := arg minz f(z) + 1
2ρ‖z − x‖

2, ∀x ∈ Z.

For instance, if f = 1C is the convex indicator function of a
closed nonempty convex subset C ⊂ Z, proxρf becomes the
orthogonal projection operator ΠC onto C. If f has a mini-
mizer, then the resolvent iteration of ∂f , xk+1 = proxρf (xk),
will converge to a minimizer of f . This is the famed proximal
point algorithm [35].

B. Saddle Functions

Let K : X × Y → R be an extended-real-valued function
defined on the product of two Euclidean spaces X and Y .

Definition 1 ([36]). K(x, y) is called a saddle function if it is
a convex function of x for each fixed y and a concave function
of y for each fixed x. The effective domain of K is defined
as domK := {(x, y) ∈ X × Y |K(x, y′) < +∞, ∀y′ ∈
Y and K(x′, y) > −∞, ∀x′ ∈ X}. A saddle function K
is proper if domK 6= ∅, and it is closed if K(x, y) is lower
semicontinuous in x for each fixed y and upper semicontinuous
in y for each fixed x1.

Example 1.
(i) K(x, y) = f(x)−g(y)+xTAy is a saddle function where

f ∈ R and g ∈ R are convex functions and A is a matrix
of proper dimension. It is closed and proper if both f and
g are CCP.

(ii) For the optimization problem minx∈Rn{f(x) | g(x) ≤ 0}
where f ∈ R and g ∈ Rm are convex functions, the
Lagrange function L(x, y) = f(x) + 〈y, g(x)〉 − 1D(y)
with the set D = {y ∈ Rm | y ≥ 0} is a saddle function.
It is closed and proper if both f and g are CCP functions.

(iii) Let C ⊂ X and D ⊂ Y be convex subsets. The function
1C(x) − 1D(y) is not well defined on Cc × Dc where
Cc = X \C and Dc = Y \D as∞−∞ is indefinite. We

1The definition of closedness given here is stronger and easier to check
than the one originally given in [36]

can forcibly set its values on Cc ×Dc to +∞ to define
the following function:

µC×D(x, y) :=


0 if x ∈ C and y ∈ D
−∞ if x ∈ C and y 6∈ D
+∞ if x 6∈ C,

(1)

which is a saddle function on X × Y with the domain
C×D. It is closed and proper if C and D are nonempty
and closed sets. In the rest of the paper, we will follow the
same rule as above when dealing with indefinite function
values. For instance, we set µC×D + µC′×D′ to be
µ(C∩C′)×(D∩D′) for subsets C,C ′ ⊂ X and D,D′ ⊂ Y .

A saddle function K has a saddle point at (x∗, y∗) ∈ X×Y
if K(x∗, y) ≤ K(x∗, y∗) ≤ K(x, y∗) for all x ∈ X, y ∈ Y ,
i.e., x∗ is a minimizer of K(·, y∗) and y∗ is a maximizer
of K(x∗, ·). In this case, we have supy infxK(x, y) =
infx supyK(x, y) = K(x∗, y∗). When K is the payoff func-
tion of a zero-sum two-player game, its saddle points are
exactly the Nash equilibrium points. Existence of saddle points
is not guaranteed for general saddle functions; however, a suf-
ficient condition is given by the Sion’s Minimax Theorem [26].

Proposition 1. ([26]) Let K be a real-valued closed saddle
function on X ×Y and C ⊂ X and D ⊂ Y be two nonempty
compact convex subsets. Then K +µC×D has a saddle point.

Note that K + µC×D is a saddle function that agrees with
K on C×D and by definition (1) can only have saddle point
on C×D. Thus, by adding µC×D to any saddle function, one
can effectively enforce the constraints x∗ ∈ C and y∗ ∈ D
for saddle points (x∗, y∗). In this sense, the µ-functions play
a similar role as convex indicator functions do for converting
constrained optimization problems into unconstrained ones.

C. Saddle Subdifferential Operators

For a saddle function K on X × Y , a set-valued operator
TK : X × Y → 2X×Y can be defined by

TK(x, y) =

[
∂xK(x, y)

∂y(−K)(x, y)

]
, ∀(x, y) ∈ X × Y.

Here, ∂xK(x, y) denotes the subdifferentials of the convex
function K(·, y) at the point x; similarly for ∂y(−K)(x, y).
TK is called the saddle subdifferential operator of K and
in particular the KKT operator when K is the Lagrangian
of a constrained optimization problem [37]. TK has the
domain domTK := {(x, y) |TK(x, y) 6= ∅} and the zero
set zerTK := {(x, y) | 0 ∈ TK(x, y)}. A point (x∗, y∗) ∈
domTK is a saddle point of K if and only if 0 ∈ ∂xK(x∗, y∗)
and 0 ∈ ∂y(−K)(x∗, y∗), i.e., (x∗, y∗) ∈ zerTK . Thus, the
set of saddle points of K is given exactly by zerTK .

Remark 1. In general, for (x, y) ∈ domTK , (p, q) ∈
TK(x, y) if and only if (x, y) is a saddle point of the saddle
function K(x, y)− 〈p, x〉+ 〈q, y〉 (see [36]).

Proposition 2 ([36]). Let K be a saddle function on X×Y . If
K is proper, then TK is a monotone operator with the domain
domTK ⊂ domK. If K is proper and closed, then TK is a
maximally monotone operator.

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 4

By the above result, for a closed proper saddle function K,
TK is maximally monotone. Hence, the resolvent of TK for
given ρ > 0, which we denote by JρK , is an averaged operator
defined everywhere on X × Y . The fixed point set Fix(JρK)
of JρK , being the same as zerTK , is exactly the set of saddle
points of K. Thus, finding a saddle point of K is equivalent
to finding a fixed point of the averaged operator JρK . Since
repeated iterations using an averaged operator converges to
one of its fixed points (if it exists), a saddle point of K can
be computed via the iteration (xk+1, yk+1) = JρK(xk, yk).
In the following, we list several explicit characterizations of
JρK . For any (x, y) ∈ X × Y , (p, q) = JρK(x, y) if and only
if (x, y) ∈ (I + ρTK)(p, q), or equivalently,{

0 ∈ ∂pK(p, q) + (p− x)/ρ

0 ∈ ∂q(−K)(p, q) + (q − y)/ρ
(2a)

⇔

{
p = arg minp∈X K(p, q) + 1

2ρ‖p− x‖
2

q = arg maxq∈Y K(p, q)− 1
2ρ‖q − y‖

2
. (2b)

Yet another equivalent condition is that (p, q) is a saddle point
of K(p, q) + 1

2ρ

(
‖p− x‖2 − ‖q − y‖2

)
.

Example 2.
(i) Let K(x, y) = f(x) + 〈y,Ax− b〉 be the Lagrange func-

tion for the optimization problem min{f(x) |Ax = b}.
Then, (2a) becomes 0 ∈ (p − x)/ρ + ∂f(p) + AT q and
(q − y)/ρ = Ap− b. These imply{

p = arg minz Lρ(z) + 1
2ρ‖z − x‖

2

q = y + ρ(Ap− b).

Here, Lρ(z) = f(z) + 〈y,Az − b〉 + ρ
2‖Az − b‖

2 is the
augmented Lagrange function [37].

(ii) Consider the bilinear saddle function

K(x, y) =
1

2

[
x
y

]T [
Σ1 Σ2

ΣT2 −Σ3

] [
x
y

]
+

[
b1
b2

]T [
x
y

]
(3)

where Σ1,Σ2,Σ3 are matrices of proper dimensions with

Σ1,Σ3 � 0. Let Σ :=

[
Σ1 Σ2

−ΣT2 Σ3

]
. Then (2a) leads to

JρK(x, y) = (I + ρΣ)
−1

[
x− ρb1
y + ρb2

]
. (4)

If Σ1,Σ3 � 0, then Σ−1
[
−bT1 bT2

]T
is the unique fixed

point of JρK and the unique saddle point of K.
(iii) For K = µC×D in (1), JρK for any ρ > 0 is ΠC × ΠD

where ΠC and ΠD are the orthogonal projections onto
the closed convex sets C and D, respectively.

The proof of the following result is straightforward and
hence omitted.

Proposition 3. Suppose K(x, y) = K1(x1, y1) + · · · +
Km(xm, ym). Here, x = (x1, . . . , xm) ∈ X = X1×· · ·×Xm,
y = (y1, . . . , ym) ∈ Y = Y1 × · · · × Ym, and Ki(xi, yi)
is a closed proper saddle function on Xi × Yi for each i.
Then, (p, q) = JρK(x, y) is given by p = (p1, . . . , pm) and
q = (q1, . . . , qm) where (pi, qi) = JρKi

(xi, yi) for each i.

III. OPERATOR SPLITTING METHODS

Suppose K = K1 +K2 is the sum of two closed and proper
saddle functions K1 and K2 on X × Y . Then K is also a
closed and proper saddle function. Assume K has a saddle
point (while K1 and K2 may have none). By Proposition 2, the
saddle differential operators TK , TK1 , and TK2 are maximally
monotone, and their resolvents JρK , JρK1

, and JρK2
are

averaged operators defined everywhere on X × Y . In this
section we focus on the case when JρK1

and JρK2
are much

easier to compute than JK , and look for iterative algorithms
that compute a saddle point of K using JρK1 and JρK2 .

Example 3.

(i) For K(x, y) = f(x) − g(y) + yTAx we have TK =[
∂f(x) +AT y
∂g(y)−Ax

]
. Even if both f and g are differentiable,

computing JρK using (2a) entails the solution of two cou-
pled nonlinear equations. Write K as K = K1 +K2 with
K1 = f(x)+yTAx and K2 = −g(y). Then, JρK1

can be
computed as in Example 2 (i), while JρK2

= I×proxρg .
(iii) Let K(x, y) = G0(x) +

∑m
i=1Gi(xi, y) where x =

(x1, . . . , xm) ∈ X = X1 × · · · × Xm; y ∈ Y ; G0 is
a real-valued CCP function on X; and G1, . . . , Gm are
real-valued closed proper saddle function on Xi × Y .
By introducing variables y1, . . . , ym, K can be rewritten
as K = K1 + K2 where K1 =

∑m
i=1G1(xi, yi) is

separable and K2 = G0(x)− 1A(y1, . . . , ym) with A =
{(y1, . . . , ym) | y1 = · · · = ym}. Then, JρK1

can be com-
puted by Proposition 3 and JρK2 = proxρG0

×ΠA where
ΠA(y1, . . . , ym) = (ȳ, . . . , ȳ) with ȳ = 1

m (y1+· · ·+ym).

To find a saddle point of K = K1 + K2, we employ
the Douglas-Rachford splitting [38], [39], which is a classical
technique for finding a zero point of an operator T = T1 +T2

for two monotone operators T1, T2 on Z = Rn. In the
following we present a generalized version that will be needed
in Section V. For this purpose, we first generalize the definition
of the resolvent. Suppose P = PT ∈ Rn×n is positive definite.
Denote by 〈z, z′〉P = zTPz′ and ‖z‖P =

√
zTPz the inner

product and the norm on Z induced by P . For a set-valued
operator T : Z → 2Z define its generalized resolvent and
reflected resolvent (preconditioned by P) as

JPT := (I + P−1T)−1, RPT := 2JPT − I. (5)

It can be easily verified that JPT = (P+T)−1P . The canonical
JρT and RρT defined in Section II-A are special instances with
P = ρ−1I . If T is maximally monotone, then both JPT and
RPT have the domain Z; RPT is nonexpansive w.r.t. the norm
‖ · ‖P ; and thus JPT is a (1/2)-averaged operator w.r.t. ‖ · ‖P .
As a result, the generalized resolvent iteration zk+1 = JPT (zk)
converges to a point in the set Fix(JPT) = Fix(RPT) = zerT
provided that this set is nonempty. See [34] for further details.

Proposition 4 (Pre-conditioned Douglas-Rachford Splitting).
Suppose T1, T2 : Z → 2Z are maximally monotone operators
on Z = Rn with zer(T1 + T2) 6= ∅ and P ∈ Rn×n is positive

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 5

definite. Then w∗ ∈ zer(T1 +T2) if and only if w∗ = JPT2
(z∗)

for some z∗ ∈ Fix(RPT1
◦RPT2

). Further, the iteration

wk = JPT2
(zk) (6a)

zk+1 = zk + 2α
(
JPT1

(2wk − zk)− wk
)

(6b)

starting from any z0 yields a sequence wk that converges to
some w∗ ∈ zer(T1 + T2) as k →∞ for any α ∈ (0, 1).

The proof of Proposition 4, a simple extension of the
canonical proof, is included in Appendix A. In the rest of
this section, we consider the classical case (P = ρ−1I).

To find a saddle point of K = K1 + K2, i.e., a zero point
of the operator TK = TK1

+ TK2
, since TK1

and TK2
are

maximally monotone, we can apply (6a) to obtain:

(x̃k, ỹk) = JρK2(xk, yk) (7a)

(xk+1, yk+1) = (xk, yk) + 2α
(
JρK1

(2x̃k − xk, 2ỹk − yk)

− (x̃k, ỹk)
)

(7b)

for k = 0, 1, By Proposition 4, for α ∈ (0, 1) and starting
from any (x0, y0), the sequence (x̃k, ỹk) will converge to a
saddle point (x∗, y∗) of K. This algorithm will be the basis of
our algorithm design in Sections IV and V. Note that in (7),
the roles of K1 and K2 can be switched.

Example 4 (Sparse bilinear games). Let K(x, y) = xTAy +
bT1 x + bT2 y + β1‖x‖1 − β2‖y‖1 where ‖ · ‖1 is the L1-
norm and β1, β2 > 0. The L1-regulation terms are added to
promote sparsity of K’s saddle points w∗ = (x∗, y∗). Write
K = K1 + K2 where K1 = xTAy + bT1 x + bT2 y and K2 =
β1‖x‖1−β2‖y‖1. Then JρK1

can be computed as in Example 2
(ii) and JρK2

= proxβ1ρ‖·‖1 ×proxβ2ρ‖·‖1 where proxηρ‖·‖1 ,
η ∈ {β1, β2}, are given by the elementwise soft thresholding
operator (sηρ(v))i := max{vi − ηρ, 0} − max{−vi − ηρ, 0}
with i indexing the entries of v and sηρ(v) (see [40]).

Consider the following numerical example: A =1 3 2
6 5 4
9 8 7

, b1 =

−30
−33
−60

, and b2 =

−117
−126
−45

. In this case K1

has a unique saddle point (x∗1, y
∗
1) = (30, 124,−73,−5, 7, 7).

The saddle point of K computed by the algorithm in (7)
is (x∗1, y

∗
1) for β1 = β2 = 0, (0, 0, 5.75, 0,−2.5, 0) for

β1 = β2 = 80, and (0, 0) for β1 = β2 = 130. With larger
β’s, the sparsity of the computed saddle point increases.

IV. CONVEX-CONCAVE GAMES ON NETWORKS

In this section, we formulate the convex-concave games
on networks and propose distributed iterative algorithms to
compute Nash equilibrium points. We first consider games
with local but no global coupling constraints. The case with
global constraints will be discussed in Section V.

A. Game Formulation

Consider a network consisting of m nodes indexed by
[m] := {1, . . . ,m}. The local variable (xi, yi) of each node
i ∈ [m] consists of two parts: a local x-variable xi ∈ Rňi and
a local y-variable yi ∈ Rn̂i for some ňi, n̂i ∈ {0, 1, . . .}. It is
possible that ňi = 0 and/or n̂i = 0, in which case we write

xi = ∅ and/or yi = ∅ to indicate the absence of the corre-
sponding local variable. Denote by [m]x = {i ∈ [m] |xi 6= ∅}
and [m]y = {i ∈ [m] | yi 6= ∅} the groups of nodes with
non-empty local x- and y-variables, respectively. The game
under study has a global payoff function K(x, y) to be defined
shortly and is played between two teams: one team (x-team)
controls all the local x-variables from the group of nodes [m]x,
concatenated as x = (xi)i∈[m]x ∈ Rň, and tries to minimize K
while the other team (y-team) controls all the local y-variables
y = (yi)i∈[m]y ∈ Rn̂ from the group of nodes [m]y and tries
to maximize K.

The global payoff function K is defined by

K(x, y) =
∑
i∈[m]Ki (8)

where, for each i ∈ [m], Ki is an extended-real-valued
function called the local payoff function of node i. We
assume that the local payoff functions are coupled: Ki de-
pends on not only the local variable (xi, yi) of node i but
also the variables of neighboring nodes, specifically, xj for
j ∈ Ň+

i and yl for l ∈ N̂+
i . The two (possibly different)

sets Ň+
i , N̂

+
i ⊂ [m] are called the x-in-neighbor and y-in-

neighbor sets of node i, respectively. Thus, Ki is of the form
Ki(xi, (xj)j∈Ň+

i
, yi, (yl)l∈N̂+

i
). We further assume that each

Ki is a saddle function, i.e., it is convex in (xi, (xj)j∈Ň+
i

)

for each fixed (yi, (yl)l∈N̂+
i

) and concave in (yi, (yl)l∈N̂+
i

)

for each fixed (xi, (xj)j∈N+
i

). Then, K(x, y) is also a saddle
function. Note that this formulation allows the existence of
locally coupled constraints for each node i of the form

(xi, (xj)j∈Ň+
i

) ∈ Dx
i , (yi, (yl)l∈N̂+

i
) ∈ Dy

i (9)

for nonempty closed convex sets Dx
i and Dy

i . In the rest of
this paper we assume that constraints (9) are incorporated into
the local payoff functions via the additive terms µDx

i ×D
y
i

.
The dependency structure of the local payoff functions

on the local variables can be represented by two directed
graphs. The x-dependency graph ([m], Ex) has the edge set
Ex ⊂ [m]× [m] so that an edge (j, i) ∈ Ex exists if and only
if Ki depends on xj . For node i, its x-in-neighbor set becomes
Ň+
i = {j|(j, i) ∈ Ex} and its x-out-neighbor set can be

defined as Ň−i = {j|(i, j) ∈ Ex}. Similarly, we can define the
y-dependency graph ([m], Ey) and the y-out-neighbor set N̂−i
for each node i. As an example, in the game shown in the top
of Fig. 1, node 1 has the x-in-neighbor set Ň+

1 = {2}, the x-
out-neighbor set Ň−1 = {2}, the y-in-neighbor set N̂+

1 = {3},
and the y-out-neighbor set N̂−1 = ∅. Note that node 2 has no
local y-variable and its local payoff function K2 only depends
on x-variables, both of which are allowed in our formulation.

We aim to solve the following problem in this section.

Problem 1. Find a saddle point of K(x, y) =
∑
i∈[m]Ki.

Problem 1 is equivalent to finding a Nash equilibrium point
of a zero-sum game played by two teams controlling two
separate sets of the local variables on a network. A special case
is when each node has local variables from at most one team,
i.e., [m]x ∩ [m]y = ∅. Then the game is being played between
two distinct groups of nodes, with friendly nodes in one group
coordinating their decisions against the (also coordinated)

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 6

Fig. 1: Two examples of games on networks. Each circle
represents an node, with its local variables marked inside
the circle and its local payoff function marked next to the
circle. Solid and dashed arrows represent the edges of the x-
dependency graph and the y-dependency graph, respectively.

enemy nodes in the other group. The bottom game in Fig. 1 is
one such example, where nodes belonging to the two groups
are labeled with blue and red colors, respectively.

Example 5 (Networked Cournot Competition). Consider two
firms, Firm X and Firm Y, producing and supplying a sin-
gle homogeneous good on multiple interconnected markets
indexed by [m]. At each market i, let xi and yi be the amounts
of good supplied by the two firms, and let the convex functions
fi(xi) and gi(yi) be the corresponding local production costs
of the two firms, respectively. The market clearing price pi of
the good in market i is given by pi(xi+yi+

∑
j∈Ň+

i
αijxj +∑

l∈N̂+
i
βilyl) for some αij , βil ∈ [0, 1] and some convex

decreasing function pi(·). Note that the price depends on not
only the total local supply xi + yi in market i but also (to a
lesser degree) the supply in neighboring markets due to local
buyers’ actual or perceived option of buying from neighboring
markets. The total profits of the two firms in all the markets are
thus

∑
i(pixi − fi(xi)) and

∑
i(piyi − gi(yi)), respectively.

The global payoff function is the profit difference between
the two firms: K =

∑
i∈[m][pi(yi − xi) + fi(xi) − gi(yi)].

Note that the game defined above is different from the ones
studied in [30] and [14] due to the couplings of local clearing
price with neighboring markets’ supply and the distribution of
decision variables from each team across the whole network.

Take the left of Figure 1 as an example. Assume pi(s) =
ωi − γis with ωi = 10 and γi = 1, fi(xi) = x2

i , gi(yi) =
y2
i , and αij = αil = 0.5 for all i and applicable j, l. Then
K1 = (10 − x1 − 0.5x2 − y1 − 0.5y3)(y1 − x1) + x2

1 − y2
1 ,

K2 = (10− 0.5x1−x2)(−x2) +x2
2, and K3 = (10− 0.5x2−

x3 − y3)(y3 − x3) + x2
3 − y2

3 . In this case, K = K1 + K2 +

K3 is of the form (3) and has a unique Nash equilibrium
at (x∗1, x

∗
2, x
∗
3, y
∗
1 , y
∗
2) = (0.82, 1.16, 1.10, 0.97, 1.09). At this

equilibrium the local market clearing prices of the good at
the three markets are p∗1 = 2.08, p∗2 = 3.43, p∗3 = 2.23. Not
surprisingly p∗2 is the highest due to market 2 being captive
to Firm X, while p∗1 is the lowest since market 1 is the most
contested market. For Firm X, its total production is 3.09 and
total profit is 4.91; for Firm Y, these two numbers are 2.06
and 2.32, respectively.

To ensure the existence of a solution to Problem 1, the
following assumption is made.

Assumption 1. Each Ki is closed and proper; and K =∑
i∈[m]Ki has at least one saddle point.

Assumption 1 implies that the sets Dx
i and Dy

i in the local
coupling constraints (9) must be closed. However, it does not
require each local saddle function Ki to have saddle points.

Assumption 2 (Communicability). Two nodes i and j can
communicate local variables with each other whenever (i, j) ∈
Ex ∪ Ey or (j, i) ∈ Ex ∪ Ey . Further, the communicated
information of each team is available to the other team.

Assumption 2 means that two neighboring nodes in either
the x- or y-dependency graph can exchange their local x- and
y-variables via bidirectional communications. Using a simple
two-node network with a single directed dependency edge, it
is easy to see why bidirectional communications are needed
for the convergence of any distributed algorithm. Also, the
communications by both teams between neighboring nodes are
assumed to be in pubic and available to the opposing teams. On
the other hand, even for the same team, its decision makers at
non-neighboring nodes cannot exchange information directly.

Our goal is to design a distributed iterative algorithm to
solve Problem 1 so that each node uses only locally available
information permitted by Assumption 2 for update at every
iteration and that the collected variables of all nodes converge
asymptotically to a saddle point (x∗, y∗) of K.

B. Problem Reformulation

For each node i, we introduce the local auxiliary variables
(xij)j∈Ň+

i
and (yil)l∈N̂+

i
representing the copies held by

node i for the x-variables of its x-in-neighbors and the y-
variables of its y-in-neighbors, respectively. Together with
(xi, yi), these are exactly the variables that the local payoff
function Ki depends on. Denote by xi := (xi, (xij)j∈Ň+

i
) ∈

RŇi and yi := (yi, (yil)l∈N̂+
i

) ∈ RN̂i the augmented x-

variable and y-variable of node i, and by x := (xi)i∈[m] ∈ RŇ

and y := (yi)i∈[m] ∈ RN̂ their concatenations. Define the x-
consensus and y-consensus subspaces for x and y as

Ax := {x |xi = xji, ∀i ∈ [m], j ∈ Ň−i },
Ay := {y | yi = yli, ∀i ∈ [m], l ∈ N̂−i }. (10)

For each (x,y) ∈ A := Ax × Ay , since all the auxiliary
variables are faithful copies, the saddle function

Ka(x,y) :=
∑
i∈[m]Ki(xi,yi) (11)

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 7

has the true value of the global payoff function K(x, y) where
(x, y) is obtained from (x,y) by pruning all the auxiliary
variables. Thus, Problem 1 is equivalent to the following.

Problem 2. Find a saddle point (x∗,y∗) of Ka(x,y) +
µAx×Ay (x,y).

By Assumption 1, the saddle function Ka is closed and
proper; and a solution to Problem 2 exists. In the following, we
focus on solving Problem 2 instead of Problem 1 since, unlike
K(x, y), Ka(x,y) is separable; hence the resolvent JρKa

of
its saddle differential operator TKa

can be computed in par-
allel by individual nodes according to Proposition 3. Further,
JρµAx×Ay

= ΠAx × ΠAy . Here, the orthogonal projection
operator ΠAx

has the explicit form ΠAx
(x)= (x̄i)i∈[m] where

each x̄i = (x̄i, (x̄ij)j∈Ň+
i

) is given by

x̄i = 1
1+|Ň−i |

(xi +
∑
j∈Ň−i

xji), x̄ij = x̄j , ∀j ∈ Ň+
i . (12)

Similarly, ΠAy (y) = (ȳi)i∈[m] with each ȳi = (ȳi, (ȳil)l∈N̂+
i

)
given by

ȳi = 1
1+|N̂−i |

(yi +
∑
l∈N̂−i

yli), ȳil = ȳl, ∀l ∈ N̂+
i . (13)

C. Distributed Solution Algorithm

Applying the algorithm (7) to the splitting Ka + µAx×Ay
,

we obtain

x̄k = ΠAx
(xk), ȳk = ΠAy

(yk); (14a)

(xk+1
i ,yk+1

i) = (xki ,y
k
i) + 2α

(
JρKi(2x̄ki − xki , 2ȳki − yki)

− (x̄ki , ȳ
k
i)
)
, i ∈ [m]. (14b)

The overall algorithm is summarized in Algorithm 1 below.
Each iteration of the algorithm consists of two stages. The
first stage (14a) requires two synchronous rounds of commu-
nications between neighboring nodes: each node i first collects
variables xji’s from its x-out-neighbors j ∈ Ň−i and yli’s from
its y-out-neighbors l ∈ N̂−i ; it then computes x̄i by (12) and
ȳi by (13); finally it sends x̄i and ȳi to its out-neighbors as
the updated values of xji’s and yli’s. The second stage (14b)
requires no inter-node communications.

Algorithm 1 Synchronous Algorithm

1: Initialize x0 and y0, and let k ← 0;
2: repeat
3: x̄k ← ΠAx

(xk); ȳk ← ΠAy
(xk);

4: for i = 1, . . . ,m do
5: (xk+1

i ,yk+1
i) ← (xki − 2αx̄ki ,y

k
i − 2αȳki) +

2αJρKi(2x̄ki − xki , 2ȳki − yki);
6: k ← k + 1;
7: until |(xk,yk)− (xk−1,yk−1)| is sufficiently small
8: return (x̄k, ȳk)

The following result follows directly from the discussions
in Section IV-B and Proposition 4.

Theorem 1. Under Assumptions 1 and 2 and with α ∈ (0, 1),
ρ > 0, the sequence (x̄k, ȳk) generated by Algorithm 1

starting from any initial x0 and y0 converges as k → ∞ to
a saddle point (x∗,y∗) of Ka + µAx×Ay , which corresponds
to a saddle point (x∗, y∗) of K.

Algorithm convergence is guaranteed for any constant (im-
plicit) step size ρ > 0 and with no further assumptions on
payoff functions such as differentiability, strong monotonicity
and Lipschitzness of its gradients. The locally coupling con-
straints (9) can be specified by arbitrary closed convex sets.

D. Randomized Implementation

Algorithm 1 can be implemented via randomization as a
way to combat practical issues such as lack of synchronous
clocks among nodes and heterogeneity in node capacity. We
first introduce a relevant result.

Proposition 5 ([41]). Let T : Rn → Rn be an averaged
operator with Fix(T) 6= ∅. Partition z ∈ Rn into (z1, . . . , zm)
and Tz into (T1z, . . . , Tmz) where zi, Tiz ∈ Rni for i ∈ [m].
Consider the following iteration. At each step k = 0, 1, . . .,
first an index ik ∈ [m] is chosen randomly and independently
with the probabilities P

(
ik = i

)
= pi > 0; then zk is updated

to zk+1 where zk+1
ik

= Tikz
k and zk+1

l = zkl for l 6= ik. Then,
zk converges almost surely to some z∗ ∈ Fix(T) as k →∞.

Recall that in (14) the iteration from (xk,yk) to
(xk+1,yk+1) is via an averaged operator (see the proof of
Proposition 4). Applying Proposition 5 to this results in the
following algorithm: at round k, one node ik = i ∈ [m]
is activated with the i.i.d. probability pi > 0; it first com-
putes (x̄ki , ȳ

k
i); then updates (xk+1

i ,yk+1
i) = (xki ,y

k
i) +

2α
(
JρKi

(2x̄ki − xki , 2ȳki − yki) − (x̄ki , ȳ
k
i)
)

. Note that to
compute (x̄ki , ȳ

k
i) = (x̄ki , (x̄

k
j)j∈Ň+

i
, ȳki , (ȳ

k
l)l∈N̂+

i
), node i

needs to collect x̄kj from its x-in-neighbors j ∈ Ň+
i and ȳkl

from its y-in-neighbors l ∈ N̂+
i , whose values in turn require

these in-neighbors to communicate bidirectionally with their
own out-neighbors. To avoid such two-hop communications,
we let every node i ∈ [m] hold two extra variables: x̄i,
the latest average of xi and xji for j ∈ Ň−i , and ȳi, the
latest average of yi and yli for l ∈ N̂−i . After the randomly
activated node has updated its local variables, the affected extra
variables will also be updated to the latest averaged values.
With this modification, a randomized version of Algorithm 1
is summarized in Algorithm 2. In each round, the activated
node i communicates bidirectionally with its x- and y-in-
neighbors in step 7 to collect the latest averages x̄kj and ȳkl ;
and in steps 11-14 to send back the differences xk+1

ij − xkij ,
yk+1
il − ykil. No two-hop communications are needed.

By Propositions 4 and 5, we have the following result.

Corollary 1. Suppose Assumptions 1 and 2 hold and α ∈
(0, 1), ρ > 0, pi > 0, ∀i ∈ [m]. Starting from any initial
x0 and y0, the sequence (x̄k, ȳk) returned by Algorithm 2
converges with probability one to a saddle point of K.

E. Numerical Example

Consider an example on a 7-node network as shown in
Fig. 2. The network nodes are partitioned into two groups:

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 8

Algorithm 2 Randomized Algorithm

1: Choose any x0 and y0, and let k ← 0
2: for i = 1, . . . ,m do
3: x̄0

i ← (x0
i +

∑
j∈Ň−i

x0
ji)/(1 + |Ň−i |);

4: ȳ0
i ← (y0

i +
∑
l∈N̂−i

y0
li)/(1 + |N̂−i |);

5: repeat
6: Pick i ∈ [m] with i.i.d. probability pi > 0
7: x̄ki ← (x̄ki , (x̄

k
j)j∈Ň+

i
); ȳki ← (ȳki , (ȳ

k
l)l∈N̂+

i
);

8: (xk+1
i ,yk+1

i) ← (xki − 2αx̄ki ,y
k
i − 2αȳki) +

2αJρKi
(2x̄ki − xki , 2ȳki − yki);

9: x̄k+1
i ← x̄ki + (xk+1

i − xki)/(|Ň−i |+ 1);
10: ȳk+1

i ← ȳki + (yk+1
i − yki)/(|N̂−i |+ 1);

11: for j ∈ Ň+
i do

12: x̄k+1
j ← x̄kj + (xk+1

ij − xkij)/(|Ň
−
j |+ 1);

13: for l ∈ N̂+
i do

14: ȳk+1
l ← ȳkl + (yk+1

il − ykil)/(|N̂
−
l |+ 1);

15: k ← k + 1;
16: until k is sufficiently large
17: return x̄k = (x̄ki)i∈[m] and ȳk = (ȳki)i∈[m]

{1, 2, 3, 4, 5} and {6, 7}. Nodes in the first group have only
local x-variables while nodes in the second group have only
local y-variables. The local payoff function Ki of each node i
depends on the variables of its in-neighbors (as depicted by
the incoming arrows in Fig. 2) and is assumed to be of
the bilinear form in Example 2 (ii) with randomly generated
parameters. It is ensured that Ki’s associated with nodes in
the x-group are strictly convex in the x-variables and affine
in the y-variables while Ki’s belonging to nodes in the y-
group are strictly concave in the y-variables and affine in
the x-variables; so each Ki has no saddle points but the
sum K =

∑7
i=1Ki has a unique saddle point (x∗, y∗). We

first apply Algorithm 1 to solve this game with four sets of
parameters, (ρ, α) = (0.01, 0.5), (1, 0.5), (1, 0.98), (100, 0.5),
respectively. As shown in Fig. 2, starting from a randomly
generated initial point z0, the iteration result (x̄k, ȳk) extracted
from z̄k computed in Step 3 of Algorithm 1 converges to the
unique saddle point (x∗, y∗) at linear convergence rates in
all cases. For this example, a moderate value of the parameter
ρ = 1 appears to result in the fastest convergence. Algorithm 2
is then applied to solve the same problem with equal node
activation probabilities p1 = · · · = p1 = 1

7 . Compared to
Algorithm 1 using the same parameters (ρ, α) = (1, 0.5),
Algorithm 2 requires more iterations to achieve the same
convergence accuracy (10−8) as at each round only one node
updates as compared to all seven nodes in Algorithm 1.

V. CONVEX-CONCAVE GAMES ON NETWORKS WITH
GLOBAL CONSTRAINTS

The games studied in Problem 1 in the previous section
allow locally coupled constraints of the form (9) involving
decision variables from nodes in the same neighborhood. In
many applications there are also global constraints involving
variables from all of the nodes, e.g., limits on the total
available resources or actuation capacity. In this section, we

Fig. 2: Bilinear game on a 7-node network. Top left: depen-
dence graphs; Top right: convergence of Algorithm 1 with dif-
ferent parameters (ρ, α); Bottom: Convergence of Algorithm 2
with ρ = 1, α = 0.5, and pi = 1

7 , ∀i.

study the convex-concave games on networks with the same
global payoff function K(x, y) =

∑
iKi as defined in (8),

and with the following additional global constraints2:

x ∈ F := {x |
∑
i∈[m] Fixi = c0},

y ∈ G := {y |
∑
i∈[m]Giyi = d0}. (15)

Here, Fi ∈ Rnf×ňi , c0 ∈ Rnf , Gi ∈ Rng×n̂i , and d0 ∈
Rng are given constant matrices and vectors. By letting F =[
F1 · · · Fm

]
and G =

[
G1 · · · Gm

]
, the two global

constraints can be written compactly as Fx = c0 and Gy =
d0. For the algorithm design, it is often convenient to distribute
the global constraints to individual nodes. Write c0 = c1+· · ·+
cm and d0 = d1 + · · ·+dm for some ci ∈ Rnf , di ∈ Rng , i ∈
[m]. Then the global constraints become

∑
i(Fixi − ci) = 0

and
∑
i(Giyi − di) = 0. We emphasize that node i does not

need to satisfy the constraints Fixi− ci = 0 or Giyi−di = 0.

Assumption 3. The data (Fi, ci) and (Gi, di) are private to
node i and not shared with decision makers at other nodes,
even those from the same team.

Thus, each node only knows a portion of the global con-
straints and keeps that information from other nodes. In place
of Assumption 1, the following is assumed in this section.

Assumption 4. Each Ki is closed and proper; and K+µF×G
has at least one saddle point.

The problem to be studied in this section is defined below.

Problem 3. Find a saddle point of K + µF×G .

2More general global constraints will be discussed in Section V-C

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 9

Example 6. Consider the convex-concave game with the same
bilinear payoff function as in (3) and with the additional global
constraints Fx = c0 and Gy = d0. In this case, the Nash
equilibrium (x∗, y∗) can be computed from

x∗

y∗

p∗

q∗

 =


Σ1 Σ2 −FT 0
−ΣT2 Σ3 0 GT

F 0 0 0
0 G 0 0


−1 
−b1
b2
c0
d0

 , (16)

where p∗ and q∗ are the optimal values of the dual variables
w.r.t. the two global constraints.

A. Distributed Algorithms with Coordinator

A simple solution to Problem 3 is to introduce an additional
node called the coordinator node (with the index 0) that has no
local variables and a local payoff function K0 = µF×G . This
new node is an x-out-neighbor as well as a y-out-neighbor
of every other node. Then K + µF×G =

∑m
i=0Ki and Prob-

lem 3 is reduced to Problem 1. The algorithm (14) developed
in Section IV can be applied after proper modifications to
accommodate the new node. In each iteration of the algorithm,
the coordinator node needs to collect the local variables from
all the other nodes and evaluates JρK0 = ΠF × ΠG where
ΠF (x) = x− F †(Fx− c0) and ΠG(y) = y −G†(Gy − d0)
are the orthogonal projections onto the affine subspaces F
and G. The matrices F † and G† require private data Fi and
Gi from all the other nodes and could have large dimension.

We next present a different distributed algorithm also with
a coordinator node that has lower computation burden for the
coordinator and better privacy preservation for the other nodes.
To this purpose, introduce dual variables ξ0 ∈ Rng and η0 ∈
Rnf for the two global constraints and define

Kb(x, ξ0, y, η0) = K(x, y) + ηT0 (Fx− c0) + ξT0 (Gy − d0).
(17)

It is easy to see that Kb is a saddle function in the pair of
variables (x, ξ0) and (y, η0).

Lemma 1. (x∗, y∗) is a saddle point of K+µF×G if and only
if (x∗, ξ∗0 , y

∗, η∗0) is a saddle point of Kb for some ξ∗0 and η∗0 .

Proof. For the “if” part, note that (x∗, ξ∗0 , y
∗, η∗0) being a

saddle point of Kb is equivalent to

0 ∈ ∂xK(x∗, y∗) + FT η∗0 , 0 ∈ ∂y(−K)(x∗, y∗)−GT ξ∗0 ,
Gy∗ − d0 = 0, Fx∗ − c0 = 0. (18)

The last two conditions imply that (x∗, y∗) ∈ F × G. By (1),
this further implies that ∂xµF×G(x∗, y∗) = ∂1F (x∗) and
∂y(−µF×G)(x∗, y∗) = ∂1G(y∗). Recall that ∂1F (x∗) is the
normal cone of the set F at x∗ ([34]). As F = {x |Fx = c0}
is an affine subspace, its normal cone at x∗ is exactly the range
space of FT . We then have FT η∗0 ∈ ∂xµF×G(x∗, y∗). Thus
the first condition in (18) can be written as 0 ∈ ∂xK(x∗, y∗)+
∂xµF×G(x∗, y∗). Similarly, the second condition in (18) re-
sults in 0 ∈ ∂y(−K)(x∗, y∗) + ∂y(−µF×G)(x∗, y∗). These
two facts show that (x∗, y∗) is a saddle point of K + µF×G .
Proof of the “only if” part is similar and hence omitted.

Thus, Problem 3 is equivalent to finding a saddle point of
Kb, which exists by Assumption 4. In the game corresponding
to Kb, in addition to the variables xi’s and yi’s, each of the
two teams has an additional decision variable ξ0 or η0 for
enforcing the global constraint on the other team. Using the
decomposition c0 = c1 + · · · + cm and d0 = d1 + · · · + dm,
we can rewrite Kb as

Kb(x, ξ0, y, η0) =
∑
i∈[m]

Li

:=
∑
i∈[m]

[
Ki + ηT0 (Fixi − ci) + ξT0 (Giyi − di)

]
.

We designate (ξ0, η0) to be the local decision variables of
the coordinator node 0, which has a trivial payoff function
L0 = 0. The payoff function of each node i ∈ [m] is
Li as defined above. In addition to the original dependency
relations corresponding to Ki’s, the coordinator node is an x-
in-neighbor as well as a y-in-neighbor of every other node. For
the augmented variables, we have x0 = ξ0 and y0 = η0 for
the coordinator node, and xi = (xi, (xij)j∈Ň+

i
, ξi0) and yi =

(yi, (yij)j∈N̂+
i
, ηi0) for node i ∈ [m]. The consensus subspace

Ax = {x | ξi0 = ξ0, xi = xji, ∀i ∈ [m], j ∈ Ň−i } with
x̄ = ΠAx

(x) such that ξ̄0 = ξ̄i0 = (ξ0 +
∑
i∈[m] ξi0)/(m+ 1)

and x̄i and x̄ij are as defined in (12). Similarly we can define
Ay and ΠAy

. Algorithm (14) then becomes

x̄k = ΠAx(xk), ȳk = ΠAy (yk), (19a)

(xk+1
i ,yk+1

i) = (xki − 2αx̄ki ,y
k
i − 2αȳki)

+ 2αJρLi(2x̄ki − xki , 2ȳki − yki), i ∈ [m], (19b)

(ξk+1
0 , ηk+1

0) = (1− 2α)(ξk0 , η
k
0) + 2α(ξ̄k0 , η̄

k
0). (19c)

In the last step we have used the fact that JρL0
is the identity

operator. The computation of JρLi for i ∈ [m] is different
from that of JρKi but of comparable complexity.

The following theorem follows directly from Proposition 4.

Theorem 2. Suppose Assumptions 2, 3 and 4 hold, and that
the coordinator node can communicate with any other node
i ∈ [m] bidirectionally. Let α ∈ (0, 1) and ρ > 0. Starting
from any initial (x0,y0), (x̄k, ȳk) obtained from the algorithm
in (19) converges asymptotically to some (x∗,y∗) for which
the corresponding (x∗, y∗) is a solution to Problem 3.

In the algorithm (19) the coordinator node only collects
copies of the dual variables from other nodes and none of their
private data; and the computation load of the coordinator node
is minimum. On the other hand, the need of a coordinator node
increases the system’s vulnerability to single-point failures and
attacks. In the next subsection, we will develop distributed
solution algorithms without a coordinator node.

B. Distributed Algorithms without Coordinators

Note that in the algorithm in (19) the role of the coordinator
node is to ensure that copies of the dual variables ξ0 and η0

kept by the other nodes are in consensus. This consensus can
be achieved without a coordinator via information exchanges
between neighboring nodes on a connected graph.

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 10

Assumption 5. There is a connected undirected graph
([m], Ec) with no self-loops so that node pairs (i, j) in the
edge set Ec can communicate with each other bidirectionally.

We call ([m], Ec) the consensus graph and denote by Ni =
{j | (i, j) ∈ Ec} the set of neighbors of node i in this graph.
Associate each edge (i, j) in Ec with a positive weight wij =
wji > 0 and let W = WT ∈ Rm×m be the corresponding
graph Laplacian matrix: Wij = −wij for (i, j) ∈ Ec; Wij = 0
for (i, j) 6∈ Ec and i 6= j; and Wii =

∑
j 6=i wij for i ∈ [m].

Since ([m], Ec) is connected, W has a simple eigenvalue at 0
with the eigenvector 1m with all entry ones.

Remark 2. The consensus graph can be different from the
dependency graphs: it is undirected as opposed to directed;
and it needs to be connected while the dependency graphs are
not necessarily so. On the other hand, one can always choose
Ec to include as many edges in Ex ∪ Ey as possible to take
advantage of the communication capability in Assumption 2.

Let ξ = (ξi)i∈[m] ∈ Rmng and η = (ηi)i∈[m] ∈ Rmnf be
the vectors concatenating the local copies ξi and ηi kept by
nodes i ∈ [m] for the dual variables ξ0 ∈ Rng and η0 ∈ Rnf .
By our assumption on W , a sufficient and necessary condition
for ξi’s to be in consensus (i.e., ξ = 1m ⊗ ξ0 for some ξ0) is
(W ⊗ Ing)ξ = 0. Similarly, ηi’s are in consensus if and only
if (W ⊗ Inf

)η = 0. We can incorporate these two consensus
constraints into the saddle function via the new dual variables
u = (ui)i∈[m] ∈ Rmnf and v = (vi)i∈[m] ∈ Rmng , where
ui ∈ Rnf and vi ∈ Rng . Denote

F̌ := diag(F1, . . . , Fm) ∈ Rmnf×ň,

Ĝ := diag(G1, . . . , Gm) ∈ Rmng×n̂.

The following saddle function in the pair of variables (x, ξ, u)
and (y, η, v) can then be defined:

Kc(x, ξ, u, y, η, v) := K(x, y) + ηT (F̌ x− c) + ξT (Ĝy − d)

+ uT (W ⊗ Inf
)η + vT (W ⊗ Ing

)ξ

= K(x, y) +
∑
i∈[m]

(
ηTi (Fixi − ci) + ξTi (Giyi − di)

+
∑
j∈Ni

wij
(
uTi (ηi − ηj) + vTi (ξi − ξj)

))
. (20)

The saddle differential operator of Kc is

TKc
(x, ξ, u, y, η, v) =



∂xK(x, y) + F̌T η

Ĝy − d+ (W ⊗ Ing
)v

(W ⊗ Inf
)η

∂y(−K)(x, y)− ĜT ξ
−F̌ x+ c− (W ⊗ Inf

)u
−(W ⊗ Ing)ξ

 .

Lemma 2. (x∗, ξ∗0 , y
∗, η∗0) is a saddle point of Kb if and only

if (x∗, ξ∗, u∗, y∗, η∗, v∗) is a saddle point of Kc for some ξ∗,
u∗, η∗, and v∗.

Proof. For the “if” part, suppose (x∗, ξ∗, u∗, y∗, η∗, v∗) is a
saddle point of Kc. From 0 ∈ TKc , we have (W ⊗Inf

)η∗ = 0
and (W ⊗ Ing

)ξ∗ = 0. By our assumption on W , these imply
that ξ∗ = 1m⊗ξ∗0 and η∗ = 1m⊗η∗0 for some ξ∗0 and η∗0 . Thus,

F̌T η∗ = FT η∗0 and ĜT ξ∗ = GT ξ∗0 . The first and fourth rows
of 0 ∈ TKc can then be rewritten as 0 ∈ ∂xK(x∗, y∗)+FT η∗0
and 0 ∈ ∂y(−K)(x∗, y∗)−GT ξ∗0 , which are exactly the first
two conditions in (18). By multiplying the second and fifth
rows of 0 ∈ TKc

from the left by 1Tm ⊗ Ing
and 1Tm ⊗ Inf

,
respectively, and using the fact that 1TmW = 0 due to W being
the graph Laplacian, we derive the last two conditions in (18).
This shows that (x∗, ξ∗0 , y

∗, η∗0) is a saddle point of Kb.
For the “only if” part, suppose (x∗, ξ∗0 , y

∗, η∗0) is a saddle
point of Kb, i.e., condition (18) holds. Set ξ∗ = 1m ⊗ ξ∗0 and
η∗ = 1m ⊗ η∗0 . For 0 ∈ TKc to hold, the only nontrivial rows
are the second and the fifth ones. For the second row, note that
the symmetric matrix W⊗Ing

has the null space {1m⊗w |w ∈
Rng}. Its range space is the orthogonal complement of its
null space, which is exactly the null space of 1Tm⊗ Ing

. Since
(1Tm⊗Ing

)(Ĝy−d) =
∑
i∈[m](Giyi−di) = 0, Ĝy−d belongs

to the range space of W⊗Ing . This shows that the second row
of 0 ∈ TKc can be satisfied by a proper choice of v. Similar
arguments can be applied for the fifth row of 0 ∈ TKc

.

By Lemma 2, Problem 3 can be equivalently solved by
finding a saddle point of Kc. From its definition in (20),
Kc has several non-separable terms: K(x, y) due to the
couplings of Ki’s, and the last two terms involving ηj and
ξj from neighboring nodes j in the consensus graph. To
deal with these, we first follow the strategy in Section IV
and augment the local variables xi and yi of each node i
to xi = (xi, (xij)j∈Ň−i

) and yi = (yi, (yil)l∈N̂−i
). Denote

by Ši and Ŝi the selection matrices that select the original
local variables from their augmented versions: xi = Šixi and
yi = Ŝiyi. Note that Ši ∈ Rňi×Ňi and Ŝi ∈ Rn̂i×N̂i have all
entries being either 0 or 1. Denote

Š = diag(Š1, . . . , Šm), Ŝ = diag(Ŝ1, . . . , Ŝm).

Then x = Šx and y = Ŝy. Define the consensus subspaces
Ax and Ay as in (10). For (x,y) ∈ Ax×Ay , Ka(x,y) defined
in (11) agrees with K(x, y) = K(Šx, Ŝy). Define

Kd(x, ξ, u,y, η, v) := Ka(x,y) + ηT (F̌ Šx− c)
+ ξT (ĜŜy − d) + uT (W ⊗ Inf

)η + vT (W ⊗ Ing)ξ

=
∑
i∈[m]

(
Ki(xi,yi) + ηTi (FiŠixi − ci) + ξTi (GiŜiyi − di)

+
∑
j∈Ni

wij
(
uTi (ηi − ηj) + vTi (ξi − ξj)

))
. (21)

Obviously, for (x,y) ∈ Ax × Ay , we have
Kd(x, ξ, u,y, η, v) = Kc(x, ξ, u, y, η, v) with x = Šx
and y = Ŝy. This implies the following result.

Lemma 3. There is a one-to-one correspondence between
the saddle points (x∗, ξ∗, u∗, y∗, η∗, v∗) of Kc and the saddle
points (x∗, ξ∗, u∗,y∗, η∗, v∗) of the following saddle function:

Ke(x, ξ, u,y, η, v) = Kd(x, ξ, u,y, η, v) + µAx×Ay
(x,y).

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 11

Thus, from this point on we will focus on finding a saddle
point of Ke, or equivalently, finding a point in the zero set of
its saddle differential operator scaled by a constant of 2:

2TKe
= TKe1

+ TKe2

:=


2∂xKa(x,y) + (F̌ Š)T η

ĜŜy − d+ (W ⊗ Ing)v
(W ⊗ Inf)η

2∂y(−Ka)(x,y) − (ĜŜ)T ξ
−F̌ Šx + c− (W ⊗ Inf)u

−(W ⊗ Ing)ξ

+


2∂1Ax(x) + (F̌ Š)T η

ĜŜy − d+ (W ⊗ Ing)v
(W ⊗ Inf)η

2∂1Ay (y) − (ĜŜ)T ξ
−F̌ Šx + c− (W ⊗ Inf)u

−(W ⊗ Ing)ξ

 .
(22)

In the above, 2TKe is split into two operators TKe1 and TKe2

with a similar structure. As will be seen in Lemma 5, this
enables us to compute their resolvents in a distributed way.

Lemma 4. TKe1 and TKe2 are maximally monotone operators.

Proof. Note that TKe1
can be written as the sum of

2
[
(∂xKa(x,y))T 0 0 (∂y(−Ka)(x,y))T 0 0

]T
and

an affine operator defined by a skew symmetric transformation
matrix. The former being the saddle differential operator of the
closed proper saddle function 2Ka is maximally monotone
by Proposition 2. The latter is also maximally monotone and
defined everywhere. As a result, their sum is also maiximally
monotone [34]. Similar proof holds for TKe2

using the fact
that Ax and Ay are nonempty closed convex sets.

Define the following symmetric preconditioning matrix

P :=


P1 0 0 0 (F̌ Š)T 0

0 P2 0 −ĜŜ 0 −(W ⊗ Ing)
0 0 P3 0 W ⊗ Inf

0
0 ? 0 P4 0 0
? 0 ? 0 P5 0
0 ? 0 0 0 P6

 .
(23)

where ?’s indicate transposes of the corresponding blocks
above the main diagonal. Here, we have

P1 = ρ−1IŇ , P2 = diag(δ̌1, . . . , δ̌m)−1 ⊗ INg
,

P3 = diag(ε̌1, . . . , ε̌m)−1 ⊗ INf
,

P4 = ρ−1IN̂ , P5 = diag(δ̂1, . . . , δ̂m)−1 ⊗ INf
,

P6 = diag(ε̂1, . . . , ε̂m)−1 ⊗ INg ,

where ρ, δ̌i, δ̂i, ε̌i, and ε̂i, i ∈ [m], are positive constants
chosen small enough so that P � 0 is positive definite.
With this preconditioning matrix P , we now characterize the
generalized resolvents of TKe1 and TKe2 as defined in (5),
which we denote as J̃Ke1 and J̃Ke2 , respectively.

Lemma 5. (x′, ξ′, u′,y′, η′, v′) = J̃Ke1
(x, ξ, u,y, η, v) can

be computed according to

ξ′ = ξ − P−1
2

(
ĜŜy − d+ (W ⊗ Ing)v

)
, (24a)

η′ = η + P−1
5

(
F̌ Šx− c+ (W ⊗ Inf

)u
)
, (24b)

u′ = u− P−1
3 (W ⊗ Inf

)(2η′ − η), (24c)

v′ = v + P−1
6 (W ⊗ Ing)(2ξ′ − ξ), (24d)

(x′,y′) = J2ρKa

(
x− ρ(F̌ Š)T (2η′ − η),

y + ρ(ĜŜ)T (2ξ′ − ξ)
)
. (24e)

Here, J2ρKa
is the canonical resolvent of 2ρTKa

(i.e.,
no preconditioning). Similarly, (x′, ξ′, u′,y′, η′, v′) =
J̃Ke2(x, ξ, u,y, η, v) can be computed as above, with (24e)
replaced by: x′ = ΠAx

(
x− ρ(F̌ Š)T (2η′ − η)

)
, and

y′ = ΠAy

(
y + ρ(ĜŜ)T (2ξ′ − ξ)

)
.

Proof. From the definition of J̃Ke1
, we have

P (x, ξ, u,y, η, v) ∈ P (x′, ξ′, u′,y′, η′, v′) +
TKe1

(x′, ξ′, u′,y′, η′, v′), or explicitly,

P1x + (F̌ Š)T η

P2ξ − ĜŜy − (W ⊗ Ing
)v

P3u+ (W ⊗ Inf
)η

P4y − (ĜŜ)T ξ
P5η + F̌ Šx + (W ⊗ Inf

)u
P6v − (W ⊗ Ing)ξ



∈


P1x

′ + 2∂xKa(x′,y′) + 2(F̌ Š)T η′

P2ξ
′ − d

P3u
′ + 2(W ⊗ Inf

)η′

P4y
′ + 2∂y(−Ka)(x′,y′)− 2(ĜŜ)T ξ′

P5η
′ + c

P6v
′ − 2(W ⊗ Ing

)ξ′

 .

The second and the fifth rows lead to (24a) and (24b),
while (24c) and (24d) follow from the third and the sixth rows.
The first and fourth rows can be written as

(
x−ρ(F̌ Š)T (2η′−

η),y+ρ(ĜŜ)T (2ξ′−ξ)
)
∈ (I+2ρTKa

)(x′,y′), which results
in (24e). For J̃Ke2

, the proof is entirely similar, with the only
change being that Ka is replaced with 1Ax×Ay

.

All of the steps in (24) can be completed by individual
nodes in a distributed way. This is due to the fact that W is
the graph Laplacian and all other matrices are block diagonal.
As an example, (24a) is equivalent to ξ′i = ξi− δ̌i

(
Giyi−di+∑

j∈Ni
wij(vi − vj)

)
, ∀i ∈ [m].

By applying generalized Douglas-Rachford splitting to
TKe1

+ TKe2
, we have the following algorithm:

z̄k = J̃Ke2
(zk) (25a)

zk+1 = zk + 2α
(
J̃Ke1

(2z̄k − zk)− z̄k
)
, (25b)

where zk = (xk, ξk, uk,yk, ηk, vk) and z̄k =
(x̄k, ξ̄k, ūk, ȳk, η̄k, v̄k). Using Lemma 5, the detailed
executions of (25) are described in Algorithm 3. There are
five for loops in each iteration, the first three carrying out
step (25a) and the last two carrying out step (25b). Each loop
corresponds to one round of synchronous communications
among neighboring nodes. The second loop is the most

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 12

communication intensive: each node i collects ζ̄j and χ̄j
from its neighboring nodes j in the consensus graph and p̄li
and q̄li from its out-neighboring nodes l in the dependency
graphs.

Algorithm 3 Coordinator-Free Algorithm

1: Initialize z0 = (x0, ξ0, u0,y0, η0, v0), and let k ← 0
2: repeat
3: for i = 1, . . . ,m do
4: ξ̄ki ← ξki − δ̌i

(
Giy

k
i − di +

∑
j∈Ni

wij(v
k
i − vkj)

)
;

5: η̄ki ← ηki + δ̂i
(
Fix

k
i − ci +

∑
j∈Ni

wij(u
k
i − ukj)

)
;

6: χ̄ki ← 2ξ̄ki − ξki ; ζ̄ki ← 2η̄ki − ηki ;
7: p̄ki = xki − ρFTi ζ̄ki ; q̄ki = yki + ρGTi χ̄

k
i ;

8: for i = 1, . . . ,m do
9: ūki ← uki − ε̌i

∑
j∈Ni

wij(ζ̄
k
i − ζ̄kj);

10: v̄ki ← vki + ε̂i
∑
j∈Ni

wij(χ̄
k
i − χ̄kj);

11: x̄ki ← (p̄ki +
∑
l∈Ň−i

xkli)/(1 + |Ň−i |);
12: ȳki ← (q̄ki +

∑
l∈N̂−i

ykli)/(1 + |N̂−i |);

13: for i = 1, . . . ,m do
14: x̄kij ← x̄kj , ∀j ∈ Ň+

i ; ȳkij ← ȳkj , ∀j ∈ N̂+
i ;

15: z̄ki ← (x̄ki , ξ̄
k
i , ū

k
i , ȳ

k
i , η̄

k
i , v̄

k
i);

16: z̃ki = (x̃ki , ξ̃
k
i , ũ

k
i , ỹ

k
i , η̃

k
i , ṽ

k
i)← 2z̄ki − zki ;

17: for i = 1, . . . ,m do
18: ξ̂ki ← ξ̃ki − δ̌i

(
Giỹ

k
i − di +

∑
j∈Ni

wij(ṽ
k
i − ṽkj)

)
;

19: η̂ki ← η̃ki + δ̂i
(
Fix̃

k
i − ci +

∑
j∈Ni

wij(ũ
k
i − ũkj)

)
;

20: χ̂ki ← 2ξ̂ki − ξ̃ki ; ζ̂ki ← 2η̂ki − η̃ki ;
21: (x̂ki , ŷ

k
i)=J2ρKi

(
x̃ki −ρŠTi FTi ζ̂ki , ỹki +ρŜTi G

T
i χ̂

k
i

)
;

22: for i = 1, . . . ,m do
23: ûki ← ũki − ε̌i

∑
j∈Ni

wij(ζ̂
k
i − ζ̂kj);

24: v̂ki ← ṽki + ε̂i
∑
j∈Ni

wij(χ̂
k
i − χ̂kj);

25: zk+1
i ← zki + 2α((x̂ki , ξ̂

k
i , û

k
i , ŷ

k
i , η̂

k
i , v̂

k
i)− z̄ki);

26: k ← k + 1
27: until |zk+1 − zk| is sufficiently small
28: return z̄k = (x̄k, ξ̄k, ūk, ȳk, η̄k, v̄k)

Theorem 3. Suppose Assumptions 2, 3, 4, and 5 hold,
and that the positive parameters ρ, δ̌i, δ̂i, ε̌i, and ε̂i for
i ∈ [m] are chosen such that P defined in (23) is positive
definite. Let α ∈ (0, 1). Then, starting from any initial guess
(x0, ξ0, u0,y0, η0, v0), the sequence (x̄k, ξ̄k, ūk, ȳk, η̄k, v̄k)
obtained by Algorithm 3 converges asymptotically to a saddle
point (x∗, ξ∗, u∗,y∗, η∗, v∗) of Ke, which corresponds to a
saddle point solution (Šx∗, Ŝy∗) of Problem 3.

Proof. Since P � 0, by Propostion 4, the sequence
(x̄k, ξ̄k, ūk, ȳk, η̄k, v̄k) converges to a saddle point
(x∗, ξ∗, u∗,y∗, η∗, v∗) of Ke. By Lemmas 1, 2, and 3,
(Šx∗, Ŝy∗) is a solution to Problem 3.

C. General Global Constraints

We now briefly discuss how the proposed methods can be
extended to certain cases of more general global coupling
constraints. We state the conclusions directly as they can be
proved by slight modifications of our existing arguments.

a) Linear inequality constraints.: Suppose the global
constraints are of the form Fx ≤ c0 and Gy ≤ d0. Then the
dual variables in (17) should satisfy ξ0 ∈ Rng

≤0 and η0 ∈ Rnf

≥0,
and correspondingly ξ ∈ Rmng

≤0 and η ∈ Rmnf

≥0 in (20). Here,
R`≥0 := {α ∈ R` |αi ≥ 0, i = 1, . . . , `}. Similarly for
R`≤0. By introducing the corresponding µ functions in the
definitions of Kb, Kc, and Kd to enforce these constraints,
the conclusions of Lemmas 1, 2, and 3 remain valid. In
the splitting (22) of 2TKe , TKe1 will have an extra term
∂1Rmng

≤0
(ξ) in the second row and an extra term ∂1R

mnf
≥0

(η) in
the fifth row. The conclusions of Lemma 5 also remain valid
once (24a) and (24b) are modified to the following:

ξ′ = ΠRmng
≤0

(
ξ − P−1

2

(
ĜŜy − d+ (W ⊗ Ing

)v
))
,

η′ = ΠR
mnf
≥0

(
η + P−1

5

(
F̌ Šx− c+

(
W ⊗ Inf

)
u
))
.

Here, the orthogonal projection ΠRmng
≤0

and ΠR
mnf
≥0

are com-
puted entrywise via the functions ΠR≤0

(z) = min{0, z} and
ΠR≥0

(z) = max{0, z}, respectively. By making these changes
in steps 16 and 17 in Algorithm 3, we obtain a distributed
solution algorithm to the convex-concave games on networks
with global inequality constraints Fx ≤ c0 and Gy ≤ d0.

b) Sum-of-convex-functions constraints.: Consider now a
global constraint of the form

h1(x1) + · · ·+ hm(xm) ≤ h0 (26)

for some convex closed proper functions hi(·) ∈ Rnh , i ∈
[m], and some constant h0 ∈ Rnh . Here we recall that xi
is the concatenation of the local x-variables of node i and
its x-in-neighbors. A special case of the above constraint is
given by h1(x1) + · · · + hm(xm) ≤ h0 where the left hand
side is a separable convex function. By augmenting xi with
an additional variable ri ∈ Rnh for each node i, the global
constraint (26) is equivalent to

hi(xi) ≤ ri, ∀i ∈ [m], and r1 + · · ·+ rm ≤ h0.

The first m constraints are locally coupled ones of the
form (9); indeed, hi(xi) ≤ ri specifies a closed convex
feasible set for (xi, ri). Thus, they can be incorporated into
the local payoff functions of individual nodes. The remaining
constraint r1 + · · · + rm ≤ h0 is a global linear inequality
constraint we just discussed above. Similar procedures can be
adopted if there are constraints of the form (26) for the y-
variables. As a result, Algorithm 3 after slight modifications
can be used to solve the games with sum-of-convex-functions
type of global constraints for both teams.

VI. NUMERICAL EXAMPLES

In this section, we consider the Cournot game on a network
of 50 markets as shown in Figure 3. The locations qi of
each market i is generated uniformly at random on the square
[0, 1] × [0, 1] ⊂ R2. For any pair of markets i and j with
the distance dij = ‖qi − qj‖ ≤ dmin = 1

4 , the directed
edge (i, j) has a 70% chance of being in the x-dependency
graph with the weight αij = 0.7e−2dij/dmin and a 60%
chance of being in the y-dependency graph with the weight
βij = 0.7e−2dij/dmin ; similarly for the directed edge (j, i).

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 13

Fig. 3: Cournot competition with no global constraint on
a randomly generated 50-node network. Left: unique Nash
equilibrium allocation (x∗, y∗) as indicated by the sizes of
circles (green circle for xi’s and red circles for yi’s); Right:
convergence of (x̄k, ȳk) obtained by Algorithm 1 to (x∗, y∗)
under different parameters ρ and α.

All random choices are assumed to be independent. Suppose
ωi = 20 and γi = 1 are identical for all markets i, and the
local production costs fi(xi) = ηix

2
i and gi(yi) = ζiy

2
i for

some random ηi and ζi uniformly distributed in the interval
[2, 10]. Figure 3 (left) shows one instance of the random
network and the associated Nash equilibrium allocations: at
each node i, the sizes of the green and the red circles represent
respectively the Nash equilibrium allocations x∗i and y∗i as
specified by the unique saddle point solution (x∗, y∗) to the
network Cournot game. The x-team and y-team have the
total productions

∑
i x
∗
i = 70.92 and

∑
i y
∗
i = 72.43, total

revenues
∑
i p
∗
i x
∗
i = 1003.60 and

∑
i p
∗
i y
∗
i = 1033.92, and

total profits 509.66 and 524.68, respectively. Figure 3 (right)
shows the convergence of the sequence (xk, yk) generated by
Algorithm 1 to the solution (x∗, y∗) under different choices
of the parameters ρ and α. In all cases linear convergence are
observed, with some choices (e.g., ρ = 1, α = 0.9) resulting
in significantly faster convergence than others.

Next, we consider the same Cournot game as above, but now

with the global total production constraints
∑
i xi = c0 = 60

and
∑
i yi = d0 = 30. In this case, the unique Nash

equilibrium allocation (x∗, y∗) can be computed from (16)
and is plotted on the left of Figure 4. The two teams have the
total revenues 973.42 and 492.13, and the total profits 619.70
and 404.54, respectively. Compared to the Nash equilibrium
solution in the unconstrained case, each team has lower total
revenue due to reduced production enforced by the constraints,
and the total profit is increased for the x-team while reduced
for the y-team due to the more stringent production constraint
on the latter. On the right of Figure 4 we plot the results of ap-
plying Algorithm 3 to solve this constrained network Cournot
game. We assume that the edge set Ec of the consensus graph
is the union set of the undirected edges of the x-dependency
and y-dependency graphs, i.e., (i, j) ∈ Ec whenever either
(i, j) ∈ Ex ∪ Ey or (j, i) ∈ Ex ∪ Ey . It is clear from the left
of Figure 4 that the consensus graph is connected. Each edge
(i, j) in the consensus graph is assumed to have the same
weight wij = 1. We choose the parameters ρ = 1, α = 0.9,
ε̌i = ε̂i = δ̌i = δ̂i = 0.05, and ci = 60/50, di = 30/50,
∀i. It is easily verified that the preconditioning matrix P
defined in (23) is positive definite. Thus, the conditions in
Theorem 3 are satisfied. On the right of Figure 4, the solid line
indicates the convergence of the sequence (x̄k, ȳk) computed
by Algorithm 3 to the Nash equilibrium (x∗, y∗), and the
dash line indicates that the total global constraint violation as
measured by |

∑
i x̄

k
i − c0|+ |

∑
i ȳ
k
i − d0| converges to zero

as k → ∞. In both cases, the convergence are still roughly
linear, though at noticeably slower rates than those achieved
by Algorithm 1 on the unconstrained Cournot game (right of
Figure 3). One reason for this is due to the extra time induced
by the consensus process for ξi’s and ηi’s variables on the
network in order to satisfy the global constraints.

Remark 3. Interestingly if we modify the global constraints to∑
i xi = 50 and

∑
i yj = 60, the Nash equilibrium allocation

(x∗, y∗) computed by (16) satisfies that the x-team and the
y-team have the total profits 531.60 and 587.16, respectively.
Compared to the unconstrained case, both firms increase their
total profits despite having lower total productions. This is
not a contradiction as the Cournot game considered here
is designed so that each firm tries to maximize its profit
differential with the other firm instead of its own profit.

VII. CONCLUSIONS AND FUTURE WORKS
This paper formulates a general class of games on networks

and proposes several synchronous and randomized distributed
solution algorithms with guaranteed convergence to Nash
equilibrium solutions in the presence of local and global
coupling constraints. In future work we will quantify the
proposed algorithms’ convergence rates in terms of the local
payoff functions’ convexity/concavity and the connectivity of
the dependency and consensus graphs and extend the results
to multi-player games.

APPENDIX
PROOF OF PROPOSITION 4

First note the relation RPT (I+P−1T) = [2(I+P−1T)−1−
I](I + P−1T) = 2I − (I + P−1T) = I − P−1T . The

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 14

Fig. 4: Cournot competition on the same randomly generated
50-node network as in Fig. 3 with the global constraints∑
i xi = c0 = 60 and

∑
i yi = d0 = 30 . Left: unique

Nash equilibrium allocation (x∗, y∗) computed by (16) as
indicated by the sizes of circles (green for xi’s and red for
yi’s); Right: convergence of Algorithm 3 with the parameters
ρ = 1, α = 0.9, ε̌i = ε̂i = δ̌i = δ̂i = 0.05, and
ci = 60/50, di = 30/50, ∀i . The solid line indicates the
convergence of (x̄k, ȳk) to (x∗, y∗) and the dash line indicates
the convergence of the total global constraint violation as
measured by |

∑
i x̄

k
i − c0|+ |

∑
i ȳ
k
i − d0| to zero.

condition 0 ∈ T1(w∗) + T2(w∗) is then equivalent to 0 ∈
(I + P−1T1)w∗ − (I − P−1T2)w∗ = (I + P−1T1)w∗ −
RPT2

(I+P−1T2)w∗. This in turn is equivalent to the existence
of some z∗ ∈ (I + P−1T2)w∗ (hence w∗ = JPT2

z∗) so that
0 ∈ (I+P−1T1)w∗−RPT2

z∗, i.e., RPT2
z∗ ∈ (I+P−1T1)JPT2

z∗.
The last condition can be rewritten as P

T2
z∗ ∈ JPT1

RPT2
z∗

which, after multiplied by two, is further equivalent to (I +
RPT2

)z∗ ∈ (I + RPT1
)RPT2

z∗, namely, z∗ ∈ RPT1
RPT2

z∗. This
completes the proof of the first half.

For the second part note that the iteration from zk to zk+1

is via the averaged operator I + 2αJPT1
(2JPT2

− I)− 2αJPT2
=

(1 − α)I + αRPT1
RPT2

w.r.t. the norm ‖ · ‖P . This shows that
zk → z∗ for some z∗ ∈ Fix(RPT1

◦RPT2
). Using the first part,

we conclude that wk → JPT2
(z∗) ∈ zer(T1 + T2).

REFERENCES

[1] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle
point problems,” Acta numerica, vol. 14, pp. 1–137, 2005.

[2] K. J. Arrow, L. Hurwicz, and H. Uzawa, “Studies in linear and non-
linear programming,” 1958.

[3] M. Rozloznı́k and V. Simoncini, “Krylov subspace methods for sad-
dle point problems with indefinite preconditioning,” SIAM Journal on
Matrix Analysis and Applications, vol. 24, no. 2, pp. 368–391, 2002.

[4] Z.-Z. Bai and G. H. Golub, “Accelerated Hermitian and skew-Hermitian
splitting iteration methods for saddle-point problems,” IMA Journal of
Numerical Analysis, vol. 27, no. 1, pp. 1–23, 2007.

[5] J. Hofbauer and S. Sorin, “Best response dynamics for continuous zero-
sum games,” Discrete and Continuous Dynamical Systems Series B,
vol. 6, no. 1, p. 215, 2006.

[6] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathe-
matical Programming, vol. 103, no. 1, pp. 127–152, 2005.

[7] A. Nemirovski, “Prox-method with rate of convergence o(1/t) for
variational inequalities with Lipschitz continuous monotone operators
and smooth convex-concave saddle point problems,” SIAM Journal on
Optimization, vol. 15, no. 1, pp. 229–251, 2004.

[8] D. Feijer and F. Paganini, “Stability of primal–dual gradient dynamics
and applications to network optimization,” Automatica, vol. 46, no. 12,
pp. 1974–1981, 2010.

[9] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of Optimization Theory and Applications, vol. 142,
no. 1, pp. 205–228, 2009.

[10] H. Yin, U. V. Shanbhag, and P. G. Mehta, “Nash equilibrium problems
with scaled congestion costs and shared constraints,” IEEE Transactions
on Automatic Control, vol. 56, no. 7, pp. 1702–1708, 2011.

[11] L. M. Briceno-Arias and P. L. Combettes, “Monotone operator methods
for Nash equilibria in non-potential games,” in Computational and
Analytical Mathematics. Springer, 2013, pp. 143–159.

[12] M. Zhu and E. Frazzoli, “Distributed robust adaptive equilibrium com-
putation for generalized convex games,” Automatica, vol. 63, pp. 82–91,
2016.

[13] P. Yi and L. Pavel, “Distributed generalized Nash equilibria computation
of monotone games via double-layer preconditioned proximal-point
algorithms,” IEEE Transactions on Control of Network Systems, vol. 6,
no. 1, pp. 299–311, 2018.

[14] ——, “An operator splitting approach for distributed generalized Nash
equilibria computation,” Automatica, vol. 102, pp. 111–121, 2019.

[15] S. Liang, P. Yi, and Y. Hong, “Distributed Nash equilibrium seeking for
aggregative games with coupled constraints,” Automatica, vol. 85, pp.
179–185, 2017.

[16] S. Grammatico, “Dynamic control of agents playing aggregative games
with coupling constraints,” IEEE Transactions on Automatic Control,
vol. 62, no. 9, pp. 4537–4548, 2017.

[17] M. Ye and G. Hu, “Game design and analysis for price-based demand
response: An aggregate game approach,” IEEE Transactions on Cyber-
netics, vol. 47, no. 3, pp. 720–730, 2017.

[18] D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour, and J. Lygeros,
“Nash and Wardrop equilibria in aggregative games with coupling
constraints,” IEEE Transactions on Automatic Control, vol. 64, no. 4,
pp. 1373–1388, 2018.

[19] B. Gharesifard and J. Cortés, “Distributed convergence to Nash equi-
libria in two-network zero-sum games,” Automatica, vol. 49, no. 6, pp.
1683–1692, 2013.

[20] Y. Lou, Y. Hong, L. Xie, G. Shi, and K. H. Johansson, “Nash equilibrium
computation in subnetwork zero-sum games with switching communi-
cations,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2920–2935, 2015.

[21] A. Ghosh and S. Boyd, “Minimax and convex-concave games,” Lecture
Notes for Course EE392, Stanford Univ., Stanford, CA, 2003.

[22] G. Scutari, D. P. Palomar, F. Facchinei, and J.-s. Pang, “Convex opti-
mization, game theory, and variational inequality theory,” IEEE Signal
Processing Magazine, vol. 27, no. 3, pp. 35–49, 2010.

[23] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,”
Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.

[24] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities
and complementarity problems. Springer Science & Business Media,
2007.

[25] A. Kannan and U. V. Shanbhag, “Distributed computation of equilibria
in monotone Nash games via iterative regularization techniques,” SIAM
Journal on Optimization, vol. 22, no. 4, pp. 1177–1205, 2012.

[26] M. Sion et al., “On general minimax theorems.” Pacific Journal of
mathematics, vol. 8, no. 1, pp. 171–176, 1958.

SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 15

[27] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgra-
dient methods and consensus algorithms for solving convex optimization
problems,” in Proc. 47th IEEE Conference on Decision and Control.
IEEE, 2008, pp. 4185–4190.

[28] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Automatic
Control, vol. 55, no. 4, pp. 922–938, 2010.

[29] M. Zhu and S. Martı́nez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 151–164, 2011.

[30] K. Bimpikis, S. Ehsani, and R. Ilkılıç, “Cournot competition in net-
worked markets,” Management Science, 2019.

[31] Y. Xiao, X. Hou, and J. Hu, “Distributed solutions of convex-concave
games on networks,” in Proc. American Control Conference, 2019, to
appear.

[32] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford splitting
method and the proximal point algorithm for maximal monotone opera-
tors,” Mathematical Programming, vol. 55, no. 1-3, pp. 293–318, 1992.

[33] K. Bredies and H. Sun, “Preconditioned Douglas–Rachford splitting
methods for convex-concave saddle-point problems,” SIAM Journal on
Numerical Analysis, vol. 53, no. 1, pp. 421–444, 2015.

[34] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. Springer, 2011, vol. 408.

[35] R. T. Rockafellar, “Monotone operators and the proximal point algo-
rithm,” SIAM Journal on Control and Optimization, vol. 14, no. 5, pp.
877–898, 1976.

[36] ——, “Monotone operators associated with saddle-functions and mini-
max problems,” Nonlinear Functional Analysis, vol. 18, no. Part 1, pp.
397–407, 1970.

[37] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl.
Comput. Math, vol. 15, no. 1, pp. 3–43, 2016.

[38] D. W. Peaceman and H. H. Rachford, Jr, “The numerical solution of
parabolic and elliptic differential equations,” Journal of the Society for
Industrial and Applied Mathematics, vol. 3, no. 1, pp. 28–41, 1955.

[39] J. Douglas and H. H. Rachford, “On the numerical solution of heat
conduction problems in two and three space variables,” Trans. American
Mathematical Society, vol. 82, no. 2, pp. 421–439, 1956.

[40] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[41] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2947–2957, 2016.

Jianghai Hu Jianghai Hu (S’99-M’04) received
the B.E. degree in automatic control from Xi’an
Jiaotong University, P.R. China, in 1994, and the
M.A. degree in Mathematics and the Ph.D. degree
in Electrical Engineering from the University of
California, Berkeley, in 2002 and 2003, respectively.
He is currently an Associate Professor with the
School of Electrical and Computer Engineering, Pur-
due University. His research interests include hybrid
systems, multi-agent systems, control of systems
with uncertainty, and control applications. He is an

Associate Editor of SIAM Journal on Control and Optimization and Nonlinear
Analysis: Hybrid Systems. He served as the IEEE Control System Society
Electronic Publications Chair and editor of the monthly E-letters from 2016
to 2018.

Yingying Xiao received the B.S. and M.S. degrees
in aerospace engineering from Harbin Institute of
Technology, Harbin, China, in 2012 and 2014, re-
spectively.

She is currently working toward a Ph.D. degree
in School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, USA. Her
research interests include distributed computation on
network, multi-agent systems, control application in
buildings.

Xiaodong Hou received his B.E. degree in Control
Science and Engineering from Zhejiang University,
Hangzhou, China, in 2013, and his Ph.D. degree in
Electrical and Computer Engineering from Purdue
University, in 2019. His research interests include
distributed optimization over agent networks, and
its applications to control and machine learning.
Currently, he is a Machine Learning Data Scientist
at Glassdoor, Inc., San Francisco, CA.

