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Distributed Solutions to Convex Feasibility
Problems with Coupling Constraints

Yingying Xiao, Student Member, IEEE , Ji Liu, Member, IEEE , and Jianghai Hu, Member, IEEE

Abstract— In this paper, a distributed approach to con-
vex feasibility problems is proposed. This approach aims
to reduce the storage and communication requirements
for individual agents by exploiting the sparsity of the con-
straint couplings across agents: each agent only main-
tains its own variable together with its desired values for
those neighboring agents whose valuations help deter-
mining its feasibility; at each iteration, (relaxed) projec-
tion and consensus operations are carried out by agents
in parallel based on information from only the relevant
neighbors. Four algorithms, two synchronous and the other
two asynchronous, are proposed and proved to converge
asymptotically to a feasible solution starting from any initial
guess. The effectiveness of the proposed algorithms is
demonstrated through the simulation results on several
application examples, e.g. linear programs/equations and
network localization.

Index Terms— Convex feasibility problem, distributed ap-
proach, sparsely coupled constraints, time-varying commu-
nication graph

I. INTRODUCTION

The convex feasibility problem (CFP), also known as the
convex intersection problem or constrained consensus prob-
lem [1], [2], is the problem of finding a common point that
belongs to the intersection of a family of nonempty closed
convex sets. As a well known problem in applied mathematics,
CFP has found a wide range of practical applications, e.g.,
image recovery [3]–[5], model predictive control [6], (mobile)
sensor networks [7]–[10], robotic teams [11]–[13], social
networks [14], electric power grid [15], to name a few.

There has been a tremendous amount of existing literature
on the solution of CFP. A majority of existing approaches,
especially the earlier ones, are centralized in that a central
solver updates a guess of the solution iteratively to satisfy all
the convex constraints eventually. A particular popular class
of such approaches is the alternative projection method and
its variants (e.g. [16]–[18]). Centralized solution algorithms

This work is supported by the National Science Foundation under
Grant No. 1329875. Part of the material is presented in the 56th
IEEE Conference on Decision and Control, December 12-15, 2017,
Melbourne, Australia.

Yingying Xiao and Jianghai Hu are with School of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN 47907,
USA (e-mail: {xiao106, jianghai}@purdue.edu).

Ji Liu is with the Department of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, NY 11794-2350, USA (e-mail:
ji.liu@stonybrook.edu).

of CFP have the advantage of easy implementation and guar-
anteed convergence. On the other hand, they often scale poorly
as the number of constraints increases.

With a large number of constraints, a natural idea is to
partition them into groups for individual agents to maintain.
This demands the distributed approaches for solving CFP.
Furthermore, in many practical applications, the constraints
relevant to an agent often involve the private variables of
the agent and its neighbors. Without the need to pass these
information to the central solver, distributed solutions can
better preserve the privacy of the agents, should such needs
arise.

Noteworthy efforts toward this direction include the dis-
tributed algorithms for solving linear equations as proposed
in [19]–[25], which are subsequently extended to solve non-
linear equations [26]–[28], e.g. paracontractions and strongly
quasi-nonexpansive maps, and the projected consensus al-
gorithms for constrained consensus problems [1], [2], [29],
[30] and approximate projections [31]. Some of the earlier
work on general CFP along this direction can be found
in [16], [32]–[34]. CFP can also be formulated as distributed
optimization problems; in this context, relevant approaches
can be found in, e.g. [35]–[37] to name a few. In all these
distributed algorithms, the convex constraints are partitioned
and assigned to a group of agents, each of which maintains a
local guess of the solution. These local guesses are updated by
the agents individually, to satisfy their own constraints through
(approximate) projection, and to reach consensus by averaging
the guesses of each agent and its neighbors.

A drawback of the aforementioned approaches is that they
require each agent to keep and broadcast to its neighbors a
vector whose dimension is the same as that of the solution
to the problem, which can result in excessive storage and
communication requirements on individual agents. For exam-
ple, Fig. 1 shows a planar network localization problem using
relative orientation measurements, which consists of 2 anchors
with known locations and 28 free agents whose locations
need to be identified. Using the existing algorithms above,
each agent needs to maintain and broadcast at each round
56 variables. However, taking the agent labeled by 0 as an
example, the constraints relevant to its location only involve
the five neighbors within its measurement range, i.e., only 12
of the 56 variables are relevant for the feasibility of its location.
With a larger problem size, this disadvantage of the existing
algorithms becomes even more severe.

One way to mitigate this issue is to partition not only the
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Fig. 1: Network localization with 2 anchors (solid dots) and
28 free agents (small circles).

constraints, but also the solution vector, into different parts
and assign them to individual agents. Along this direction,
one approach in [38] for solving linear equations Ax = b
is that each agent partitions its copy of the solution into
multiple blocks and broadcasts periodically or randomly only
one of them to its neighbors. This approach reduces the
communication load but comes at the expense of convergence
rate that heavily depends on how frequently the local copies
are broadcasted. Another method in [39] intends to exploit the
sparsity of matrix A. Given the partition of x, each agent keeps
and broadcasts only the blocks relevant to its own constraints,
which often has a much reduced dimension than x. However,
this method requires each agent to know not only the index
mapping from its own block to the whole variable x but also
the index mappings from each of its neighbors to x. This may
lead to a large setup overload, and implementation difficulty
when such mappings are private information that the agents
are not willing to share.

In this paper, a new distributed approach is proposed to
solve the general CFP by taking advantage of the possible
sparsity of constraint couplings across agents: each agent
only maintains its own variable as well as its desired values
for the variables of those neighbors whose valuations affect
its feasibility; at each round, each agent communicates only
with its neighboring agents with constraint couplings (either
direction). Such an approach significantly reduces the amount
of storage and communication required for individual agents
in cases where the couplings are sparse. Four algorithms
in this framework are proposed and their convergence to a
feasible solution starting from any initial guess is established.
Algorithm 1, based on synchronous projection and consensus
operation by all agents, converges exponentially fast under
some further assumptions. Algorithm 2 extends Algorithm 1 to
be asynchronous by allowing agents to independently choose
their operations in each iteration while Algorithm 3 generalizes
Algorithm 1 by utilizing general, time-varying consensus op-
erations and allowing individual agents to decide if they would
like to perform the projection at each round. Algorithm 4, the
most general version, combines the relaxations of Algorithms
2 and 3.

The remainder of this paper is organized as follows. The
problem is formulated in Section II. Several potential ap-
plications are given in Section III. Section IV presents four
distributed algorithms and their convergence properties, whose
proofs are provided in Section V. Section VI demonstrates the

effectiveness of the proposed algorithms through simulation
results and Section VII concludes the paper.

Notation: For any integer m ≥ 1, Im denotes the index
set {1, . . . ,m} and (xi)i∈Im is the column stack of xi’s, i ∈
Im, with indices in ascending order. All vectors are treated
as column vectors. We use 1 to denote the vector of proper
size with all entries equal to 1, Id the identity matrix/operator,
e the unit vector with only one entry to be 1 in the proper
position and all other entries zero, diag(A1, A2, . . . , Am) the
block diagonal matrix, and [A]ij the entry located at the i-
th row and j-th column of matrix A. A vector is stochastic
if all entries are nonnegative and sum to 1 and a matrix is
stochastic when all of its row vectors are stochastic. For a
given set A, |A| represents its cardinality, dA(x) denotes the
Euclidean distance of x to A, and Ao is the interior of A. The
norm and its special cases, l1-norm and l2-norm, are denoted
by |||·|||, ‖ · ‖1, and ‖ · ‖, respectively. For two operators P
and Q, the composition Q(P (x)) is denoted as Q ◦P (x) and
FixP represents the fixed point set of P .

II. PROBLEM FORMULATION

Consider a set of m agents indexed by Im. Assume each
agent i ∈ Im maintains a (local) variable xi ∈ Rni of its own,
which needs to satisfy a constraint of the following form:

xi ∈ Di
(

(xj)j∈N+
i

)
. (1)

Here, N+
i ⊂ Im \ {i} is a set of agents whose variables

are needed to determine the feasible set of xi; (xj)j∈N+
i

is the stacked vector of all the variables of agents in N+
i ;

and Di
(

(xj)j∈N+
i

)
is a subset of Rni which may vary with

(xj)j∈N+
i

. Equivalently, the constraint (1) can be written as(
xi, (xj)j∈N+

i

)
∈ Fi, (2)

where Fi is a suitably chosen subset of the product space of
xi and (xj)j∈N+

i
.

The constraint (1) on the variable of agent i is in general
non-local as it depends on the variables of other agents in
N+
i . In the case N+

i = ∅, the feasible set Di becomes a fixed
subset of Rni and the constraint on xi becomes local. Due to
privacy concern, the constraint Fi (thus Di) is assumed to be
private to each agent i ∈ Im while the local variable xi is
shared with other neighboring agents.

Example 1: Consider the example shown in Fig. 2. There
are four agents with the local variables xi and the local
constraints Fi, i ∈ I4. In Fig. 2, the local variables are labeled
on the right; the local constraints are labeled on the left; the
solid lines represent the constraint couplings across agents.
Except for agent 1, the local constraint of every other agent
is non-local.

A directed graph Gd, called the (constraint) dependency
graph, can be constructed to represent the interdependency of
the agents’ feasibility: Gd has the vertex set Im and a directed
edge from j to i, denoted as (j, i), whenever the feasible set
of xi depends on xj . Note that there is no self-loop in Gd. See
the left of Fig. 3 for Gd of Example 1. The aforementioned
set N+

i is exactly the in-neighborhood of vertex i in Gd; thus



XIAO, LIU AND HU: DISTRIBUTED SOLUTIONS TO CONVEX FEASIBILITY PROBLEMS WITH COUPLING CONSTRAINTS 3

Fig. 2: Dependence Illustration of Example 1.

we call agents indexed by N+
i the in-neighbors of agent i.

Similarly, the out-neighborhood of vertex i in Gd, denoted by
N−i ⊂ Im \{i}, indexes the out-neighbors of agent i, namely,
agents whose variables’ feasibility depends (at least partially)
on the value of xi. The two neighborhoods N+

i and N−i may
overlap or even be identical (see Example 3 below). Denote
by Ni := N+

i ∪N
−
i the neighbors of agent i.

Since the agents’ constraints are coupled, to ensure feasi-
bility they need to communicate with each other to share their
local variables (but not their local constraints due to privacy
consideration). The allowable communication among agents
is represented by the communication graph Gc, which is a
directed graph with the vertex set Im and an edge set such
that a directed edge from j to i exists whenever agent i can
receive information from agent j via direct communication.

Assumption 1 (Communicability): The communication
graph Gc contains the union of Gd and its transpose G>d 1.

Assumption 1 implies that each agent can have two-way
communications (i.e. send information to and receive infor-
mation from) with any of its in-neighbors and out-neighbors.
In other words, the communication is bi-directional between
two agents whenever one’s feasibility depends on the other’s
variable. See the right of Fig. 3 for Gc of Example 1.
The following Example 2 demonstrates why the bidirectional
communication is necessary.

Fig. 3: Dependence graph (left) and communication graph
(right) of Example 1.

Example 2: Consider two agents with local variables
x1, x2 ∈ R and local constraints

F1 : x1 = x2, x1 ≤ 5 and F2 : 4 ≤ x2 ≤ 7,

respectively. The dependence graph Gd has only one edge
(2, 1). Assume x1(0) = 5, x2(0) = 6. If agent 2 can not obtain

1The transpose graph GT
d is obtained by reversing the direction of every

edge of Gd.

information from agent 1, it will stick to its initial value and
never reach consensus with agent 1 on the value of x2.

Example 3: The linear equation Ax = b with

A =

 1 0 −1
1 1 1
0 1 1

 and b =

 0
0
−1

 (3)

has a unique solution x∗ = A−1b = (1,−2, 1). Partition
x ∈ R3 into x = (x1, x2) where x1 ∈ R2 and x2 ∈ R are
the variables of agents 1 and 2, respectively. With the row
(constraint) partitions of A and b in (3), the private constraint
of agent 1 is underdetermined for x1:

[
1 0

]
x1 − x2 = 0,

while the private constraint of agent 2 is overdetermined for
x2: [

1 1
0 1

]
x1 +

[
1
1

]
x2 =

[
0
−1

]
.

The neighbor sets of the two agents are given byN+
1 = N−1 =

{2} and N+
2 = N−2 = {1}, resulting in the corresponding

dependence graph Gd with the edge set {(1, 2), (2, 1)}.
Finally we formulate the problem to be studied in this paper.
Problem 1 (Distributed Feasibility Problem): Design dis-

tributed algorithms consistent with the communication graph
and maintaining the privacy of individual agents’ constraints
so that a value of (xi)i∈Im can be (asymptotically) obtained
that satisfies the private constraints of all agents.

Denote x := (xi)i∈Im ∈ Rn where n =
∑
i∈Im ni. The

following assumptions are imposed throughout this paper.
Assumption 2 (Feasibility): There exists at least one x that

satisfies all m constraints in (2).
Assumption 3 (Convexity): The feasible set Fi in (2) is

nonempty, closed and convex for each i ∈ Im.
As a consequence of Assumption 3, the feasible set

Di
(

(xj)j∈N+
i

)
in (1) is also convex.

III. APPLICATION EXAMPLES

Two instances of Problem 1 are presented below.

A. Distributed Solution of Linear Programs/Equations
Let A ∈ R`×n, b ∈ R` be such that the linear program

Ax ≤ b has at least one feasible solution x∗. Suppose that
different portions of the variable x and the inequalities are
held separately by a group of agents indexed by Im, i.e., there
exist the block partitions x = (x1, · · · , xm),

[
A B

]
=

 A11 · · · A1m b1
...

. . .
...

...
Am1 · · · Amm bm


so that agent i ∈ Im has ni variables, xi ∈ Rni , and `i
private linear inequality constraints, Ai1x1 + · · ·+Aimxm ≤
bi ∈ R`i . Here, we assume ni, `i ≥ 0 with

∑
i ni = n and∑

i `i = `; and “≤” denotes entry-wise comparison. Agent i
has the neighbor sets N+

i = {j ∈ I |Aij 6= 0} and N−i =
{j ∈ I |Aji 6= 0} and its constraint can be recast as Aiixi +∑
j∈N+

i
Aijxj ≤ bi. Distributed solution of the above linear

program (and as a special case, the linear equation Ax = b)
is an instance of Problem 1. Example 3 is one such instance.
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Example 4: Consider the linear program −ε1 ≤ Ax− b ≤
ε1 with x = (x1, x2, x3) ∈ R3,

A =

 1 0 −1
0 0 1
0 1 1

 , b =

 1
−1
1

 , 1 =

1
1
1

 . (4)

There are three agents with the variables x1, x2, x3 ∈ R and
the following private constraints, respectively: |x1−x3−1| ≤ ε
for agent 1; |x3 + 1| ≤ ε for agent 2; and |x2 + x3 − 1| ≤ ε
for agent 3. Their neighbor sets are N+

1 = {3}, N−1 = ∅;
N+

2 = N−2 = {3}; N+
3 = {2} and N−3 = {1, 2}. Note that

the constraint of agent 2 does not involve its own variable x2,
which is allowed in our problem formulation. Further, x∗ =
A−1b = (0, 2,−1) is a feasible solution for any ε ≥ 0.

B. Network Localization
Consider a group of agents (sensors, robots, vehicles) de-

ployed on R2 with unknown locations xi ∈ R2, i ∈ I. Suppose
each agent i ∈ I is equipped with sensors that can measure
its relative distance and/or orientation w.r.t. some other agents
j ∈ N+

i within its sensing range.
(i) Relative orientation (Angle-of-Arrival) measurement: the
direction of the vector xj −xi is measured against a compass
onboard agent i. This imposes a constraint as ∠(xj − xi) ∈
Θij , where ∠ denotes the phase angle and Θij is a singleton
{θij} if the measurement is precise and an interval [θij −
δ, θij + δ] if the measurement is imprecise.
(ii) Relative distance measurement: the distance ‖xj − xi‖ is
measured using, e.g., the strength of signal received by agent i
from agent j. This incurs a constraint as r1 ≤ ‖xi−xj‖ ≤ r2.

The private constraint of agent i consists of all the above
constraints for j ∈ N+

i . The network localization problem is to
find the locations of all agents consistent with the measurement
data. This is an instance of Problem 1 if r1 = 0.

IV. PROPOSED ALGORITHMS

We first present an equivalent formulation of Problem 1.
Suppose besides its own variable xi, agent i maintains an
additional set of variables, (xji)j∈N+

i
, where xji represents

the value of agent j’s variable as desired by agent i (which
could differ from the actual value of xj). Define

xi :=
(
xi, (xji)j∈N+

i

)
to be the augmented variable of agent i with the dimension
Ni = ni +

∑
j∈N+

i
nj . Then the totality of all xi’s, denoted

by x := (xi)i∈Im , has dimension N =
∑
i∈Im Ni. For sparse

dependency graph Gd, N � mn. With xi’s, Problem 1 can
be reformulated as follows.

Problem 2: Design distributed algorithms consistent with
the communication graph Gc so that a value of x is asymptot-
ically obtained that satisfies,

xi ∈ Fi, ∀i ∈ Im, (5)

xi = xik, ∀i ∈ Im, ∀k ∈ N−i . (6)
The constraint (5) is from (2) with xj replaced by xji, which

is local as it only involves agent i’s augmented variable xi.
The consensus constraint (6) ensures agent i’s variable xi to

be the same as that desired by its out-neighbors, inducing the
non-local consensus set

Ci := {(xi, (xik)k∈N−
i

) |xi = xik, ∀k ∈ N−i }. (7)

Define

A1 = F1 × · · · × Fm, A2 = M> (C1 × · · · × Cm) (8)

to be the feasible set and consensus subspace of x, respec-
tively, where M ∈ RN×N is a permutation matrix so that
each variable xi and its desired values by out-neighbors,
xik, k ∈ N−i , are put consecutively in a block in the order of
i = 1, . . . ,m. Clearly,A1∩A2 is the solution set of Problem 2.

It is easy to see that the solutions to Problems 1 and 2
have a one-to-one correspondence; hence they are equivalent.
By Assumption 2, Problem 2 has a feasible solution x∗ =
(x∗i )i∈Im . Next we present four algorithms to solve Problem 2
(and thus Problem 1).

A. Synchronous Algorithm

The first algorithm iteratively solves Problem 2 with all
agents updating synchronously in each iteration. The update
at round t consists of two stages: first each agent i updates its
augmented variable from xti to zti via the (relaxed) projection
operator Pi onto its local feasible set Fi as in (9); then, each
agent i simultaneously collects from its out-neighbors their
updated desired values of xi, (ztik)k∈N−

i
, to obtain xt+1

i via
the consensus operation (10), and broadcasts xt+1

i back to all
of its out-neighbors as their updated values xt+1

ik as in (11).
The iterations above are detailed below and summarized in
Algorithm 1.
(i) (Relaxed projection)

Agent i computes zti := (zi, (zji)j∈N+
i

) from xti via the
relaxed projection operation

zti = Pi(x
t
i) := (1− αi)xti + αi · PFi

(xti) . (9)

Here, PFi
denotes the orthogonal projection operator onto

the local feasible set Fi and αi ∈ (0, 2) is a constant.
(ii) (Consensus)

Agent i collects (ztik)k∈N−
i

from its out-neighbors to
update its variable according to

xt+1
i = Qi(z

t
i , (z

t
ik)k∈N−

i
)

:= 1
|N−

i |+1

(
zti +

∑
k∈N−

i
ztik

)
,

(10)

and then sends back xt+1
i to out-neighbors for updating

xt+1
ik = xt+1

i , k ∈ N−i . (11)

If agent i has no out-neighbors, i.e., N−i = ∅, the update
(10) will be trivial: xt+1

i = zti .
In Algorithm 1, all agents update their augmented variables

in parallel at each round. Intuitively the relaxed projection (9)
helps to improve the satisfaction of the local feasibility con-
straint (5) while the consensus step (10) together with the
broadcast step (11) helps to reach consensus on the value of
xi among agent i and its out-neighbors.
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Algorithm 1 Synchronous Algorithm
Initialize x0 and let t← 0;
repeat

for all i ∈ Im do {Relaxed projection}
Agent i computes zti according to (9);

end for
for all i ∈ Im do {Consensus}

Agent i receives ztik from all out-neighbors k;
Agent i computes xt+1

i according to (10);
Agent i sends back xt+1

i to all out-neighbors for
updating xt+1

ik as in (11);
end for
t← t+ 1;

until certain convergence criteria are met
Return xt.

Note that in Algorithm 1, each agent only communicates
with its out-neighbors in the consensus step and this com-
munication is bidirectional (two-way), which is allowed by
Assumption 1.

The convergence properties of the synchronous algorithm
are characterized by the following two theorems whose proofs
will be provided in Section V-A.

Theorem 1: Starting from any initial guess x0, the sequence
{xt} generated by Algorithm 1 will converge asymptotically
to a feasible solution to Problem 2.

Theorem 2: Suppose that there exists a feasible solution
xo ∈ Rn to Problem 1 such that for each i ∈ Im,(
xo
i , (x

o
j )j∈N+

i

)
∈ Fo

i , i.e., an interior point of Fi. Then Al-
gorithm 1 with αi = 1 for all i ∈ Im converges exponentially
fast to a feasible solution of Problem 2 starting from any initial
point.

Remark 1: The well-known projected consensus algorithm
in [1], [2], denoted as Pro-Con, has been proved that the
distance of each iterate to the feasible solution set decays
exponentially fast. This is weaker than the conclusion of The-
orem 2 that the iterates themselves converge exponentially to
one feasible solution. Without taking account of the differences
in implementation details, the main reason is that the relaxed
projection and consensus operations are paracontractions (see
Definition 1 in Section V) while the general weight consensus
operation adopted in Pro-Con is not.

B. Asynchronous Algorithm

The synchronous operations in Algorithm 1 can be difficult
to ensure in practice, which is extended to be asynchronous in
this section. At round t, each agent i independently determines
whether it will update or not and, if so, chooses one of
the following two operations to perform: carrying out the
relaxed projection operation (9) to satisfy its local feasibility
constraint; reaching consensus on its own variable xi with a
subset of its out-neighbors, denoted by N−i,t ⊆ N

−
i , through

the averaging step

xt+1
i = Qti

(
xti, (x

t
ik)k∈N−

i,t

)
:= 1
|N−

i,t|+1

(
xti +

∑
k∈N−

i,t
xtik

)
(12)

followed by the broadcast step (11) with N−i replaced by
N−i,t. In other words, depending on agent i’s update choice
at round t, it will belong to one of the three sets, the idle,
projection, and consensus sets, denoted by Itidle, ItP , ItQ,
respectively, and then perform the corresponding operation.
Note that Itidle, ItP and ItQ constitutes a partition of Im. The
Algorithm 2 bellow describes this asynchronous version.

Algorithm 2 Asynchronous Algorithm

Initialize x0 and set t← 0;
repeat

for all i ∈ Im do
Agent i idles
or
{Relaxed projection}
Agent i updates xt+1

i according to (9) with zti replaced
by xti ;
or
{Partial consensus}
Agent i receives xtik from the out-neighbor k belonging
to the subset N−i,t ⊆ N

−
i ;

Agent i computes xt+1
i according to (12);

Agent i sends xt+1
i back to its out-neighbors k ∈ N−i,t

as their updated values xt+1
ik ;

end for
t← t+ 1;

until certain convergence criteria are met
Return xt.

Remark 2 (Algorithm 2b): A special case of Algorithm 2 is
|N−i,t| = 1 in (12), i.e., agent i ∈ ItQ performs its consensus
operation with only one out-neighbor k ∈ N−i that is either
randomly picked or resulted from some extreme situations. In
this case, the equally weighted average (12) can be relaxed to[

xt+1
i

xt+1
ik

]
= (Wik ⊗ Ini

)

[
xti
xtik

]
. (13)

Here Wik ∈ R2×2 is a constant doubly stochastic matrix with
strictly positive entires. To carry out the update (13), agent i
first collects xtik from agent k, then computes the update values
for both itself and agent k, and finally sends the latter xt+1

ik

back to agent k. With this relaxation, agent i may not reach
consensus with any out-neighbors, i.e., xt+1

i 6= xt+1
ik ,∀k ∈

N−i . We will refer to this relaxed algorithm as Algorithm 2b
and show its convergence in Theorem 4.

To establish the convergences of Algorithms 2 and 2b, we
impose two assumptions.

Assumption 4 (Semaphore): At round t, for any agent i
carrying out the partial consensus operation (12), none of
(active) its out-neighbors N−i,t in (12) will be performing the
relaxed projection operation, i.e., N−i,t ∩ ItP = ∅, ∀i ∈ ItQ.

This assumption implies that at each round, each variable
either does not change or changes only once resulted from
the relaxed projection or partial consensus. This is critically
important for establishing the convergences later.

Assumption 5 (Infinite Appearances): (a) For each i ∈ Im,
i ∈ ItP for infinitely many t ∈ {0, 1, . . .}; (b) Any pair
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of neighboring agents is involved in the (partial) consensus
operation (12) for an infinite number of times.

Assumption 5 is less restrictive than both periodic and
uniformly repeated appearances which require that the two
operations in Assumption 5 are involved once and at least
once every T rounds, respectively, for a positive integer T .
Note that Assumption 5(b) imposes constraints on both ItQ
and N−i,t, ∀i ∈ ItQ, such that their combinations will guarantee
that any neighboring agents have enough communication on
their variables to reach consensus.

The following two theorems establish the convergences of
Algorithms 2 and 2b, respectively. Their proofs will be given
later on in Section V-B.

Theorem 3: Suppose Assumptions 4 and 5 hold. Starting
from any initial guess x0, the sequence {xt} generated by
Algorithm 2 converges asymptotically to a feasible solution to
Problem 2.

Theorem 4: Suppose Assumptions 4 and 5 hold. Starting
from any initial guess x0, the sequence {xt} returned by Al-
gorithm 2b will converge asymptotically to a feasible solution
to Problem 2.

C. Generalized Synchronous Algorithm
In this section, we generalize Algorithm 1 in two per-

spectives: (i) along the spirit of Algorithm 2, each agent
independently determines at each round if it will be activated
to perform updates and, if so, the type of update to be
carried out, (ii) time-varying general weights are adopted in
the consensus operation.

For the perspective (i), at round t only agents in the
two subsets of Im, denoted by ItP and ItQ, are assumed to
perform the relaxed projection and consensus operations of
Algorithm 1, respectively. Note that this algorithm remains
synchronous in a way that all agents must finish the relaxed
projection step before moving to the consensus operation,
different from the parallel implementation in Algorithm 2.
Therefore, ItP ∩ ItQ can be non-empty, i.e., an agent can
participate in both the projection and the consensus operations.
This extension accommodates the practical situation that some
agents may be unable to update due to temporary breakdown
or communication blackouts.

For the perspective (ii), the most straightforward generaliza-
tion is replacing step (10) of agent i ∈ ItQ by the following:

xt+1
i = wtiiz

t
i +

∑
k∈N−

i

wtikz
t
ik, (14)

where wtii ∈ R and wtik ∈ R, k ∈ N−i are time-varying
weights assigned by agent i and satisfy that every weight
is bounded from below by w > 0 and their sum is one.
Unfortunately, this generalization does not work in general,
even in the simplest case where the weights are constant and
ItP = ItQ = Im, i.e., the extension (i) above is removed. This
is shown by Example 5.

Example 5: Consider the linear equation Ax = b where

A =

1 1 1
1 1 0
1 0 1

 and b = 0 ∈ R3, which has a unique solution

x = (x1, x2, x3) = 0. Suppose it is solved by three agents
each in charge of one component of x and one row constraint.
Then the augmented variables are x1 = (x1, x21, x31), x2 =
(x2, x12), and x3 = (x3, x13). Suppose the stochastic matrices
in (14) are given by wt11 = 0.9, wt12 = 0.05, wt13 = 0.05,
wt21 = 0.2, wt22 = 0.8, wt31 = 0.1, wt33 = 0.9. Assuming
that ITP = ItQ = Im, the iteration of Algorithm 3 can be
written as xk+1 = Fxk for some matrix F ∈ R7×7. It
can be verified numerically that F has an eigenvalue 1.1246.
Therefore, Algorithm 3 does not converge to the solution 0
starting from some (indeed, almost all) initial guesses x0.

Instead of (14), the following operation is adopted to
replace the consensus step (10) and the broadcast step (11)
in Algorithm 1:(

xt+1
i , (xt+1

ik )k∈N−
i

)
= W t

i ⊗ Ini

(
zti , (z

t
ik)k∈N−

i

)
. (15)

Here, W t
i ∈ R(|N−

i |+1)×(|N−
i |+1) is a time-varying weight

matrix specified by agent i that satisifies Assumption 6 to be
defined below. In the case where agent i at round t receives
desired values ztik from only a subset of out-neighbors, N−i,t ⊂
N−i , the rows and columns of W t

i corresponding to the other
(silent) out-neighbors, i.e., N−i \ N

−
i,t, are set to proper unit

vectors as their desired values of xi remain unchanged at this
round. With this generalized weight matrix W t

i , the updated
values for out-neighbors, xt+1

ik , k ∈ N−i , will be different
from xt+1

i in general, i.e., agent i does not reach consensus
with its out-neighbors on its variable xi at each round, which
is the main difference between (15) and the consensus step
in (10). The potential benefits of adopting W t

i include 1).
speeding up the convergence by properly assigning weights,
especially when the desired values from some out-neighbors
are known to be more accurate/important than others, and
2). accommodating the practical situation that agent i loses
communication with some out-neighbors occasionally.

Assumption 6 (Weights Rule): For matrix W t
i , ∀t ≥ 0 and

∀i ∈ ItQ,

(a) W t
i is doubly stochastic;

(b) there is a scalar w > 0 such that entries of W t
i corre-

sponding to all agents in {i} ∪ N−i,t are bounded from
below by w, i.e., [W t

i ]kl ≥ w for all k, l ∈ {i} ∪ N−i,t;
(c) for agent k ∈ N−i \N

−
i,t, the diagonal entries [W t

i ]kk = 1
while the other elements in the row and column related
to agent k are set to 0.

Assumption 6(b) guarantees that once agent i obtains an
out-neighbor’s desired value ztik, this value will make sig-
nificant contributions to the consensus outcome. Although
Assumption 6(a) requires W t

i to be doubly stochastic, such
a matrix is chosen by agent i alone without any coordination
with other agents and will in general be different from those
chosen by other agents. In comparison, the traditional double
stochasticity assumption (e.g., [40] and Assumption 3 in [1])
needs all of the agents to coordinate to choose a single doubly
stochastic matrix.

The generalized synchronous algorithm with the above two
extensions is summarized in Algorithm 3. In order to establish
its convergence, the following Assumption 7 is imposed.
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Algorithm 3 Generalized Synchronous Algorithm

Initialize x0, and let t← 0;
repeat

for all i ∈ ItP do {Relaxed projection}
Agent i computes zti according to (9);

end for
for all i ∈ ItQ do {Generalized partial consensus}

Agent i receives ztik from out-neighbors k ∈ N−i,t;
Agent i computes xt+1

i , xt+1
ik according to (15);

Agent i sends back xt+1
ik to out-neighbors in N−i,t as

their updated values;
end for
t← t+ 1;

until certain convergence criteria are met
Return xt.

Assumption 7 (Uniform Appearances): (a) For each i ∈
Im, i ∈ ItP for infinitely many t ∈ {0, 1, . . .}; (b) There
exists a finite integer T > 0 such that, for any agent i ∈ Im,
each of its out-neighbor appears at least once in ∪t0+T

t=t0 N
−
i,t

for any integer t0 ≥ 0.
Clearly, Assumption 7 is stronger than Assumption 5 in

part(b) by requiring more frequent consensus operations be-
tween neighboring agents. Now we state the convergence
result of Algorithm 3 in Theorem 5 below with its proof
provided in Section V-C. As will be seen, the convergence
analysis of Algorithm 3 is much more challenging than that of
Algorithm 1 since the operation (15) is no longer a projection
onto the consensus set.

Theorem 5: Suppose that Assumptions 6 and 7 hold. Start-
ing from any initial guess x0, the sequence {xt} generated by
Algorithm 3 will asymptotically converge to a feasible solution
to Problem 2.

D. Generalized Asynchronous Algorithm
The following Algorithm 4 is the asynchronous version of

Algorithm 3 in a way that the relaxed projection and the
generalized partial consensus operations can be carried out
simultaneously rather than consecutively. Its convergence is
shown in Theorem 6 below with proof given in Section V-D.

Theorem 6: Suppose Assumptions 4, 6, and 7 hold. Start-
ing at any initial guess x0, the sequence {xt} generated by
Algorithm 4 converges asymptotically to a feasible solution to
Problem 2.

V. CONVERGENCE PROOF

We first introduce two useful notions, paracontractions and
their subclass, strongly quasi-nonexpansive maps, a key result
on paracontractions and their properties.

Definition 1 ( [41]): A continuous map P : Rn → Rn
is called a paracontraction w.r.t. a norm |||·||| on Rn if
|||P (x)− y||| < |||x− y||| for any x 6∈ FixP and y ∈ FixP .

The orthogonal projection operator PF onto a nonempty
closed convex set F is a paracontraction w.r.t. the Euclidean
norm. Indeed, for any α ∈ (0, 2), the relaxed projection

Algorithm 4 Generalized Asynchronous Algorithm

Initialize x0 and set t← 0;
repeat

for all i ∈ Im do
Agent i idles
or
{Relaxed projection}
Agent i updates xt+1

i according to (9) with zti replaced
by xti ;
or
{Generalized partial consensus}
Agent i receives xtik from out-neighbors k belonging
to the subset N−i,t ⊆ N

−
i ;

Agent i computes xt+1
i , xt+1

ik according to (15);
Agent i sends xt+1

ik back to its out-neighbors k ∈ N−i,t
as their updated values;

end for
t← t+ 1;

until certain convergence criteria are met
Return xt.

operator (1 − α) · Id + α · PF with the identity map Id is
also a paracontraction [41] and even further a 2−α

α -strongly
quasi-nonexpansive map defined as follows [42].

Definition 2 ( [42]): Let β > 0. A map P : Rn → Rn is
β-strongly quasi-nonexpansive w.r.t. a norm |||·||| on Rn if

|||P (x)− y|||2 ≤ |||x− y|||2 − β|||P (x)− x|||2

for any x ∈ Rn and y ∈ FixP .
Followed is a useful fact on paracontractions with its

straightforward proof omitted.
Lemma 1: Suppose Pi : Rni → Rni is a paracontraction

w.r.t. the norm |||·|||i for i = 1, . . . ,m. Then P = P1 × · · · ×
Pm : Rn → Rn where n =

∑m
i=1 ni is a paracontraction w.r.t.

the norm |||x||| := (
∑m
i=1 |||xi|||

p
i )

1/p for x = (x1, . . . , xm) ∈
Rn and p ≥ 1.

A key result proved in [41] is re-stated in the following
theorem, which will be the fundamental tool to establish the
convergence of Algorithms 1 and 2.

Theorem 7: Suppose Si : Rn → Rn, i = 1, . . . , `, are
paracontractions w.r.t. the norm |||·||| and ∩`i=1 FixSi 6= ∅.
Starting from any x0 ∈ Rn and for any sequence σ0, σ1, . . . ∈
{1, . . . , `} so that each index i appears infinitely often, the
iteration

xt+1 = Sσt(xt), ∀t = 0, 1, . . . ,

will converge to a point x∗ = limt→∞ xt ∈ ∩`i=1 FixSi
.

The techniques above are compatible with the general norm
|||·||| while the following lemma on paracontractions only
applies w.r.t. the l2-norm ‖ · ‖.

Lemma 2: Suppose P : Rn → Rn is a paracontraction w.r.t.
the l2-norm ‖·‖. Then the operator P̃ = M>PM : Rn → Rn,
where M is a permutation matrix, is also a paracontraction
w.r.t. ‖ · ‖ with FixP̃ = M> FixP .

In the rest of this section, unless otherwise stated, all norms
are Euclidean norm.
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Fig. 4: Proof of Lemma 3.

A. Convergence Proof of Algorithm 1
This section aims to establish the convergence and conver-

gence rate of the synchronous Algorithm 1.
At round t of Algorithm 1, each agent i ∈ Im first computes

zti = Pi(x
t
i), where Pi is a strongly quasi-nonexpansive map

with the fixed point set Fi. Denoting by z the stacked vector
of all zi, we have

zt = P
(
xt
)

(16)

where P := P1 × · · · × Pm is a paracontraction with FixP =
A1 defined in (8).

The second step, consisting of the consensus operation (10)
followed by the broadcast (11), can be expressed as

xt+1
ik = xt+1

i = Qi(z
t
i , (z

t
ik)k∈N−

i
), k ∈ N−i ,

or in a compact form

(xt+1
i , (xt+1

ik )k∈N−
i

) = Q̃i(z
t
i , (z

t
ik)k∈N−

i
)

where Q̃i(·) := [Qi, . . . , Qi] (·) is the column concatenation
of Qi’s and, with some abuse of notation, Qi is the matrix

1
|N−

i |+1
1> ⊗ Ini

corresponding to the consensus operation

in (10). It can be easily seen that, for any i ∈ Im, Q̃i is exactly
the projection operation onto the consensus set Ci in (7). For
simplicity, we reorder the variables of x as x̃ = Mx, where M
is the permutation matrix used in (8). Similarly z̃ = Mz. Then
by Lemma 1 the operator Q̃ : z̃t 7→ x̃t+1, being Q̃1×· · ·×Q̃m,
is a paracontraction w.r.t. the Euclidean norm with the fixed
point set C1 × · · · × Cm. For the original xt, it follows that

xt+1 = M>x̃t+1 = M>Q̃
(
z̃t
)

= M>Q̃M
(
zt
)

= Q
(
zt
)
,

with Q := M>Q̃M . By Lemma 2, the operator Q is a
paracontraction w.r.t. the Euclidean norm with the fixed point
set A2 in (8).

Proof of Theorem 1:
As discussed above, the sequence xt generated by Algo-

rithm 1 is obtained from the iteration

xt+1 = Q ◦ P (xt), t = 0, 1, . . . ,

where P and Q are two paracontractions w.r.t. the Euclidean
norm whose sets of fixed points are specified by A1 and A2

in (8), respectively. By Theorem 7, xt will converge to some
x∗ ∈ A1 ∩ A2, namely, a solution to Problem 2.

To study the convergence rate of Algorithm 1, we need the
following result.

Lemma 3: Suppose that E1 and E2 are two closed convex
subsets of Rd whose intersection E1 ∩ E2 contains an interior

point xo of E1, i.e., there exists r > 0 such that the closed ball
B(xo, r) centered at xo with the radius r is contained in E1.
Let PE1 and PE2 be the projection operators onto these two
sets, respectively. Then, for any x ∈ E2 \ E1, we have
(a) dE1∩E2(x) ≤ ‖x−x

o‖
r · dE1(x),

(b) dE1 (PE2(PE1(x))) ≤ γ · dE1(x),

with the constant γ :=

√
‖x−xo‖2−r2
‖x−xo‖ ∈ [0, 1).

Proof : Let x ∈ E2 \E1 be arbitrary and denote x′ = PE1(x)
and x′′ = PE2(x′) (see Fig. 4). Without loss of generality
assume x′ 6∈ E2 (otherwise x′ = x′′ resulting zero in the left-
hand side and both conclusions are trivial), which implies that
x 6∈ B(xo, r). Hence x 6= x′ and x′ 6= x′′. Since x′,xo ∈ E1,
the line segment x′xo between x′ and xo is contained entirely
in E1.

The fact x′ = PE1(x) implies that 1) there is a supporting
hyperplane W of E1 that passes through x′ and is orthogonal
to xx′, 2) the angle that x′xo and x′x make at x′ is obtuse
and thus ‖x′ − xo‖ < ‖x − xo‖, and 3) the points x, x′, xo

constitute a plane W o that is orthogonal to W . Note that x is
on one side of W while the convex hull C ⊂ E1 of the point
x′ and the ball B(xo, r) is on the other side.

As shown in Fig. 4, let x′z ⊂W o be the line segment that is
tangential to the sphere ∂B(xo, r) at the point z and intersects
xxo at a point y, and let x̃′′ be a point on the line segment
xxo ⊂ E2 such that x′x̃′′⊥xxo. Then dE1(x′′) ≤ ‖x′′−x′‖ ≤
‖x′ − x̃′′‖, with the two inequalities following from the fact
that x′ ∈ E1 and x̃′′ ∈ E2 are not necessarily the projection
points of x′′ onto E1 and x′ onto E2, respectively.

The angles between the line segments x′y and x′xo, x′x̃′′
and x′y, xx′ and xx̃′′, yx′ and yx̃′′, are denoted by ηo, η′′,
ηx, ηy, respectively. Obviously, sin(ηo) = r/‖x′−xo‖, η′′ ≤
90◦ − ηo and ηy ≥ ηo.

By the geometric relationship in the plane W o, we have

dE1∩E2(x) ≤ ‖x− y‖ = ‖x− x̃′′‖+ ‖x̃′′ − y‖
= ‖x− x′‖ cos(ηx) + ‖x− x′‖ sin(ηx) tan(η′′)

≤ ‖x− x′‖ cos(ηx) + ‖x− x′‖ sin(ηx) tan(90◦ − ηo)

= ‖x− x′‖ sin(ηx + ηo)

sin(ηo)
≤ ‖x− x′‖/ sin(ηo)

= dE1(x)
‖x′ − xo‖

r
≤ dE1(x)

‖x− xo‖
r

,

which is the desired conclusion (a).
Since the angle that x′xo and x′x make at x′ can not be

acute, ηx+ηy ≤ 90◦ holds, implying that 0 ≤ ηx ≤ 90◦−ηy ≤
90◦ − ηo ≤ 90◦. Then sin(ηx) ≤ sin(90◦ − ηo) = cos(ηo) =√
‖x′ − xo‖2 − r2/‖x′ − xo‖. Therefore,

dE1(x′′)

dE1(x)
≤ ‖x

′ − x̃′′‖
‖x′ − x‖

= sin(ηx) ≤
√
‖x′ − xo‖2 − r2

‖x′ − xo‖

≤
√
‖x− xo‖2 − r2

‖x− xo‖
= γ.

Combined with the trivial case that x′ = x′′ when x ∈
B(xo, r), the conclusion (b) is proved.

Using Lemma 3, we are ready to prove the exponential
convergence rate of Algorithm 1.

Proof of Theorem 2:
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As shown in the proof of Theorem 1, given αi = 1,∀i ∈
Im, the sequence {xt} generated by Algorithm 1 satisfies the
condition that xt ∈ A2 and xt+1 = PA2(PA1(xt)), ∀t =
0, 1, . . ., with A1 and A2 defined in (8), and that lim

t→∞
xt =

x∗ ∈ A1 ∩ A2 as a consequence.
By our assumption on xo and setting xo

ik = xo
i ,∀k ∈ N

−
i ,

the corresponding xo has the properties that xo ∈ A2 by
construction, and each xo

i ∈ Fo
i which leads to the fact that xo

is an interior point of A1. Thus by combining two conclusions
in Lemma 3 and the fact that ‖xt − xo‖ is nonincreasing and
hence bounded, dA1∩A2

(xt) decays to zero exponentially fast.
Let t ≥ 0 be arbitrary and denote yt := PA1∩A2

(xt). Since
yt ∈ A1 ∩ A2, ‖xt+s − yt‖ is nonincreasing in s for s ≥ 0,
resulted from the facts that xt+s+1 = PA2(PA1(xt+s)) and
that both PA1 and PA2 are paracontractions with yt being one
of their fixed points. Thus ‖xt−yt‖ ≥ lims→∞ ‖xt+s−yt‖ =
‖x∗ − yt‖, which leads to

‖xt−x∗‖ ≤ ‖xt−yt‖+‖x∗−yt‖ ≤ 2‖xt−yt‖ = 2dA1∩A2
(xt).

Therefore, xt converges to x∗ exponentially fast.

B. Convergence Proof of Algorithm 2
Similarly to Algorithm 1, we will show in the following

that the augmented variable xt is updated at each round of
Algorithm 2 by the composition of two paracontractions.

Proof of Theorem 3:
Under Assumption 4, the update at round t can be written

as
xt+1 = Qt ◦ P t

(
xt
)
.

Here, the operator P t is defined as

P t = P t1 × · · · × P tm, (17)

where P ti : RNi → RNi is the Pi defined in (9) if agent i
performs the relaxed projection at this round, and otherwise
the identity map. The operator Qt is defined as

Qt = M>Q̃tM

where M is the same permutation matrix defined in (8) and

Q̃t = Q̃t1 × · · · × Q̃tm
with each Q̃ti : Rni(1+|N−

i |) → Rni(1+|N−
i |) being

Q̃ti = (M t
i )
> [Qti, · · · , Qti, Ini

, · · · , Ini

]
M t
i . (18)

if agent i performs the partial consensus, and otherwise the
identity map. In (18), M t

i is a permutation matrix that puts the
agents in {i}∪N−i,t at the front of the group {i}∪N−i ; with a
little abuse of notation, Qti being the matrix 1

|N−
i,t|+1

1> ⊗ Ini

corresponding to the operation (12) appears |N−i,t| + 1 times.
By repeatedly applying Lemmas 1 and 2, we know P t and
Qt are paracontractions w.r.t. the Euclidean norm.

It is easy to see that the number of possible operators P t

and Qt for t = 0, 1, . . . , is finite. Moreover, P t’s and Qt’s
have the common fixed point sets A1 and A2 defined in (8),
respectively. Hence, under Assumption 5, xt will converge to
some x∗ ∈ A1 ∩ A2 as a consequence of Theorem 7.

The convergence of Algorithm 2b can be proven similarly.

Proof of Theorem 4:
Since the matrix Wik ∈ R2×2 used in the update (13) is

doubly stochastic, it can be explicitly expressed as

Wik =

[
1− βik βik
βik 1− βik

]
with βik ∈ (0, 1). The corresponding update is[

xt+1
i

xt+1
ik

]
= (1− 2βik)

[
xti
xtik

]
+ 2βik

[
(xti + xtik)/2
(xti + xtik)/2

]
,

which is a (2βik)-relaxed projection onto the consensus set
{(xi, xik)|xi = xik}, and therefore a paracontraction w.r.t. the
Euclidean norm. The remaining proof is exactly the same as
that of Theorem 3.

In general, the convergence of Algorithms 2 and 2b is not
exponential.

C. Convergence Proof of Algorithm 3
The convergence analysis of Algorithm 3 is more challeng-

ing than Algorithms 1 and 2 because the operation in (15) is
no longer a paracontraction. Instead, our proof will utilize the
property of strongly quasi-nonexpansive maps.

For any agent i ∈ Im, its augmented variable xi’s update
at round t of Algorithm 3 can be summarized as

zti = P ti (xti) (19)

xt+1
i =

∑
k∈Im

(
Qt
)
ik
ztk, (20)

where

P ti =

{
Pi, if i ∈ ItP ,
Id, otherwise;

(21)

and Qt is a doubly stochastic matrix whose block in the i-th
row and k-th column, denoted as (Qt)ik ,∀i, k ∈ Im, will be
defined shortly. In sum, the dynamics is

zt = P t(xt) (22)

xt+1 = Qtzt. (23)

To define Qt, we first reorder x and z as x̃ = Mx and
z̃ = Mz, respectively, using the same permutation matrix M
in (8). Then the consensus step (15) will result in

x̃t+1 = W tz̃t, (24)

with W t := diag (W t
1 ⊗ In1

,W t
2 ⊗ In2

, · · · ,W t
m ⊗ Inm

). If
i /∈ ItQ, i.e., agent i is not activated to perform the consensus
update (15) at round t, W t

i is set to be the identity map Id.
For x, the following holds

xt+1 = M>x̃t+1 = M>W tz̃t = M>W tMzt = Qtzt,

under the definition Qt := M>W tM . As a consequence of
Assumption 6(a), W t, and hence Qt, is doubly stochastic.

With the dynamics (22) and (23), we next establish the
convergence by showing first the intermediate values zt will
converge to a point in A1 ∩A2, i.e., a solution to Problem 2.

To proceed, define agent i’s displacement vector as

eti := P ti (xti)− xti = zti − xti, (25)



10 IEEE TRANSCTION ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2019

with P ti in (21). Note that if P ti = Pi, then

‖eti‖ = ‖(1− αi)xti + αiPFi

(
xti
)
− xti‖

= αi‖PFi

(
xti
)
− xti‖ = αi dFi

(
xti
)
.

The following lemma shows that eti will converge to zero.
Lemma 4: Suppose Assumption 6 holds. The displacement

vector et := (eti)i∈Im → 0 as t→∞.
Proof : Let y ∈ A1∩A2 be a solution of Problem 2. Then for

all t = 0, 1, . . . , y = Qty because the matrix Qt is stochastic.
As discussed at the beginning of this section, Pi defined in (9)
is a βi-strongly quasi-nonexpansive map with βi := 2−αi

αi
, i.e.,

‖Pi(xti)− yi‖2 ≤ ‖xti − yi‖2 − βi‖Pi(xti)− xti‖2.

When replacing Pi by the identity map Id, the above inequality
still holds for the same βi. It then follows that

‖zti − yi‖2 ≤ ‖xti − yi‖2 − β‖eti‖2,

with β := min
i∈Im

βi = min
i∈Im

{
2−αi

αi

}
. Combining with (20) we

have

β‖eti‖2 ≤

∥∥∥∥∥ ∑
k∈Im

(Qt−1)ikz
t−1
k − yi

∥∥∥∥∥
2

−
∥∥zti − yi

∥∥2
. (26)

Define an element-wise convex map Γ : RN → RN such that
Γ(x)l = x2

l , l ∈ IN . Then (26) will lead to

β‖et‖2 =
∑
i∈Im

β‖eti‖2

≤ 1>
{

Γ
(
Qt−1zt−1 − y

)
− Γ

(
zt − y

)}
= 1>

{
Γ
(
Qt−1

(
zt−1 − y

))
− Γ

(
zt − y

)}
≤ 1>

{
Qt−1Γ

(
zt−1 − y

)
− Γ

(
zt − y

)}
= 1>Γ

(
zt−1 − y

)
− 1>Γ

(
zt − y

)
= ‖zt−1 − y‖2 − ‖zt − y‖2, (27)

where the second inequality and the second last equality follow
from the convexity of Γ and the doubly stochasticity of Qt−1,
respectively. For any time instant t̄ > 0, summing the above
inequalities for t = 1, . . . , t̄ will result in

t̄∑
t=1

β‖et‖2 ≤ ‖z0 − y‖2 − ‖zt̄ − y‖2 ≤ ‖z0 − y‖2.

Since the inequality holds for arbitrarily large t̄, we have
∞∑
t=1

β‖et‖2 ≤ ‖z0 − y‖2 <∞.

With β > 0, this directly leads to limt→∞ et = 0.
With Lemma 4, we next show that zt will asymptotically

satisfy the consensus constraint in (6) as t→∞.
Lemma 5: Suppose Assumptions 6 and 7 hold. Then ∀i ∈

Im and ∀k ∈ N−i , limt→∞ ‖zti − ztik‖ = 0.
Proof : In this proof we focus on the reordered variables

x̃i =
(
xi, (xik)k∈N−

i

)
and z̃i =

(
zi, (zik)k∈N−

i

)
for an

arbitrary i ∈ Im, whose dynamics according to (15) can be

written as x̃t+1
i = (W t

i ⊗ Ini) z̃
t
i. Combined with the fact

z̃t+1
i = x̃t+1

i + ẽt+1
i , it follows that

z̃t+1
i =

(
W t
i ⊗ Ini

)
z̃ti + ẽt+1

i .

For s ≤ t, repeatedly applying the above equation yields

z̃t+1
i =

(
Φt,si ⊗ Ini

)
z̃si +

t∑
r=s+1

(
Φt,ri ⊗ Ini

)
ẽri + ẽt+1

i ,

(28)

where Φt,si := W t
iW

t−1
i · · ·W s+1

i W s
i and Φt,si = W t

i when
s = t. Obviously, Φt,si is doubly stochastic under Assump-
tion 6(a).

Under Assumption 7(b), the sequence of graphs {Gti} asso-
ciated with the matrix sequence {W t

i } is repeatedly jointly
strongly connected (see Appendix for the definitions). To-
gether with Assumption 6 on W t

i , this implies that, for any
fixed s, every entry of Φt,sh will converge to 1/

(
1 + |N−i |

)
exponentially fast as t → ∞ as shown by [1, Prop. 1]. More
precisely, ∣∣∣∣[Φt,si ]kl −

1

1 + |N−i |

∣∣∣∣ ≤ cλt−s
for all k, l ∈ I1+|N−

i |
. Here, the constants c > 0 and

λ ∈ [0, 1) are determined by the cardinality of N−i , w
in Assumption 6(b) and T from Assumption 7(b) (see [1,
Prop. 1]).

Following (28), for k ∈ I1+|N−
i |

, the k-th subvector in z̃t+1
i

(namely, zt+1
i and its desired values by its out-neighbors) is

given by

[z̃t+1
i ]k =

1+|N−
i |∑

l=1

[Φt,si ]kl[z̃
s
i ]l +

t∑
r=s+1

1+|N−
i |∑

l=1

[Φt,ri ]kl[ẽ
r
i ]l

+ [ẽt+1
i ]l.

Define yt+1
i to be the average of zt+1

i and its desired values
from out-neighbors. Then

yt+1
i =

1

1 + |N−i |
(
1> ⊗ Ini

)
z̃t+1
i

=
1

1 + |N−i |

{(
1> ⊗ Ini

)
z̃si +

t∑
r=s+1

(
1> ⊗ Ini

)
ẽri

+
(
1> ⊗ Ini

)
ẽt+1
i

}
=

1

1 + |N−i |

{ 1+|N−
i |∑

l=1

[z̃si ]l +

t∑
r=s+1

1+|N−
i |∑

l=1

[ẽri ]l

+

1+|N−
i |∑

l=1

[ẽt+1
i ]l

}
.

Note that the second equality follows from (28) and the fact
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that Φt,si is doubly stochastic. Then for k ∈ I1+|N−
i |

, we have∥∥[z̃t+1
i ]k − yt+1

i

∥∥
1

=

∥∥∥∥ 1+|N−
i |∑

l=1

(
[Φt,si ]kl −

1

1 + |N−i |

)
[z̃si ]l

+

t∑
r=s+1

1+|N−
i |∑

l=1

(
[Φt,ri ]kl −

1

1 + |N−i |

)
[ẽri ]l

+ [ẽt+1
i ]k −

1

1 + |N−i |

1+|N−
i |∑

l=1

[ẽt+1
i ]l

∥∥∥∥
1

≤ cλt−s‖z̃si‖1 +

t∑
r=s+1

cλt−r‖ẽri ‖1 + ‖ẽt+1
i ‖1

≤ cc1λt−s‖z̃si‖2 +

t∑
r=s+1

cc1λ
t−r‖ẽri ‖2 + c1‖ẽt+1

i ‖2

where c1 =
√

1 + |N−i |, following from the fact ‖x‖1 ≤√
n‖x‖2, x ∈ Rn. By Lemma 4, ∀ε > 0, there exists an s

such that for all t ≥ s, ‖ẽti‖ < ε. This leads to∥∥[z̃t+1
i ]k − yt+1

i

∥∥
1
≤ cc1λt−s‖z̃si‖2 + cc1ε

1− λt−s

1− λ
+ c1ε.

Since ε can be arbitrarily small, the following holds

lim
t→∞

∥∥[z̃t+1
i ]k − yt+1

i

∥∥
1

= 0,

i.e., zti and ztik for k ∈ N−i reach consensus asymptotically.

Finally, we establish the convergence of the generalized
synchronous algorithm stated in Theorem 5.

Proof of Theorem 5:
From (27) we have

‖zt − y‖2 ≤ ‖zt−1 − y‖2. (29)

Thus the sequence
{
‖zt−y‖2

}
is non-increasing for any y ∈

A1 ∩ A2. In particular, this implies that the sequence {zt} is
bounded and has accumulation points.

Next we prove the accumulation point is unique. Let z∗ be
a point that zt converges to along the time subsequence {ts}.
As a consequence of Lemma 5, z∗ ∈ A2.

In the first case, assume z∗ ∈ A1, implying that z∗ ∈ A1 ∩
A2. Let ẑ∗ 6= z∗ be a distinct accumulation point that {zt}
converges to along the time subsequence {t̂s}. Without loss
of generality, assume t̂s > ts for all s. Then by replacing y
in (29) with z∗, we have ‖zt̂s−z∗‖2 ≤ ‖zts−z∗‖2. As s→∞,
we have ‖ẑ∗ − z∗‖2 ≤ 0, which contradicts the assumption
that ẑ∗ 6= z∗. Therefore there is only one accumulation point.

In the second case, assume z∗ /∈ A1. Then there exists an
integer r ∈ Im such that z∗ violates a total of r out of the
m feasibility constraints in (5). Without loss of generality, the
first r constraints are assumed to be violated, i.e., dFi

(z∗i ) > 0
for all i ∈ Ir. Pick any δ such that 0 < δ ≤ mini∈Ir dFi(z

∗
i ).

Then as a consequence of Lemma 4, there exists a large
enough integer K > 0 such that for all t ≥ K, ‖et‖ ≤ δα/8

with α := mini∈Im αi. Suppose at time t1 ≥ K, zt1 ∈
B(z∗, δ/4). This implies that for all i ∈ Ir,

dFi
(zt1i ) ≥ dFi

(z∗i )− ‖z
t1
i − z∗i ‖ ≥ δ −

δ

4
=

3δ

4
.

At the same time, the next iteration value xt1+1 satisfies

‖xt1+1 − zt1‖ = ‖Qt1zt1 −Qt1z∗ + z∗ − zt1‖
≤ ‖Qt1 − I‖‖zt1 − z∗‖ ≤ (‖Qt1‖+ 1)‖zt1 − z∗‖
= 2‖zt1 − z∗‖ ≤ δ/2.

Here, we use the fact that ‖Qt1‖ = 1 for the doubly stochastic
matrix Qt1 . Combining the above two results, we obtain ∀i ∈
Ir,

dFi

(
xt1+1
i

)
≥ dFi

(
zt1i
)
− ‖xt1+1

i − zt1i ‖ ≥
3δ

4
− δ

2
=
δ

4
.

In the next relaxed projection update, if i ∈ Ir ∩ It1+1
P , i.e.,

agent i ∈ Ir is activated to carry out projection at round t1+1,
the resulted displacement vector et1+1 satisfies

‖et1+1‖ ≥ ‖et1+1
i ‖ = αidFi

(
xt1+1
i

)
≥ αδ

4
, i ∈ Ir,

which contradicts the previous assumption that ‖et‖ ≤ δα/8
for any t ≥ K. Therefore, we must have Ir ∩ It1+1

P = ∅.
This implies that the iteration from zt1 to zt1+1 is through
the operator P t1+1 ◦Qt1 where P t1+1 satisfies that P t1+1

i =
Id for i ∈ Ir. Equivalently, we can view this step as one
iteration of Algorithm 3 applied to a new problem, which is
the same as Problem 2 except that the feasible sets F1, . . . ,Fr
are relaxed to be the entire spaces of proper dimensions while
Fr+1, . . . ,Fm remain unchanged. Since z∗ is in the consensus
subspace A2 and satisfies the constraints Fr+1, . . . ,Fm, it
is a solution to the relaxed problem. By following the same
arguments we used previously to derive (27), we can show
that

‖zt1+1 − z∗‖ ≤ ‖zt1 − z∗‖ ≤ δ/4.

In other words, zt1+1 ∈ B(z∗, δ/4). By repeating the above
steps and induction, we conclude that the sequence {zt} will
stay inside the closed ball B(z∗, δ/4) for all t ≥ t1. Since the
choice of δ > 0 can be arbitrarily small, there will be no other
accumulation points besides z∗.

In summary, the accumulation point of {zt} is unique, i.e.,
limt→∞ zt = z∗. Also lim

t→∞
xt = z∗ holds based on the facts

that xt = zt − et from (25) and lim
t→∞

et = 0 in Lemma 4.

Now we show that z∗ ∈ A1. With P ti defined in (21), under
Assumption 7(a), let {τ} be the subsequence of {t} that P τi =
Pi. Then {xτi } and {eτi } are subsequences of {xti} and {eti},
respectively. Since lim

t→∞
xti = z∗i , ∀i ∈ Im, we have

dFi (z∗i ) = lim
τ→∞

dFi (xτi ) = (1/αi) lim
τ→∞

‖eτi ‖ = 0,

where the second equality follows from the argument af-
ter (25). Therefore, z∗i ∈ Fi, ∀i ∈ Im, or equivalently,
z∗ ∈ A1. This completes the proof.
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D. Convergence Proof of Algorithm 4
Under Assumption 4, the relaxed projection and generalized

partial consensus operations operate on two disjoint sets of
variables. Therefore the operation at round t can be split into
two steps:

zt = P t(xt),

xt+1 = Qtzt,

where zt denotes the intermediate value resulted from all
the relaxed projections of this round, P t = P t1 × · · · × P tm
with P ti = Pi defined in (9) if agent i performs the relaxed
projection at this round and P ti = Id if otherwise, and Qt is
the same stochastic matrix defined in (20).

Obviously, the augmented variable xt’s dynamics is iden-
tical to that of Algorithm 3. Under Assumptions 6 and 7,
the convergence proof of Algorithm 4 is the same as that of
Algorithm 3 and therefore omitted here.

VI. SIMULATION RESULTS

In this section, the simulation results of several numerical
examples are presented. In all examples, the initial values
x0
ik = x0

i for all i ∈ Im, k ∈ N−i .
We firstly apply Algorithms 1 and 3 to solve Example 4

with ε = 0, 0.01, 0.5, respectively, which is a linear equation
when ε = 0 and linear programs for others. For comparison,
in Algorithm 3 all agents are assumed to take part in both
the projection and consensus operations for all rounds. The
parameter αi in the relaxed projection (9) is αi = 1.5, i ∈
{1, 2, 3} in both Algorithms 1 and 3 and the weight matrices
in (15) of Algorithm 3 are, for all t = 1, 2, . . .

W t
1 =

[
1
]
, W t

2 =

[
0.1 0.9
0.9 0.1

]
, W t

3 =

0.04 0.48 0.48
0.48 0.04 0.48
0.48 0.48 0.04

 .
The results are shown in Fig. 5, where x∗ is the augmented
variable corresponding to the unique solution x∗ = (0, 2,−1)
when ε = 0, and the converged feasible solution when ε 6= 0.
As can be seen, Algorithm 3 with proper assigned weights
converges significantly faster than Algorithm 1 in all cases.

We next consider the network localization problem in sec-
tion III-B. Thirty agents are randomly placed inside a planar
region. Among them, two are anchors who know their exact
locations (at least two anchors are needed to localize the
network [12]). The other free agents need to estimate their
positions based on the relative orientation measurements from
their neighbors that are within a certain range. In Fig. 6, (a)
shows the random initial guesses of free agents’ locations and
(i) shows all agents’ true locations and the relative orientation
measurements (one edge represents a pair of measurements).
Assuming there is no measurement error (i.e., δ = 0), the
iterative results of applying Algorithm 1 with αi ≡ 1.9 are
plotted in Fig. 6, and as can be seen the algorithm converges
to the ground truth in about 50 iterations.

In Fig. 7, we compare the convergence rates of Algorithm 1
with three different settings of αi: αi ≡ 0.5, αi ≡ 1,
αi ≡ 1.9 and Pro-Con algorithm in [1], [2]. For a fair
comparison, the Pro-Con algorithm adopts equal weights as

0 10 20 30 40 50 60 70 80

Iterations

10-4

10-2

100

 Algorithm 1

 Algorithm 3

Fig. 5: Results of Example 4: plots of ‖xt−x∗‖ vs iterations
t when applying Algorithm 1 and Algorithm 3.

(a) Initial guess
(b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 30 iterations (f) 50 iterations

(g) 80 iterations (h) 100 iterations (i) Ground truth

Fig. 6: Results of applying Algorithm 1 to the network
localization problem with 2 anchors among 30 agents.

that in the consensus operation of Algorithm 1. At least for this
example, regardless of αi being used, Algorithm 1 converges
much faster than the Pro-Con algorithm despite the fact that
the later one demands each agent to store and exchange
with neighbors a whole copy of the variable x, resulting in
more information storage and communication for all agents.
An intuitive explanation of the performance difference is as
follows. In the Pro-Con algorithm, agent i maintains a copy
of x. However, in the copy, only the part involved in the
local constraint Fi will be updated/improved via the local
projection step, while the other part remains unchanged but
still gets delivered to neighboring agents for their consensus
step, potentially hindering the algorithm.
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Fig. 7: Comparison of the convergence rates of Algorithm 1
with different αi for the network localization problem. The
value

∑
i∈If ‖x

t
i − x∗i ‖2 versus iteration number t is plotted.
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Fig. 8: Comparison of the convergence rates of Algorithm 1
for the network localization problem with measurement errors.

Finally, suppose the relative orientation measurements are
inaccurate (δ 6= 0). Setting δ = 0°, 2.5°, 4°, 8°, respectively,
the results of applying Algorithm 1 are shown in Fig. 8, which
plots the sum of constraint violations d{∠(xtj − xti),Θij} vs.
iteration number t. As can be seen, with a larger error range δ
and hence a larger feasible set, the algorithm converges faster
to a feasible solution, which is not the ground truth in general.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we propose a distributed approach for solving
the convex feasibility problems with coupling constraints
that can significantly reduce the storage and communication
requirements for each agent. Four associated distributed al-
gorithms are developed, whose convergence properties have
been established and also demonstrated through numerical
examples.

As future directions, we will study the possibility of ex-
tending the developed algorithms to the more general cases
of directed communication, non-doubly-stochastic weighting
matrices, and distributed optimization problem with locally
coupled objective functions and constraints. Characterizing the
convergence rates of the algorithms will also be explored.

APPENDIX
USEFUL NOTIONS IN GRAPH THEORY

For a stochastic matrix A ∈ Rm×m, its associated graph G
is defined to have the vertex set Im and a directed edge (j, i)
from vertices j to i whenever the entry in i-th row and j-th
column is positive, i.e., [A]ij > 0. A finite sequence of graphs
G1, . . . ,GT with the same vertex set Im is said to be jointly
strongly connected if their union G1 ∪ · · · ∪ GT is strongly
connected. Here the union G1 ∪ · · · ∪ GT is the directed graph
with the same vertex set Im and an edge set that is the union
of individual graph’s edge set. An infinite sequence of graphs
{Gt} is repeatedly jointly strongly connected if there exists a
length T > 0 such that every T successive graphs from {Gt}
is jointly strongly connected.
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