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Abstract—Recently, reinforcement learning (RL) is receiving more
and more attentions due to its successful demonstrations outperforming
human performance in certain challenging tasks. The goal of this paper
is to study a new optimization formulation of the linear quadratic
regulator (LQR) problem via the Lagrangian duality theories in order
to lay theoretical foundations of potentially effective RL algorithms. The
new optimization problem includes the Q-function parameters so that
it can be directly used to develop Q-learning algorithms, known to be
one of the most popular RL algorithms. We prove relations between
saddle-points of the Lagrangian function and the optimal solutions of
the Bellman equation. As an example of its applications, we propose a
model-free primal-dual Q-learning algorithm to solve the LQR problem
and demonstrate its validity through examples.

I. INTRODUCTION

The linear quadratic regulator (LQR) problem [1], [2] for linear
time-invariant (LTI) systems has a long tradition, and is well un-
derstood nowadays. A standard approach is the dynamic program-
ming [1] to solve the Bellman equation or algebraic Riccati equa-
tion (ARE). With the development of convex optimization [3] and
semidefinite programming (SDP) techniques [4], the LQR problem
has been revisited in terms of convex analysis and SDPs in many
researches, e.g., [5]–[8]. Since the SDP is a convex optimization,
standard Lagrangian duality results in [3], [4] can be used to
formulate this as a saddle-point problem. Such connections have been
comprehensively studied in [7]–[10].

On the other hand, reinforcement learning (RL) [11], [12] is a
subfield of machine learning which addresses the problem of how
an autonomous agent can learn an optimal policy to minimize long-
term cumulative costs, while interacting with unknown environments.
For LTI systems, RL was studied in [13], [14] to solve the LQR
problem with the recursive least-square algorithm. Many classical RL
algorithms, e.g., temporal difference methods [15], Q-learning [16],
SARSA [17], are based on the sample-based stochastic dynamic
programming to solve the Bellman equation, taking advantage of
its contraction mapping or monotone property to guarantee their
convergence. Despite the generality of RL frameworks, they are yet
to directly handle constraints and various objectives. Therefore, the
integration of the Bellman equation with optimization frameworks is
worthwhile to study for more practical RL algorithms by leveraging
the existing fruitful optimization algorithms and theories. Although
RL for LQR design appears to be very well understood currently
(e.g., [13], [14]), to the authors’ knowledge, such optimization and
duality interpretations of RL remain understudied so far. This situa-
tion motivates some questions: how can we formulate an optimization
of the LQR and understand its duality results for effective RL
algorithms, especially, in terms of Q-learning?; how can we develop
a Q-learning based on the optimization formulation?

To answer the questions, we propose fundamental Lagrangian dual-
ity frameworks of the standard LQR associated with Q-learning [16],
which is known to be one of the most popular RL algorithms. In
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particular, we derive a new optimization formulation of the LQR
problem, which includes the Q-function parameters, and analyze
its Lagrangian duality results [3] in Section III. We prove the
relations among primal-dual solutions of the proposed optimization,
the solution of the standard ARE, and the state-input trajectories.
Some extensions to the present LQR results are pursued through the
interplay between the system trajectories and the dual parameters.
In Section IV, we propose a model-free primal-dual Q-learning algo-
rithm that recovers an optimal policy using a collection of trajectories
of an unknown system. Our results build upon the previous results [7],
[8], [10], which studied dualities in terms of SDPs. However, we note
that our optimization formulations are different from the existing ones
in that ours include the Q-function [1] parameters, and thus, can be
directly used to develop a new class of Q-learning algorithms based
on primal-dual updates. The main results can be extended in several
directions, e.g., input and energy constrained optimal control design
and structured controller design, as discussed in the supplemental
material [18]. We expect that this fundamental framework advances
our understanding of RL and Q-learning for the LQR problem and
will be useful to develop many primal-dual RL algorithms based on
the SDP formulations [6].

Notation: The adopted notation is as follows: N and N+: sets
of nonnegative and positive integers, respectively; R: set of real
numbers; R+: set of nonnegative real numbers; R++: set of positive
real numbers; Rn: n-dimensional Euclidean space; Rn×m: set of all
n × m real matrices; AT : transpose of matrix A; A � 0 (A ≺ 0,
A � 0, and A � 0, respectively): symmetric positive definite
(negative definite, positive semi-definite, and negative semi-definite,
respectively) matrix A; In: n × n identity matrix; Sn: symmetric
n× n matrices; Sn+: cone of symmetric n× n positive semi-definite
matrices; Sn++: symmetric n × n positive definite matrices; Tr(A):
trace of matrix A; ρ(·): spectral radius.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Infinite-Horizon LQR Problem

Consider the LTI system

x(k + 1) = Ax(k) +Bu(k), x(0) = z ∈ Rn, (1)

where k ∈ N, x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input
vector, and z ∈ Rn is the initial state.

Assuming the control u(k) is given by a state-feedback control
policy u(k) = Fx(k), we denote by x(k;F, z) the solution of (1)
starting from x(0) = z. Under the state-feedback control policy, the
cost function for the classical LQR problem is denoted by

J(F, z) :=

∞∑
k=0

[
x(k;F, z)
Fx(k;F, z)

]T
Λ

[
x(k;F, z)
Fx(k;F, z)

]
, (2)

where Λ :=

[
Q 0
0 R

]
� 0 is the weight matrix.

Remark 1. In the discounted LQR problem, each term in (2) is
multiplied by αk with α ∈ (0, 1), which is called the discount factor.
Throughout the paper, we only consider the case α = 1 for simplicity,
and all the results in this paper hold for the case α ∈ (0, 1) by
replacing (A,B) with (α1/2A,α1/2B).



By introducing the augmented state vector v(k) :=

[
x(k)
u(k)

]
, we

will consider the augmented system

v(k + 1) = AF v(k), v(0) = v0 ∈ Rn+m, (3)

where AF :=

[
A B
FA FB

]
∈ R(n+m)×(n+m). If v0 =[

zT zTFT
]T , then the state and input parts of v(k) are identical

to x(k) and u(k) in (1). A useful property of AF is that its spectral
radius ρ(AF ) is identical to that of A+BF .

Lemma 1. ρ(A+BF ) = ρ(AF ) holds.

Proof. Note that Ω :=

[
In 0
F Im

]
∈ R(n+m)×(n+m) is a nonsingular

matrix with its inverse Ω−1 =

[
In 0
−F Im

]
. Then, we have

ρ(AF ) = ρ(Ω−1AF Ω) = ρ

([
A+BF B

0 0

])
= ρ(A+BF ),

and the desired result follows.

Define F as the set of all stabilizing state-feedback gains of system
(A,B), i.e., F := {F ∈ Rm×n : ρ(A + BF ) < 1}. F is an open
set, not necessarily convex [19, Lemma 2]; however, finding a state
feedback gain F ∈ F can be reduced to a simple convex problem.
In this paper, we study the infinite-horizon LQR problem.

Problem 1 (Infinite-horizon LQR problem). Suppose that zi ∈
Rn, i ∈ {1, 2, . . . , r}, are chosen such that

∑r
i=1 ziz

T
i = Z � 0,

where r ∈ Z+. Solve F ∗ = arg minF∈F
∑r

i=1 J(F, zi) if the
optimal value of infF∈F

∑r
i=1 J(F, zi) exists and is attained,

where J(·, ·) is defined in (2).

Remark 2. From the standard LQR theory, although J∗(F, z)
has different values for different z ∈ Rn, the minimizer F ∗ =
arg minF∈F J(F, z) is not dependent on z. Therefore, it follows
that arg minF∈F J(F, z) = arg minF∈F

∑r
i=1 J(F, zi) for any

z, zi ∈ Rn, i ∈ {1, 2, . . . , r}. For technical reasons that will
become clear later, we solve arg minF∈F

∑r
i=1 J(F, zi) instead of

arg minF∈F J(F, z). Throughout the paper, we always assume that
Z � 0.

For a given z ∈ Rn, if the optimal value of infF∈F J(F, z)
exists and is attained, then the optimal cost is denoted by J∗(z) =
J(F ∗, z). Assumptions that will be used throughout the paper are
summarized below.

Assumption 1.
• Q � 0, R � 0;
• (A,B) is stabilizable and Q can be written as Q = CTC,

where (A,C) is detectable.

Under Assumption 1, the optimal value of infF∈F J(F, z) exists,
is attained, and J∗(z) is a quadratic function, i.e., J∗(z) = zTX∗z,
where X = X∗ is the unique solution of the algebraic Riccati
equation (ARE) [1, Proposition 4.4.1]

X = ATXA−ATXB(R+BTXB)−1BTXA+Q, X � 0.

In this case, J∗(z) as a function of z ∈ Rn is called the optimal
value function.

The reader can refer to [1] and [20] for more details of the classical
LQR results. The corresponding optimal control policy is u∗(z) =
F ∗z, where

F ∗ := −(R+BTX∗B)−1BTX∗A ∈ F (4)

is the unique optimal gain. Alternatively, the Q-function [1] is defined
as

Q∗(z, u) := zTQz + uTRu+ J∗(Az +Bu) =

[
z
u

]T
P ∗
[
z
u

]
,

(5)

where

P ∗ :=

[
Q+ATX∗A ATX∗B
BTX∗A R+BTX∗B

]
. (6)

The optimal policy is then given by

u∗(z) = F ∗z = arg minu∈Rm Q∗(z, u).

B. Useful Lemmas

Standard Lyapunov theorems for discrete-time LTI systems will be
used extensively in this paper, which are listed below.

Lemma 2 (Lyapunov stability theorems [21, Chapter 3], [22, Theo-
rem 5.D6]). Let A ∈ Rn×n.

1) if ρ(A) < 1, then for any Z ∈ Sn+, ATPA + Z = P has a
unique solution P ∈ Sn+.

2) ρ(A) < 1 if and only if for each given matrix Z ∈ Sn++, there
exists P ∈ Sn++ such that ATPA+Z = P . If such a P exists,
then it is unique.

3) Suppose that (A,C) is observable (resp. detectable). Then,
ρ(A) < 1 if and only if there exists P ∈ Sn++ (resp. P ∈ Sn+)
such that ATPA + CTC = P . If such a P exists, then it is
unique.

4) Suppose that (A,B) is reachable (resp. stabilizable). Then,
ρ(A) < 1 if and only if there exists P ∈ Sn++ (resp. P ∈ Sn+)
such that APAT + BBT = P . If such a P exists, then it is
unique.

Moreover, the Schur complement will be useful and its special
form will be used in this paper.

Lemma 3 (Schur complement ( [23, Theorem 1.12])). Let P be a

symmetric matrix partitioned as P =

[
P11 P12

PT
12 P22

]
, in which P22 is

square and nonsingular. Then, P � 0 if and only if P22 � 0 and
P11 − P12P

−1
22 P

T
12 � 0.

Throughout the paper, we will use the partition P =

[
P11 P12

PT
12 P22

]
for the matrix P , where P11 ∈ Sn, P12 ∈ Rn×m, P22 ∈ Sm.

Similarly, we use the notation S =

[
S11 S12

ST
12 S22

]
with S11 ∈

Sn, S22 ∈ Sm, S12 ∈ Rn×m.

III. OPTIMIZATION FORMULATION AND DUALITY

In this section, we propose a novel optimization formulation of
the LQR problem. The new formulation includes the Q-function
parameters in its dual form, and hence can be directly used to
develop a new primal-dual Q-learning algorithm. Moreover, some
important extensions to the present LQR theory can be successfully
pursued through the interplay between the system trajectories and the
dual parameters. Throughout the section, we will focus on the three
optimization problems.

Problem 2 (Primal Problem I). Solve

Jp := inf
S∈Sn+m,F∈Rm×n

Tr(ΛS)

subject to F ∈ F , (7)

AFSA
T
F +

[
In
F

]
Z

[
In
F

]T
= S. (8)



Problem 3 (Primal Problem II). Solve

J ′p := inf
P∈Sn+m, F∈Rm×n

Tr

([
In
F

]
Z

[
In
F

]T
P

)
subject to F ∈ F ,
AT

FPAF + Λ = P. (9)

Problem 4 (Dual Problem). Solve

Jd := sup
P∈Sn+m

d(P ) = sup
P∈Sn+m

inf
S∈Sn+m

+ ,F∈F
L(P, F, S), (10)

where

L(P, F, S) = Tr(ΛS)

+ Tr

((
AFSA

T
F − S +

[
In
F

]
Z

[
In
F

]T)
P

)
.

We first summarize overall flow of this section, which is visualized
in Figure 1.

Fig. 1. Diagram for relations among the results.

We will first prove that Problem 2 is an equivalent constrained
optimization formulation of Problem 1. Now that an optimization
formulation of Problem 1 has been obtained in Problem 2, it will be
useful to study its dual problem. In particular, define the Lagrangian
function of Problem 2 given in Problem 4, where P ∈ Sn+m is the
Lagrange multiplier. In the Lagrangian formulation, the constraint
F ∈ F does not appear because it is not an explicit equality or
inequality constraint. Instead, we will treat F as the domain of the
variable F . Moreover, since any feasible S satisfying Problem 2 is
positive semidefinite, we set Sn+m

+ to be the domain of the variable
S as well. Rearranging some terms, the Lagrangian function can be
written as

L(P, F, S)

= Tr

(
Z

[
In
F

]T
P

[
In
F

])
+ Tr((AT

FPAF − P + Λ)S). (11)

The Lagrangian dual function is defined as d(P ) :=
inf

S∈Sn+m
+ ,F∈F L(P, F, S). Then, the dual problem of Problem 2 is

given by Problem 4. From the weak duality [3, Chapter 5], Jd ≤ Jp
holds with Jp − Jd ≥ 0 being the duality gap. If the duality gap is
zero, then it is said that the strong duality holds for the optimization.
We will prove that this is indeed the case.

Theorem 1 (Strong duality). We have Jp = Jd.

The main goal of this section is to prove Theorem 1. We note
that Problem 2 is nonconvex because the set F in (7) is not convex
and the equality constraint (8) is not linear. For general optimization
problems, the strong duality holds if certain constraint qualifications
hold, for instance, the Slater’s condition [3, Chapter 5]. Unfortunately,
since Problem 2 is nonconvex, it cannot be applied to our case, which
makes the proof of the strong duality nontrivial. Instead, we will

prove the strong duality by introducing Problem 3 which is equivalent
to Problem 2. Throughout the paper, the following shorthands will
be used:

J(F ) :=

r∑
i=1

J(F, zi), J∗ :=

r∑
i=1

J(F ∗, zi), (12)

where F ∗ is the optimal gain in (4).

A. Properties of Problem 2

We summarize results of this subsection. All proofs are in Ap-
pendix.

Proposition 1. The optimal solution of Problem 2 is attained
at a unique point (Sp, Fp). In addition, Problem 2 is equivalent
to Problem 1 in the sense that Jp = J∗, and Fp = F ∗.

Proposition 2. Any feasible solution (S, F ) ∈ Sn+m
+ × Rm×n

of Problem 2 satisfies the followings:
1) (A+BF )S11(A+BF )T + Z = S11;

2)
[
In
F

]
S11

[
In
F

]T
= S;

3) F = ST
12S
−1
11 .

Proposition 3. In Problem 2, the constraint F ∈ F can be
replaced by S � 0 without changing its optimal solution and
optimal objective function value.

Proposition 1 states that Problem 2 is equivalent to Problem 1.
Additional properties of the solution of Problem 2 are summarized
in Proposition 2. Later, we prove that if (S, F ) ∈ Sn+m

+ × Rm×n

is the solution of Problem 2, then S can be constructed from the
trajectories generated under the policy u(z) = Fz. Therefor, the
statement 3) provides a way to recover the state-feedback gain from
the trajectories without the model knowledge. In Problem 2, (7) is a
non-convex constraint. A natural question arises: is it possible to drop
this constraint? Without (7), a possible solution of Problem 2 can have
S � 0 with F /∈ F . In particular, if F /∈ F , then ρ(AF ) ≥ 1, and by
the contraposition of 2) of Lemma 2, we have S /∈ Sn++. With (7),
any feasible solution S is guaranteed to be positive semidefinite. This
implies that the constraint S � 0 is implicitly imposed in Problem 2.
More importantly, the constraint F ∈ F in Problem 2 can be replaced
by S � 0 without changing its optimal solution and optimal objective
function value, which is the claim of Proposition 3.

B. Properties of Problem 3

We introduce two results for Problem 3 and defer all proofs to
Appendix.

Proposition 4. The optimal solution of Problem 3 is attained at
the unique point (P ′p, F

′
p). In addition, Problem 3 is equivalent

to Problem 1, i.e., J ′p = J∗, and F ′p = F ∗.

Proposition 5. P ′p = P ∗, and the optimal solution (P ′p, F
′
p)

of Problem 3 satisfies P ′p � 0, P ′p,22 � 0, and F ′p =
−(P ′p,22)−1(P ′p,12)T ∈ F .

By Proposition 4, we have F ′p = F ∗. However, it did not state that
P ′p = P ∗ holds as well, which is proved in Proposition 5. Overall,
these results prove the equivalence of Problem 1 and Problem 3.
In the next subsection, we provide a proof of Theorem 1 by
using Problem 3.



C. Proof of Theorem 1

To prove Theorem 1, the following lemma will be used.

Lemma 4. If P � 0, P22 � 0, then[
In
F

]T
P

[
In
F

]
� P11 − P12P

−1
22 P

T
12 =

[
In

P−1
22 P

T
12

]T
P

[
In

P−1
22 P

T
12

]
,

∀F ∈ Rm×n,

and the equality holds if and only if F = −P−1
22 P

T
12.

Proof. Noting
[
P11 P12

PT
12 P22

]
= Ω

[
P11 − P12P

−1
22 P

T
12 0

0 P22

]
ΩT ,

where Ω =

[
In P12P

−1
22

0 Im

]
, a direct calculation leads to

[
In
F

]T
P

[
In
F

]
= P11 − P12P

−1
22 P

T
12 + (P−1

22 P
T
12 + F )P22(P−1

22 P
T
12 + F )T

� P11 − P12P
−1
22 P

T
12,

and the equality holds only if F = −P−1
22 P

T
12.

Now, we are in position to prove Theorem 1.

Proof of Theorem 1. For a given P ∈ Sn+m, the Lagrangian dual
function d(P ) is

d(P ) = inf
F∈F

inf
S∈Sn+m

+

L(P, F, S)

=


infF∈F Tr

Z [In
F

]T
P

[
In

F

] if P ∈ P

−∞ otherwise

(13)

where P := {P ∈ Sn+m
+ : AT

FPAF − P + Λ � 0,∀F ∈ F}. We
next show that the solution P ′p of Problem 3 is an element of P ,
and thus, P is nonempty. By Proposition 5, AT

F ′p
P ′pAF ′p + Λ = P ′p,

where F ′p = −(P ′p,22)−1(P ′p,12)T . By Lemma 4, AT
FP
′
pAF + Λ �

AT
F ′p
P ′pAF ′p + Λ = P ′p for all F ∈ Rm×n. Therefore, every F ∈ F

satisfies AT
FP
′
pAF + Λ � P ′p, i.e., P ′p ∈ P . Therefore, the dual

problem is equivalent to

sup
P∈Sn+m

d(P ) = Jd = sup
P∈P

inf
F∈F

Tr

(
Z

[
In
F

]T
P

[
In
F

])
. (14)

For P ′p ∈ P , we have

d(P ′p) = inf
F∈F

Tr

(
Z

[
In
F

]T
P ′p

[
In
F

])
. (15)

Obviously, d(P ′p) ≤ Jd. Since P ′p � 0 is fixed and the objective
function in (15) is quadratic with respect to F , the infimum in (15)
is attained at F = −(P ′p,22)−1(P ′p,12)T = F ′p ∈ F . Therefore,
J ′p = d(P ′p), implying J ′p ≤ Jd. On the other hand, by the weak
duality, Jd ≤ Jp. By Proposition 4, Jp = J ′p. Therefore, we have
Jp = Jd.

From the proof of Theorem 1, we have Jp = Jd =

J ′p = Tr

(
Z

[
In
F ′p

]T
P ′p

[
In
F ′p

])
. Therefore, we easily conclude that

P ∗ = P ′p ∈ arg supP∈Sn+md(P ) and (S∗, F ∗) = (Sp, Fp) ∈
arg inf

S∈Sn+m
+ , F∈F L(P ∗, F, S). In summary, we conclude that

the primal and dual optimal solutions consist of the solution of the
ARE. Equivalently, (P ∗, F ∗, S∗) is a saddle point of the Lagrangian
L(·, ·, ·), i.e., L(P, F ∗, S∗) ≤ L(P ∗, F ∗, S∗) ≤ L(P ∗, F, S) for all
F ∈ F , S ∈ Sn+m

+ , P ∈ Sn+m.

IV. PRIMAL-DUAL ADAPTIVE LQR DESIGN

In this section, we will study how to design the LQR policy
without the knowledge of (A,B) as an application of the results
in the previous section. The approach can be viewed as a version
of the Q-learning algorithm in [13], [14]. We adopt the following
assumptions.

Assumption 2.
1) (A,B) is not known;
2) The input and state pair (x(k), u(k)), k ∈ N, can be collected

for different control policy u(k) = Fx(k) and initial state
x(0) = z as many times as needed;

3) An initial state-feedback control gain Fstab ∈ F is known.

Remark 3. The proposed algorithm is an applications of the analysis
given in the previous section. In particular, the proposed algorithm
is a primal-dual algorithm [3], [24] to solve saddle point problems
and constrained optimization problems. Beside the applicability of
the algorithm, we introduce this algorithm to prove that the Q-
learning algorithm in [13], [14] can be interpreted as a primal-dual
procedure and to prove the connection between the duality analysis
in the previous section and the Q-learning.

In this section, we modify the LQR problem in Problem 1 to
develop control design algorithms. Consider the augmented state

vector v(k) :=

[
x(k)
u(k)

]
and assume that we know the initial state

v(0) = v0 ∈ Rn+m. Denote by v(k;F, v0) the state trajectory of the
augmented system (3) at time k starting from the initial augmented[
x(0)
u(0)

]
= v0. In this section, we assume that u(0) can be freely

chosen, and the control policy u(k) = Fx(k) is valid from k = 1.
The cost corresponding to the control policy u(z) = Fz is denoted
by Ĵ(F, v0) :=

∑∞
k=0 v(k;F, v0)T Λv(k;F, v0), where the control

policy u(k) = Fx(k) is applied from time k = 1.

Remark 4. Compared to the cost in (2), only the difference of
Ĵ(F, v0) is in the degree of freedom in selecting the initial control in-
put u(0) of the augmented system (3). With appropriate selections of

the initial state x(0) and input x(0), the second term
[
In
F

]
Z

[
In
F

]T
on the left-hand side of (8) can be replaced by a strictly positive
definite matrix Γ. Then, by 2) of Lemma 2, any feasible solution

of (7) and (8) with
[
In
F

]
Z

[
In
F

]T
replaced with Γ � 0 satisfies

S � 0. This strict positive definiteness will bring some benefits in
algorithmic developments in the sequel.

In this case, one can choose vi ∈ Rn+m, i ∈ {1, 2, . . . , r}, such
that

∑r
i=1 viv

T
i = Γ � 0, where Γ ∈ Sn+m. Define

F̂ ∗ = arg minF∈F

r∑
i=1

Ĵ(F, vi). (16)

First, we claim that F̂ ∗ = F ∗.

Proposition 6. The optimal solution F̂ ∗ of (16) is identical to F ∗.

Proof. Using the definition of Ĵ(·, ·) and J(·, ·), an algebraic manip-
ulation leads to

r∑
i=1

Ĵ(F, vi) =

r∑
i=1

J(F, zi) +

r∑
i=1

vTi Λvi, (17)

where zi =
[
A B

]
vi. Since the last term on the right-hand side of

the above equation is constant, the minimizer in (16) is equivalent to
the minimizer of the first term on the right hand side of (17), which
is identical to F ∗ by Remark 2.



Following steps similar to Proposition 1, it can be proved that the
problem in (16) can be converted to

Ĵp := min
S∈Sn+m, F∈Rm×n

Tr(ΛS)

subject to AFSA
T
F + Γ = S, F ∈ F .

Since Γ � 0, F ∈ F can be replaced with S � 0 by 2) of Lemma 2,
and we can obtain another equivalent primal problem.

Problem 5 (Primal problem). Solve

Ĵp := min
S∈Sn+m, F∈Rm×n

Tr(ΛS)

subject to AFSA
T
F + Γ = S, S � 0.

Introduce a Lagrangian function for Problem 5, i.e., for any fixed
P ∈ Sn+m, P0 ∈ Sn+m

+ , define L̂(P, P0, F, S) := Tr(ΛS) +
Tr((AFSA

T
F + Γ − S)P ) + Tr(−SP0). The corresponding dual

problem is

Ĵd := sup
P∈Sn+m,P0∈Sn+m

+

inf
S∈Sn+m,F∈Rm×n

L̂(P, P0, F, S).

Following similar lines as in the previous section, we can prove
that the strong duality holds, i.e., Ĵp = Ĵd, and the primal and dual
optimal points for (P, F ) are identical to (P ∗, F ∗). In other words,
(P ∗, F ∗) is a saddle point of the Lagrangian function L(P, P0, F, S)
with some P0 = P ∗0 . It is also known that the saddle point should
satisfies the KKT condition [3]. In the following proposition, we
derive a KKT condition of Problem 5, which is satisfied by the saddle
point (P ∗, F ∗).

Proposition 7. Suppose that (Ŝ, F̂ ) is the primal optimal point and
(P̂ , P̂0) is the dual optimal point of Problem 5. Then, (Ŝ, F̂ , P̂ )
satisfies the KKT condition for (S, F, P )

AFSA
T
F + Γ− S = 0, (18)

S � 0, (19)

AT
FPAF − P + Λ = 0, (20)

2(PT
12 + P22F )

[
A B

]
S
[
A B

]T
= 0. (21)

Proof. By 2) of Lemma 2, Γ � 0 guarantees S � 0. From the KKT
condition of the generalized inequality constrained optimization in [3,
chapter 5.9.2], the KKT condition of Problem 5 can be summarized
as the primal feasibility condition AFSA

T
F + Γ − S = 0, S � 0,

the complementary slackness condition Tr(SP0) = 0, the dual
feasibility condition P0 � 0, and

∂L̂(P, P0, S, F )

∂S
= AT

FPAF − P + Λ− P0 = 0,

∂L̂(P, P0, S, F )

∂F
= 2(PT

12 + P22F )
[
A B

]
S
[
A B

]T
= 0.

Since S � 0 is guaranteed, the only solution P0 that satisfies
Tr(SP0) = 0 is P0 = 0. Therefore, the KKT condition in (18)-
(21) is obtained. According to [3, Section 5.5.3, pp. 243], the strong
duality ensures that any pair of primal and dual optimal points (saddle
points) must satisfy the KKT condition. This completes the proof.

In what follows, we will study procedures to solve the KKT
condition. Algorithm 1 iteratively solves (20) and (21). In particular,
we will prove that (Pt, Ft) in Algorithm 1 converges to (P̂ , F̂ ) that
solves (20) and (21), and they are identical to (P ∗, F ∗) defined in (6)
and (4). To prove this, we use the following lemma.

Lemma 5. Assume F ∈ F and define the mapping T (P ) :=
AT

FPAF + Λ. Then, the following properties hold:
1) T is Sn+m

+ -monotone, i.e., P � P ′ ⇒ T (P ) � T (P ′).

Algorithm 1 Primal-Dual Algorithm
1: Initialize F0 ∈ F , ε > 0, and set t = 0.
2: repeat
3: Dual Update: Solve for Pt from the equation AT

Ft
PtAFt +

Λ = Pt.
4: Primal Update: Ft+1 = −(P22)−1

t (P12)Tt .
5: t← t+ 1
6: until ||Ft − Ft+1|| ≤ ε.

2) There exists a matrix norm ‖ · ‖ such that T is a contraction
mapping.

3) T has a unique fixed point P̄ ∈ Sn+m such that T (P̄ ) = P̄ .

Proof. The proof of 1) is straightforward. For 2), consider any
matrix norm ‖ · ‖ and any two matrices P, P ′ ∈ Sn+m

+ . We have
‖T (P−P ′)‖ ≤ ‖P−P ′‖‖AF ‖2. For any ε > 0, there exists a matrix
norm || · || such that ‖AF ‖ ≤ ρ(AF ) + ε by [25, Theorem 4.2.1],
and since ρ(AF ) < 1, we can find a matrix norm ‖ · ‖ such that
‖T (P −P ′)‖ ≤ ‖P −P ′‖(ρ(AF ) + ε)2, where (ρ(AF ) + ε)2 < 1.
Therefore, T is a contraction mapping with respect to the norm.
Using this norm, define the metric d(P, P ′) = ‖P−P ′‖ and consider
the metric space (Sn+m

+ , d). This metric space is complete [26,
Definition 3.12]. This is because by [26, pp.54], (Rn+m, d) being
a complete metric space and Sn+m

+ being a closed subset of Rn+m

imply that (Sn+m
+ , d) is complete. Then, by the Banach’s fixed point

theorem [26, Theorem 9.23], T has a unique fixed point.

Proposition 8. In Algorithm 1 without the stopping criterion,
limt→∞ Pt = P ∗ and limt→∞ Ft = F ∗, where P ∗ and F ∗ are
defined in (6) and (4), respectively.

Proof. See Appendix F.

Remark 5. Algorithm 1 can be interpreted as a policy iteration
of the standard dynamic programming [1]. In particular, pre- and
post-multiplying AT

Ft
Pt+1AFt + Λ = Pt+1 by

[
xT uT

]
and its

transpose, we have

Qt+1((A+BFt)x, Ft(A+BFt)x) + xTQx+ uTRu

= Qt+1(x, u), ∀x ∈ Rn, u ∈ Rm, (22)

where Qt+1(x, u) :=

[
x
u

]T
Pt+1

[
x
u

]
, which corresponds to

the Bellman equation for the Q-function. The update Ft+1 =
−(P22)−1

t (P12)Tt in Algorithm 1 can be expressed as Ft+1x =
arg minu∈Rm Qt+1(x, u), ∀x ∈ Rn. In this respect, Algorithm 1 is
equivalent to the policy iteration for Q-functions in [2, Section 2.3].
It is known that Qt iteration converges to the Q-function in (5).
Therefore, the policy iteration can be interpreted as an algorithm
solving the saddle point problem.

Remark 6. If the linear equation Pt = AT
Ft
PtAFt+Λ in Algorithm 1

is replaced by Pt+1 = AT
Ft
PtAFT + Λ and the primal update is

modified to Ft+1 = −(P t+1
22 )−1(P t+1

22 )T , its convergence can be
proved using a similar argument of the proof of Proposition 8. In
addition, it can be proved that the iteration is equivalent to the value
iteration or the Riccati recursion Xk+1 = ATXkA−ATXkB(R+
BTXkB)−1BTXkA+Q with any X0 ∈ Sn+.

Note that Algorithm 1 iteratively solves the KKT condition
in Proposition 7, and the other primal variable S is not used. However,
one can develop an algorithm that does not require the knowledge of
the system by using variables corresponding to the primal variable
S. Firstly, for any Ft ∈ F , define S(Ft) ∈ Sn+m

+ as a solution



of (8), i.e., AFtS(Ft)A
T
Ft

+

[
In
Ft

]
Z

[
In
Ft

]T
= S(Ft). S(Ft) can be

viewed as the primal variable corresponding to S in Problem 5 for
fixed F = Ft. Such a S(Ft) is unique by 1) of Lemma 2. As shown
in the proof of Proposition 1, S(Ft) can be described by

S(Ft) =

∞∑
k=0

(Ak
Ft

)

[
In
Ft

]
Z

[
In
Ft

]T
(Ak

Ft
)T

=

r∑
i=1

∞∑
k=0

[
x(k;Ft, zi)
Fx(k;Ft, zi)

] [
x(k;Ft, zi)
Fx(k;Ft, zi)

]T
,

which can be approximated from the observation of state trajectories.

1) Primal Update: Let Ft ∈ F . A primal feasible solution of (18)
and (19) is approximated by

S̃(Ft) :=

r∑
i=1

M∑
k=0

v(k;Ft, vi)v(k;Ft, vi)
T . (23)

2) Dual Update: Since S̃(Ft) � 0, the dual feasibility condi-
tion (20) holds if and only if S̃(Ft)(A

T
Ft
PAFt−P+Λ)S̃(Ft) =

0, which can be rewritten by the linear matrix equation

W (Ft)
TPW (Ft) + S̃(Ft)(Λ− P )S̃(Ft) = 0, (24)

where W (Ft) :=
∑r

i=1

∑M
k=0 v(k + 1;Ft, vi)v(k;Ft, vi)

T .
Note that both S̃(Ft) and W (Ft) can be recursively computed
from the input and state at every time step. Therefore, for a fixed
stabilizing Ft ∈ F , the corresponding dual variable P can be
computed by solving the linear matrix equation (24). Note that
since Γ � 0 and ρ(AFt) < 1, P is positive definite.

3) Policy Update: Since P � 0, the primal update step F =
−P−1

22 P
T
12 can be performed directly.

Remark 7. Note that the number M ≥ 1 can be taken arbitrarily.
This is because S̃(F0) � 0 for all M ≥ 1, and once S̃(F0) is
nonsingular, the selection of M does not affect the solution of (24).
However, for small M , S̃(F0) � 0 may be close to a singular
matrix in some cases, and this results in ill-conditioning problems
when solving (24) using linear equation solvers. Therefore, an
appropriately selected M is helpful to avoid the numerical problems.

The overall algorithm is given in Algorithm 2.

Algorithm 2 Model-Free Primal-Dual Algorithm
1: Initialize F0 ∈ F and set t = 0.
2: repeat
3: St = S̃(Ft) in (23)
4: Solve for P from the equation (24), and set Pt = P .
5: Ft+1 = −(P22)−1

t (P12)Tt .
6: t← t+ 1
7: until a certain stopping criterion is satisfied.

Remark 8. Algorithm 2 can be interpreted as a version of the Q-
learning in [13]. The algorithm in [13] uses a recursive least square
algorithm to solve the Bellman equation (22). In [13], artificial
disturbances are injected into the control input, and it is assumed that
the collected state-input data guarantees the uniqueness of the least-
square solution, which is called the persistent excitation assumption.
On the other hand, Algorithm 2 uses a matrix equation which exactly
characterizes the Bellman equation under the assumption that we can
obtain the state-input trajectories of a certain set of initial vectors
which are linearly independent in Rn. Although our assumption is
stronger than the persistent excitation assumption, Algorithm 2 solves
the Bellman equation exactly for a given state-feedback gain Ft. If
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Fig. 3. Trajectories of x1(k) (indoor air temperature, blue lines) under the
designed LQR control policy.

our assumption is met, then Algorithm 2 quickly converges to the
optimal solution as will be illustrated in the subsequent example.

Example 1. Consider a room’s thermal dynamic model expressed
as (1) with

A =


0.9500 0.0250 0.0250 0
0.0250 0.9750 0 0

0 0 1 0
0 0 0 1

 , B =


0.0250

0
0
0

 ,
where x1(k) is the indoor air temperature (◦C), x2(k) is the wall
temperature (◦C), x3(k) is the outdoor air temperature (◦C), x4(k)
is the reference temperature (◦C). The outdoor air temperature and
reference temperature are kept constants (30◦C and 25◦C, respec-
tively) over time. We want to design an LQR control policy with the
discount factor α = 0.9, Q =

[
1 0 0 −1

] [
1 0 0 −1

]T ,
and R = 0.1. The cost function enforces the indoor temperature
to track the desired reference temperature. Suppose that the system
matrices are unknown, but we guess that a stabilizing state-feedback
gain (for (α1/2A,α1/2B)) is Fstab =

[
0 0 0 0

]
. The optimal

LQR gain is F ∗ =
[
−1.8631 −0.0855 −0.0873 2.0359

]
. We

select the set of initial state vectors

V :=


vT1
vT2
vT3
vT4
vT5

 =


25 27 30 25 5
25 27 30 27 0
25 27 30 25 0
27 27 30 25 0
25 25 30 25 5

 ,
where vi ∈ Rn+m, i ∈ {1, 2, . . . , 5}, are initial states of the

augmented state vector v(k) :=

[
x(k)
u(k)

]
. Since V has full rank,

V TV = Γ � 0. Algorithm 2 is applied with M = 10, where
M is the time horizon used to approximate the primal variable
in (23). Figure 2 depicts the evolution of ‖Ft−F ∗‖, which becomes
close to zero within 5 iterations. Figure 3 illustrates the trajectories
of x1(k) (indoor air temperature) under the LQR control policy
obtained using Algorithm 2 and the initial conditions x(0) =[
x1(0) 29 30 25

]T
, x1(0) ∈ {20, 21, . . . , 29}.



Remark 9. Additional potential applications of the proposed analysis
can be summarized as follows. Various SDP formulations of Prob-
lem 5 or Problem 2 can be derived, and they can be used to develop
new analysis and control design approaches. For example, an SDP-
based optimal control design with energy and input constraints can
be derived. Another direction is algorithms for structured controller
designs [19], [27]. These approaches are included in the supplemen-
tal material [18].

CONCLUSION

In this paper, we have studied connections among the Lagrangian
duality of the LQR problem, the corresponding KKT condition, ARE,
and value/policy iterations for the Q-function. We have proved that
the LQR problem can be converted to a nonconvex optimization
problem which has the zero duality gap and derived its exact dual
problem. We also prove that the Q-function is constructed from the
dual variables and prove that the dynamic programming and Q-
learning are primal-dual update procedures. As an application of
our analysis, a model-free LQR design algorithm is also developed.
The algorithm can be improved in many directions, for instance,
finding an initial stabilizing gain without knowledge of the system and
generalizing to the linear quadratic Gaussian (LQG) design problems.
A possible extension is to release the requirements of R being positive
definite and Λ being a block-diagonal matrix as in [28]. Another
direction is to study the Kalman filtering problem from the duality
perspective as discussed in [29].

APPENDIX A
PROOF OF PROPOSITION 1

For any F ∈ F , the objective function of Problem 1 can be written
as

r∑
i=1

J(F, zi) =

r∑
i=1

∞∑
k=0

[
x(k;F, zi)
Fx(k;F, zi)

]T
Λ

[
x(k;F, zi)
Fx(k;F, zi)

]
= Tr(ΛS),

where S :=
∑r

i=1

∑∞
k=0

[
x(k;F, zi)
Fx(k;F, zi)

] [
x(k;F, zi)
Fx(k;F, zi)

]T
. Observe

that S can be represented by

S =

∞∑
k=0

(Ak
F )

[
In
F

]
Z

[
In
F

]T
(Ak

F )T , (25)

which satisfies the Lyapunov equation (8). Moreover, since F ∈ F ,
ρ(AF ) < 1 by Lemma 1. By 1) of Lemma 2, S in (25) is the
unique solution. Since (S, F ) above can be an arbitrary feasible
point of Problem 2, this shows that the optimal value of Problem 2,
Jp, is lower bounded by the optimal value of Problem 1, J(F ∗).
Noting that (S∗, F ∗) where S∗ is the unique solution of (8) with
F = F ∗ is a feasible point of Problem 2 whose objective function
is exactly J(F ∗), we conclude that (S∗, F ∗) is the unique solution
of Problem 2 and Jp = J(F ∗).

APPENDIX B
PROOF OF PROPOSITION 2

By expanding (8) in Problem 2 and comparing the first n×n block
diagonal matrix, we obtain[

A B
]
S

[
AT

BT

]
+ Z = S11. (26)

Plugging the left-hand side of (8) into S in (26) and using (26)
again, we have

(A+BF )S11(A+BF )T + Z = S11. (27)

In addition, noticing that (8) can be written as[
In
F

]([
A B

]
S

[
AT

BT

]
+ Z

)[
In
F

]T
= S, and combining (26)

with the above equation yield the second statement. Comparing both
sides of the equation in 2) results in S11F

T = S12, FS11F
T = S22.

Since S11 � Z � 0, solving S11F
T = S12 leads to the third

statement.

APPENDIX C
PROOF OF PROPOSITION 3

Note that since Z � 0, there exists nonsingular M ∈ Rn×n

such that Z = MTM . Then, the pair
(
AF ,

[
In
F

]
MT

)
is sta-

bilizable for any F ∈ Rm×n because the state-feedback gain

K = −M−T
[
A B

]
satisfies AF +

[
In
F

]
MTK = 0. By the forth

statement of Lemma 2, ρ(AF ) < 1, i.e., F ∈ F , if and only if (8) in
Problem 2 has a solution S � 0. This shows that we can equivalently
replace the constraint (7) with S � 0.

APPENDIX D
PROOF OF PROPOSITION 4

For any F ∈ F , the objective function of Problem 1 is

J(F ) =

r∑
i=1

∞∑
k=0

[
x(k;F, zi)
Fx(k;F, zi)

]T
Λ

[
x(k;F, zi)
Fx(k;F, zi)

]

=

r∑
i=1

∞∑
k=0

zTi

[
In
F

]T
(AT

F )kΛAk
F

[
In
F

]
zi

= Tr

([
In
F

]
Z

[
In
F

]T
P

)
, (28)

where P is a solution of the Lyapunov equation (9) corresponding to
the given F ∈ F . Moreover, since F ∈ F , ρ(AF ) < 1 by Lemma 1.
By 1) of Lemma 2, P is the unique solution. Since (P, F ) above is
an arbitrary feasible point of Problem 3, this shows that the optimal
value of Problem 3, J ′p, is lower bounded by the optimal value
of Problem 1, J(F ∗). Noting that (P ∗, F ∗) where P ∗ is the unique
solution of (9) with F = F ∗ is a feasible point of Problem 3 whose
objective function is exactly J(F ∗), we conclude that (P ∗, F ∗) is
the unique solution of Problem 3 and J ′p = J(F ∗).

APPENDIX E
PROOF OF PROPOSITION 5

By direct calculations with definitions in (4) and (6),

we have
[
In
F ∗

]T
P ∗
[
In
F ∗

]
= X∗. Then, from the defini-

tion (6), it follows that P ∗ =
[
A B

]T
X∗
[
A B

]
+ Λ =[

A B
]T [In

F ∗

]T
P ∗
[
In
F ∗

] [
A B

]
+ Λ = AT

F∗P
∗AF∗ + Λ.

By Proposition 4, F ′p = F ∗, and P ∗ uniquely solves the Lyapunov
equation (9). This implies P ∗ = P ′p. The second statement is
directly proved by using the definitions of P ∗ and F ∗ in (6) and (4),
respectively.

APPENDIX F
PROOF OF PROPOSITION 8

We first prove Ft ∈ F ⇒ Ft+1 ∈ F . Since Ft ∈ F and Λ �
0, AT

Ft
PtAFt + Λ = Pt admits a unique solution Pt � 0 by 1)

of Lemma 2. Moreover, Λ22 � 0 implies that (P22)t � 0. If Ft+1 =
−(P22)−1

t (P12)Tt , then Lemma 4 leads to

Pt = AT
Ft
PtAFt + Λ



=
[
A B

]T [In
Ft

]T
Pt

[
In
Ft

] [
A B

]
+ Λ

�
[
A B

]T
(P11 − P12P

−1
22 P

T
12)
[
A B

]
+ Λ

=
[
A B

]T [ In
Ft+1

]T
Pt

[
In
Ft+1

] [
A B

]
+ Λ

= AT
Ft+1

PtAFt+1 + Λ.

Consider the mapping T (Pt) := AT
Ft+1

PtAFt+1 + Λ in Lemma 5
with F = Ft+1. Then, the last inequality can be compactly
written as Pt � T (Pt). Since T is Sn+m

+ -monotone, applying
repeatedly T on both sides of Pt � T (Pt) leads to an Sm+n

+ -
monotonically nonincreasing sequence T i(Pt), i = 1, 2, . . . in the
positive semidefinite cone Sn+m

+ that is bounded from below. Thus,
the limit limi→∞ T i(Pt) =: Pt+1 exists and solves the Lyapunov
equation T (Pt+1) = Pt+1. We will now prove that this implies
ρ(AFt+1) < 1, and equivalently, Ft+1 ∈ F by Lemma 1. since
R � 0 by Assumption 1, there exists a nonsingular M such
that R = MTM . Then, Λ can be expressed as Λ = UTU ,

where U :=

[
C 0
0 M

]
and C is defined in Assumption 1. We

next show that (AFt+1 , U) is detectable for any Ft+1 ∈ Rm×n.
By Assumption 1, (A,C) is detectable. Thus, there exists an observer
gain L ∈ Rn×m such that ρ(A + LC) < 1. Construct the observer

gain W =

[
L −BM−1

0 −Ft+1BM
−1

]
so that ρ(AFt+1 + WU) =

ρ

([
A+ LC 0
Ft+1A 0

])
= ρ(A + LC) < 1. Therefore, (AFt+1 , U) is

detectable for any Ft+1 ∈ Rm×n. By the third statement of Lemma 2,
ρ(AFt+1) < 1 (i.e., Ft+1 ∈ F) if and only if there exists a positive
semidefinite solution P � 0 of AT

Ft+1
PAFt+1 − P + Λ = 0.

Such P � 0 exists since T (Pt+1) = Pt+1. Therefore, we have
ρ(AFt+1) < 1.

Moreover, Pt � Pt+1 monotonically nonincreasing, for all t ∈ N,
we obtain a sequence (Pt)

∞
t=0 that is Sn+m

+ -monotonically nonin-
creasing, and hence, converges, i.e., limt→∞ Pt =: P̄ . By examining
the second m ×m block-diagonal matrices, P̄22 � 0. Accordingly,
limt→∞ Ft = −P̄−1

22 P̄
T
12 =: F̄ holds. Since AT

F̄ P̄AF̄ − P̄ + Λ = 0,
one has F̄ ∈ F by 3) of Lemma 2. The primal matrix variable S̄
that solves AF̄SA

T
F̄ + Γ − S = 0 for S in (18) exists, is unique,

and positive definite by 2) of Lemma 2. The triplet (P̄ , F̄ , S̄) is a
solution of the KKT condition in Proposition 7. According to [3,
Section 5.5.3, pp. 243], the strong duality ensures that any pair of
primal and dual optimal points must satisfy the KKT conditions,
while a solution of the KKT condition may not correspond to the
primal and dual optimal points.

Next, we prove that (P̄ , F̄ ) satisfying AT
F̄ P̄AF̄ − P̄ + Λ = 0,

F̄ = −P̄−1
22 P̄

T
12, and P̄ � 0 is identical to (P ∗, F ∗). Plug-

ging −P̄−1
22 P̄

T
12 into F̄ of AT

F̄ P̄AF̄ − P̄ + Λ = 0 results in[
A B

]T
(P̄p − P̄12(P̄22)−1P̄T

12)
[
A B

]
+ Λ = P̄ . Introducing

the auxiliary matrix variable X̄ = P̄11− P̄12P̄
−1
22 P̄

T
12, which satisfies

X̄ � 0 by Lemma 3, one has
[
A B

]T
X̄
[
A B

]
+ Λ = P̄ ,

which is written as
[
AT X̄A+Q AT X̄B
BT X̄A BT X̄B +R

]
=

[
P̄11 P̄12

P̄T
12 P̄22

]
.

Plugging the expressions P̄11 = AT X̄A + Q, P̄12 = AT X̄B, and
P̄22 = BT X̄B +R into X̄ = P̄11 − P̄12P̄

−1
22 P̄

T
12 yields

Q+AT X̄A−AT X̄B(R+BT X̄B)−1BT X̄A = X̄, (29)

which is exactly the ARE. Thus, under Assumption 1, we must have
X̄ = X∗. The desired result follows from the definition of (P ∗, F ∗)
in (6) and (4).
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