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Abstract—This paper studies the problem of stabilizing
discrete-time switched linear control systems (SLCSs) using
continuous input by a user against adversarial switching by an
adversary. It is assumed that at each time the adversary knows
the user’s decision on the continuous input but not vice versa.
A quantitative metric of stabilizability is proposed. Systems at
the margin of stabilizability are further classified and studied via
the notions of defectiveness and reducibility. Analytical bounds
on the stabilizability metric are derived using (semi)norms, with
tight bounds provided by extremal norms. Numerical algorithms
are also developed for computing this metric. An application
example in networked control systems is presented.

Index Terms—Switched control systems, stabilization, robust-
ness, resilient systems.

I. INTRODUCTION

Switched control systems are hybrid systems controlled by
a continuous input signal and a switching signal (or mode
sequence in the discrete-time case). Stabilization of switched
control systems is the problem of designing control laws for
the controllable input signals to achieve a stable closed-loop
system [1]–[6]. The existing approaches are roughly classified
into two categories. In the first category (e.g., [1], [3], [4],
[6], [7]), both the continuous input and the switching signal
are utilized for stabilization. In the second category, the con-
tinuous input is used as a control, whereas the switching signal
is treated as a disturbance subject to certain constraints (e.g.,
switching frequency and dwell time constraints). A common
assumption in prior work of this category (e.g., [8]–[15]) is
that the continuous controller knows exactly the current mode
for at least some duration of time following each switch-
ing, and hence can take the form of a collection of mode-
dependent state feedback controllers. Additional assumptions
(e.g., controllability of individual subsystems [9], [13], and
minimal dwell time [8], [15]) are often imposed to ensure the
stabilizability of the switched control systems.

The resilient stabilization problem studied in this paper
belongs to the second category but assumes a different infor-
mation structure: at each time, the user decides the continuous
input without any knowledge of the current mode, whereas
the adversary is aware of the current continuous input. This
disadvantage for the user makes the resilient stabilization a
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very challenging task. For example, even if each subsystem
is stabilizable to the origin in one time step, the switched
control system may not be stabilizable (see Example II.1). Ap-
plications of the resilient stabilization problem include robust
networked control systems with uncertain network delay [16]
and the (stability, safety) control of survivable cyber-physical
systems under malicious cyber attacks and sabotages [17].

The resilient stabilization problem has been addressed in
different contexts before. It can be formulated as the robust
stabilization of linear control systems with polytopic uncer-
tainty. However, to our knowledge, the existing work either
assumes uncertain but constant system matrices [18] or only
considers special cases such as quadratic stabilizability [16],
[19], [20] and linear control policies [21]. Other relevant
results include simultaneous stabilization of multiple linear
systems [22] and stabilization of switched systems under
delayed switching observability [13]. These results provide
conservative sufficient conditions for resilient stabilization.

The contributions of this paper are four folds: (i) Sufficient
and necessary conditions as well as a quantitative metric of
resilient stabilizability are developed; (ii) SLCSs at the margin
of resilient stabilizability are characterized; (iii) Theoretical
results and numerical algorithms are developed that can pro-
duce more accurate bounds on the stabilizability metric than
the existing approaches; (iv) We show that the resiliently sta-
bilizing controllers are nonlinear in general (cf. Example V.2).
The results in this paper extend those on the stability of
autonomous switched linear systems (SLSs) [23]–[27] to the
stabilization of SLCS using continuous control input.

This paper is organized as follows. The σ-resilient stabi-
lization problem is formulated in Section II. The concepts
of nondefective and irreducible systems are introduced in
Section III. In Sections IV and V, theoretical and practical
bounds on the σ-resilient stabilizing rate are established.
Section VI presents an application in network control systems.
Finally, concluding remarks are given in Section VII.

II. RESILIENT STABILIZABILITY

Consider the discrete-time switched linear control system
(SLCS) on Rn with the state x(·) ∈ Rn:

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ Z+. (1)

Here, u(·) ∈ Rp and σ(·) ∈M := {1, . . . ,m} are the (contin-
uous) control input and switching sequence, respectively; the
sets Z+ := {0, 1, . . .} and N := {1, 2, . . .}. For brevity, the
SLCS is denoted by {(Ai, Bi)}i∈M, where Ai ∈ Rn×n and
Bi ∈ Rn×p specify the dynamics of subsystem i.
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The following assumption is made throughout this paper.

Assumption II.1 (Admissible Control and Switching Policies).
Denote by Ft := (x0:t, u0:t−1, σ0:t−1) the causal information
available at time t ∈ Z+, where x0:t denotes {x(0), . . . , x(t)}
and similarly for u0:t−1 and σ0:t−1, with the understanding
that F0 := {x(0)}. An admissible control policy u :=
{u0,u1, . . .} consists of a sequence of feedback control laws
ut : Rn(t+1) × Rpt ×Mt → Rp so that u(t) = ut(Ft), ∀t.
Denote by U the set of all admissible control policies. An
admissible switching policy σ := (σ0, σ1, . . .) consists of a
sequence of feedback switching laws σt : Rn(t+1) × Rpt ×
Mt × Rp → M so that the switching sequence at time t is
specified by the adversary as σ(t) = σt(Ft, u(t)). The set of
all admissible switching policies is denoted by S.

Thus, the user and the adversary are playing a dynamic
game: at each time t, the user decides u(t) first and then the
adversary decides σ(t) with the full knowledge of u(t).

Denote by x(·;σ,u, z) the solution to the SLCS from the
initial state z under the control policy u ∈ U and switching
policy σ ∈ S. Let ‖ · ‖ be an arbitrary norm on Rn.

Definition II.1. The SLCS is called σ-resiliently exponentially
stabilizable if there exist an admissible control policy u ∈ U
and constants κ ∈ [0,∞), ρ ∈ [0, 1) such that

‖x(t;σ,u, z)‖ ≤ κρt‖z‖, ∀ t ∈ Z+,∀ z ∈ Rn,∀σ ∈ S. (2)

Definition II.2. For the SLCS (1), the infimum of all ρ ≥ 0
for which (2) holds for some κ ≥ 0 and u ∈ U is called
the σ-resilient stabilizing rate and denoted by ρ∗. An optimal
control (if exists) is a u ∈ U such that (2) holds for ρ = ρ∗.

Note that ρ∗ ∈ [0,∞) provides a quantitative metric
of the σ-resilient exponential stabilizability and its value is
independent of the choice of the norm ‖ · ‖. The SLCS is
σ-resiliently exponentially stabilizable if and only if ρ∗ < 1.

When studying the σ-resilient stabilizability, the set S of
adversarial switching policies can be equivalently replaced
with the smaller set M∞ of all open-loop switching policies,
namely, switching sequences that are determined at time
t = 0. This is because whenever a switching policy σ ∈ S
destabilizes the SLCS, so does at least one switching sequence
in M∞, namely, the one actually produced by the policy σ.
Hence, in the rest of this paper, we assume S = M∞ and
think of σ ∈ S as switching sequences.

As a related notion, the σ-resiliently asymptotical stabiliz-
ability of the SLCS (1) is defined as the existence of u ∈ U
such that x(t;σ,u, z) → 0 as t → ∞ for all z ∈ Rn and
σ ∈ S. The following result is proved in Appendix A.

Theorem II.1. The SLCS (1) is σ-resiliently asymptotically
stabilizable if and only if it is σ-resiliently exponentially
stabilizable.

The rest of the paper will focus on the σ-resilient (expo-
nential) stabilizability and the stabilizing rate ρ∗ for the SLCS
(1). We first establish a homogeneous property of ρ∗.

Lemma II.1. Let ρ∗ be the σ-resilient stabilizing rate of the
SLCS {(Ai, Bi)}i∈M. For any α, β ∈ R with β 6= 0, the SLCS
{(αAi, βBi)}i∈M has the σ-resilient stabilizing rate |α| · ρ∗.

Proof. This result is trivial if α = 0. When α 6= 0, the conclu-
sion follows directly from the observation that the scaled SLCS
{(Ãi = αAi, B̃i = βBi)}i∈M has the solution x̃(t;σ, ũ, z) =
αt · x(t;σ,u, z) where ũt = β−1αt+1ut,∀ t, z, σ.

When all Bi = 0, the σ-resilient stabilizability is reduced
to the stability of the resulting autonomous SLS defined by
{Ai}i∈M under arbitrary switching, and ρ∗ becomes the joint
spectral radius (JSR) [28] of the matrix set {Ai}i∈M. More
generally, under a static linear state feedback control policy
u(t) = Kx(t), the ρ∗ of the closed-loop system is the JSR of
{Ai+BiK}i∈M. Note that the smallest possible JSR of {Ai+
BiK}i∈M achieved by all gain matrices K is a conservative
estimate of the ρ∗ of the SLCS (1), since the optimal control
policies are nonlinear in general (see Example V.2).

Example II.1. Consider a one-dimensional (1D) SLCS on R
with two subsystems, where A1 = a1, B1 = b1, A2 = a2, and
B2 = b2 are real numbers with b21 + b22 6= 0. At any time t,
given the state x(t) ∈ R, the optimal control u∗(t) can be
shown to achieve the following infimum:

inf
u(t)∈R

max
{
|a1x(t) + b1u(t)|, |a2x(t) + b2u(t)|

}
=
|a1b2 − a2b1|
|b1|+ |b2|

|x(t)| := ρ∗ · |x(t)|, (3)

which also specifies the σ-resilient stabilizing rate ρ∗. Indeed,
the optimal control u∗(t) is −[(a1 − a2)/(b1 − b2)]x(t) if
b1b2 < 0 and −[(a1 + a2)/(b1 + b2)]x(t) if b1b2 > 0. If
b1 = 0, then u∗(t) can be any value between (a1−a2)x(t)/b2
and −(a1 + a2)x(t)/b2. A similar result holds when b2 = 0.

If a1a2b1b2 ≤ 0, then ρ∗ in (3) is between the stabilizing
rates |a1| and |a2| of the two autonomous subsystems. If
a1a2b1b2 > 0, then ρ∗ can be smaller than both |a1| and |a2|.
For instance, ρ∗ = 0 if a1/b1 = a2/b2, i.e., the two subsystems
are scaled versions of each other. Indeed, from any x(0), the
control u∗(0) = −(a1/b1)x(0) = −(a2/b2)x(0) ensures that
x(1) = 0 regardless of σ(0). Finally, since b1b2 6= 0, both the
subsystems are controllable hence stabilizable; however, the
SLCS may not be σ-resiliently exponentially stabilizable.

Remark II.1. In the above example, the optimal user control
policy u is of the static state feedback form ut(Ft) = g(x(t)).
That ut depends solely on x(t) is not surprising since the
stabilizability property is entirely based on the behavior (i.e.,
convergence) of the future state solution, which depends on
the past u, σ, and x only through the current state x(t). The
adversary will not gain any further advantage by knowing
the user’s optimal feedback control policy in advance. This
observation remains valid for all the subsequent examples in
this paper. On the other hand, if the user adopts an open-loop
control policy (i.e., a control sequence), then the adversary
by knowing such a sequence in advance will have a much
greater advantage. In fact, it would be impossible to stabilize
the SLCS in Example II.1 in the latter setting.

III. DEFECTIVENESS AND REDUCIBILITY

In this section, we study those SLCSs whose σ-resilient
stabilizing rates ρ∗ can be exactly achieved.
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Definition III.1 (Defectiveness). The SLCS is called nonde-
fective if there exist a control policy u ∈ U and a constant
κ ≥ 0 such that ‖x(t;σ,u, z)‖ ≤ κ(ρ∗)t‖z‖, ∀ t ∈ Z+,
∀ z ∈ Rn, ∀σ ∈ S. Otherwise, it is called defective.

The notion of defectiveness helps to further distinguish the
σ-resilient stabilizability of those SLCSs at the margin (i.e.,
with ρ∗ = 1). The SLCS is called σ-resiliently Lyapunov
stabilizable if there exist u ∈ U and κ ∈ [0,∞) such that
‖x(t;σ,u, z)‖ ≤ κ‖z‖,∀ t ∈ Z+, ∀ z ∈ Rn, ∀σ ∈ S .
By Definition III.1, the σ-resilient Lyapunov stabilizability is
equivalent to either of the following two cases: (i) ρ∗ < 1;
(ii) ρ∗ = 1 and the SLCS is nondefective.

An SLCS with ρ∗ = 0 is nondefective if and only if it is
resiliently controllable to the origin in one time step: for any
z ∈ Rn, there exists v ∈ Rp such that Aiz+Biv = 0, ∀i ∈M;
or equivalently, Ai = BiK, ∀i ∈M, for some matrix K.

As an example, consider the LTI system (A,B), where A =[
1 1
0 1

]
and B =

[
0
0

]
. As B is zero, ρ∗ = 1 is the spectral

radius of A. Since x(t) = Atx(0) is unbounded for some x(0),
the SLCS is defective. For another example, consider the LTI

system (A,B) with A =

[
1 0
0 0

]
and B =

[
1
1

]
, which is

controllable to the origin in two (but not one) steps. Thus, the
system has ρ∗ = 0 and is defective.

Tests for defectiveness are difficult to obtain. We establish
easily verified conditions for (non-)defectiveness as follows.

Definition III.2. A subset V ⊂ Rn is called a control σ-
invariant set if for any z ∈ V , there exists v ∈ Rp such that
Aiz + Biv ∈ V for all i ∈ M. If V is further a subspace of
Rn, then it is called a control σ-invariant subspace.

Two trivial control σ-invariant subspaces are {0} and Rn.

Definition III.3 (Reducibility). The SLCS (1) is called irre-
ducible if it does not have any control σ-invariant subspaces
other than {0} and Rn. Otherwise, it is called reducible.

If the SLCS is reducible, then there exists a proper nontrivial
control σ-invariant subspace V ( Rn. After a common
coordinate change x = T x̃ =

[
T1 T2

]
x̃ where the range

of T1 is V , the subsystem dynamics matrices of the SLCS
(still denoted by Ai and Bi for simplicity) will be of the form

Ai =

[
Ai,11 ∗
Bi,2K Ai,22

]
, Bi =

[
Bi,1
Bi,2

]
, ∀ i ∈M, (4)

where ∗ indicates a matrix of proper size and the matrix K
is independent of i. Repeating this process if possible, the
subsystem dynamics matrices will eventually have the form

Ai =


Ai,11 ∗ · · · ∗
Bi,2K1 Ai,22 · · · ∗

...
...

. . .
...

Bi,rK1 Bi,rK2 · · · Ai,rr

 , Bi =


Bi,1
Bi,2

...
Bi,r

 (5)

for some matrices K1, . . . ,Kr−1, where each of the SLCSs
{(Ai,jj , Bi,j)}i∈M is irreducible for j = 1, . . . , r. By the

change of variables u = ũ −
[
K1 · · · Kr−1 0

]
x, we

derive the following standard form of reducible SLCSs:

Ãi =


Ãi,11 ∗ · · · ∗

0 Ãi,22 · · · ∗
...

...
. . .

...
0 0 . . . Ãi,rr

 , B̃i =


Bi,1
Bi,2

...
Bi,r

 , (6)

where for each j = 1, . . . , r, the SLCS {(Ãi,jj , Bi,j}i∈M is
irreducible. Clearly, the SLCSs (5) and (6) have the same σ-
resilient stabilizing rate ρ∗ as that of (1).

If an SLCS has ρ∗ = 0 and is nondefective, then any
subspace of Rn will be control σ-invariant; thus the system is
reducible if its state dimension is greater than one.

Assume ρ∗ > 0. Define an extended real valued function
ζ : Rn → R+ ∪ {∞} as

ζ(z) := inf
u∈U

sup
σ∈S

sup
t∈Z+

‖x(t;σ,u, z)‖
(ρ∗)t

, ∀ z ∈ Rn, (7)

which is positively homogeneous of degree one: ζ(αz) =
αζ(z) for all α ≥ 0. Since supσ supt ‖x(t;σ,u, z)‖/(ρ∗)t is
jointly convex in u and z and U is a vector space hence convex,
by [29, pp. 87], ζ is convex on Rn. Thus, the set

W := {z ∈ Rn | ζ(z) <∞} (8)

is a subspace of Rn. In Appendix B we will show that W is
control σ-invariant and that the following result holds.

Theorem III.1. An irreducible SLCS with ρ∗ > 0 is nonde-
fective.

The converse of Theorem III.1 may not hold. A counterex-
ample is given by the LTI system (A,B) with B = 0 and
A ∈ R3×3 having two real eigenvalues 0 < λ1 < λ2 with a
Jordan block of order two for the eigenvalue λ1.

Remark III.1. The concepts of defectiveness and reducibility
have been proposed in the study of the JSR and the stability of
autonomous SLS [23], [30]. They are extended to the SLCS
in this paper. In particular, the proof of Theorem III.1 is an
extension of that of [25, Theorem 2.1].

IV. BOUNDS ON σ-RESILIENT STABILIZING RATE

In this section, a systematic approach for deriving bounds
of the σ-resilient stabilizing rate ρ∗ is developed.

A. Motivating Example

We first discuss a motivating example of the SLCSs.

Example IV.1. Consider the following SLCS on R2:

A1 =

[
a1 0
0 f1

]
, B1 =

[
b1
g1

]
; A2 =

[
a2 0
0 f2

]
, B2 =

[
b2
g2

]
,

which is obtained from two 1D SLCSs {(ai, bi)}i=1,2 and
{(fi, gi)}i=1,2 that share a common control input and a
common switching sequence. Denote by ρ∗, ρ∗1, and ρ∗2 the
σ-resilient stabilizing rate of the 2D SLCS and the two 1D
SLCSs, respectively. Obviously, ρ∗ ≥ max {ρ∗1, ρ∗2}.
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In what follows, we assume that a1 6= f1 or a2 6= f2, and
that B1 and B2 are not collinear, i.e., b1g2 6= b2g1. Hence
the following two constants cannot be both zero: α := (a1 −
f1)g2 − (a2 − f2)g1, and β := (a1 − f1)b2 − (a2 − f2)b1.
Define two nonnegative functions V,W : R2 → R+ by

V (z) := |αz1 − βz2|, W (z) := |βz1 + αz2|, ∀ z ∈ R2,

where z = (z1, z2). Their null sets NV := {z ∈ R2 |V (z) =
0} and NW := {z ∈ R2 |W (z) = 0} are orthogonal 1D
subspaces. It follows from (3) and αbi − βgi = (b1g2 −
b2g1)(ai − fi), ∀ i = 1, 2, that for any time t and x(t) = z,

inf
u(t)∈R

max
i=1,2

V (Aix(t) +Biu(t))

= inf
u(t)∈R

max
i=1,2

∣∣(αbi − βgi)u(t) + (αaiz1 − βfiz2)
∣∣

=

∣∣∣∣∣ (αb1 − βg1)(αa2z1 − βf2z2)∑2
i=1 |αbi − βgi|

− (αb2 − βg2)(αa1z1 − βf1z2)∑2
i=1 |αbi − βgi|

∣∣∣∣∣
=

|a1f2 − a2f1|
|a1 − f1|+ |a2 − f2|

· V (x(t)) := ρ0 · V (x(t)). (9)

The optimal u∗(t) achieving the above infimum is given by

u∗(t) := − (αa1z1 − βf1z2)± (αa2z1 − βf2z2)

(αb1 − βg1)± (αb2 − βg2)
, (10)

which is a linear state feedback controller with the sign “±”
being “+” if (a1 − f1)(a2 − f2) ≥ 0 and “−” otherwise.

The result in (9) implies that NV is a control σ-invariant
subspace. Also, if at each time t, the adversary chooses σ(t) =
arg maxi V (Aix(t)+Biu(t)), then V (x(t+1)) ≥ ρ0V (x(t))
regardless of u(t). As V (·) is positively homogeneous of de-
gree one, we conclude that x(t) cannot decay at an exponential
rate faster than ρ0 from x(0) satisfying V (x(0)) > 0, i.e.,

ρ∗ ≥ ρ0 =
|a1f2 − a2f1|

|a1 − f1|+ |a2 − f2|
. (11)

If the user adopts the feedback control strategy in (10), then

V (x(t+ 1)) = V (Aσ(t)x(t) +Bσ(t)u
∗(t))

≤ ρ0 · V (x(t)), ∀σ(t) ∈ {1, 2}, ∀x(t). (12)

When ρ0 < 1, x(t)→ NV as t→∞ for any σ ∈ S. To ensure
that x(t)→ 0, one needs in addition that x(t) will not diverge
along NV . Pick any x(t) = (z1, z2) ∈ NV , i.e., αz1 = βz2. It
can be verified that, with the sign in (10) being either “+” or
“−”, we have W (Aix(t) +Biu

∗(t)) = ρi ·W (x(t)), where

ρi :=
|gi(a1b2 − a2b1)− bi(f1g2 − f2g1)|

|b1g2 − b2g1|
, i = 1, 2. (13)

Thus W (x(t+1)) ≤ max{ρ1, ρ2}·W (x(t)) regardless of σ(t).
This, together with (12), implies that if max{ρ0, ρ1, ρ2} < 1,
then the system is σ-resiliently stabilized by u∗. In view of
Theorem II.1, we have ρ∗ < 1 if max{ρ0, ρ1, ρ2} < 1. As
max{ρ0, ρ1, ρ2} has the exact same scaling properties as ρ∗

in Lemma II.1, we obtain via a scaling argument that

ρ∗ ≤ max{ρ0, ρ1, ρ2}. (14)

In the case ρ0 ≥ max{ρ1, ρ2}, ρ∗ = ρ0 by (11). For example,
assume a1b2 = a2b1 and f1g2 = f2g1. By Example II.1, ρ∗1 =
ρ∗2 = 0, while ρ∗ = ρ0 > 0 provided a1f2 − a2f1 6= 0.

B. Bounds via Seminorms

We now formalize the technique employed in Example IV.1.
Recall that a seminorm on Rn is defined as a nonnegative
function ξ : Rn → R+ that is convex (hence continuous) and
positively homogeneous of degree one [31]. A seminorm is a
norm if it is positive definite, i.e., ξ(z) > 0 whenever z 6= 0.

Lemma IV.1. For an arbitrary seminorm ξ on Rn, let the
mapping T : ξ 7→ ξ] be defined by, ∀ z ∈ Rn,

ξ](z) = T [ξ](z) := inf
v∈Rp

max
i∈M

ξ(Aiz +Biv). (15)

More generally, for any h ∈ N, define the mapping T (h) by

T (h)[ξ](z) := inf
v(0)∈Rp

max
i(0)∈M

· · · inf
v(h−1)∈Rp

max
i(h−1)∈M

ξ

Ai(h−1) · · ·Ai(0)z +

h−1∑
j=0

Ai(h−1) · · ·Ai(j+1)Bi(j)v(j)

 .

Then T (ξ) and T (h)(ξ) are also seminorms on Rn, i.e., T
and T (h) are self maps of seminorms on Rn.

Proof. That ξ](·) is pointwise finite and nonnegative is ob-
vious. It is convex since maxi∈M ξ(Aiz + Biv) is convex
in (z, v) [29, pp. 88]. To show the homogeneity, let α 6= 0
be arbitrary. By setting v′ := v/α, we have ξ](αz) =
infv∈Rp maxi∈M ξ(αAiz + Biv) = infv′∈Rp maxi∈M |α| ·
ξ(Aiz + Biv

′) = |α| · ξ](z). When α = 0, it is obvious
from (15) that ξ](0) = 0. This shows that ξ] is a seminorm
on Rn. The proof for T (h) is similar hence omitted.

If ξ(·) = ‖ · ‖ is a norm on Rn, then ξ](·), which we
denote as ‖ · ‖], is a seminorm but not necessarily a norm
on Rn. For instance, if the two 1D subsystem dynamics in
Example II.1 are scaled version of each other, i.e., a1/b1 =
a2/b2, then | · |] ≡ 0, which is not a norm on R. Also,
T (h)[ξ](z) defined above is the solution to the h-horizon
problem infu maxσ ξ(x(h;σ,u, z)) and T (h) = T if h = 1.

Lemma IV.2. Suppose ξ is a seminorm on Rn. Then for any
given z ∈ Rn, the function f(v) := maxi∈M ξ(Aiz + Biv)
attains a (possibly non-unique) minimizer in Rp.

Proof. Let V be the subspace {v ∈ Rp | ξ(Biv) = 0, ∀ i ∈
M} and V⊥ be its orthogonal complement. Any v ∈ Rp can be
decomposed uniquely as v = v1 + v2, where v1 ∈ V and v2 ∈
V⊥. Since f(v) = f(v2), v1 can be set to zero without loss of
generality. Define g(v2) := maxi∈M ξ(Biv2), which is a norm
on V⊥. Then, g(v2) ≤ maxi∈M[ξ(Aiz+Biv2)+ξ(−Aiz)] ≤
f(v2)+maxi∈M ξ(Aiz). This implies that any nonempty sub-
level set of f(·) (which is closed as f is continuous) restricted
to V⊥ is contained in a sub-level set of g(·) and thus bounded
and compact. Since f is continuous, a minimizer exists.

Lemma IV.3. The mapping T : ξ 7→ ξ] defined in (15) has
the following properties.
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• (Monotonicity): For two extended real-valued seminorms
ξ and ξ′ with ξ ≤ ξ′, T (ξ) ≤ T (ξ′).

• (Monotone Continuity): Let (ξk)k∈N be a nonincreasing
sequence of seminorms whose (pointwise) limit is denoted
by ξ∞ = limk→∞ ξk. Then limk→∞ T (ξk) = T (ξ∞).

Proof. The first property is trivial. To show the second prop-
erty, suppose ξk(z) ↓ ξ∞(z), ∀ z ∈ Rn. Being the pointwise
limit of the seminorms ξk, ξ∞ is also a seminorm on Rn.
Let ηk := T (ξk). By Lemma IV.1 and the first property, (ηk)
is a nonincreasing sequence of seminorms, whose pointwise
limit η∞ := limk→∞ ηk is also a seminorm. As ξk ≥ ξ∞,
ηk ≥ T (ξ∞),∀ k, which implies η∞ ≥ T (ξ∞).

To prove the other direction, fix an arbitrary z ∈ Rn.
Since ξ∞ is a seminorm, Lemma IV.2 implies that the mini-
mizer v∗ = arg minv[maxi∈M ξ∞(Aiz + Biv)] exists. Since
maxi∈M ξ∞(·) is also a pointwise limit of maxi∈M ξk(·)
as k → ∞, we deduce that for any ε > 0, there ex-
ists N large enough such that maxi∈M ξk(Aiz + Biv

∗) ≤
maxi∈M ξ∞(Aiz +Biv

∗) + ε for all k ≥ N . Thus,

ηk(z) = inf
v

max
i∈M

ξk(Aiz +Biv) ≤ max
i∈M

ξk(Aiz +Biv
∗)

≤ max
i∈M

ξ∞(Aiz +Biv
∗) + ε = T [ξ∞](z) + ε,

for all k ≥ N . Letting k → ∞ and noting that ε > 0 is
arbitrary, we have η∞(z) ≥ T [ξ∞](z) for any z ∈ Rn.

Proposition IV.1. Let ξ be a non-zero seminorm on Rn and
α ≥ 0 be a constant such that ξ](·) ≥ α ξ(·). Then ρ∗ ≥ α.

Proof. Assume the adversary adopts the switching policy
σ(t) = arg maxi ξ(Aix(t) + Biu(t)) at each t for any given
x(t), u(t). Hence σ ∈ S. Then from x(0) with ξ(x(0)) > 0,
we have, for any u(t),

ξ(x(t+ 1)) = ξ(Aσ(t)x(t) +Bσ(t)u(t))

= max
i∈M

ξ(Aix(t) +Biu(t)) ≥ ξ](x(t)) ≥ α ξ(x(t)), ∀ t.

This shows that c‖x(t)‖ ≥ ξ(x(t)) ≥ αt · ξ(x(0)), ∀ t ∈ Z+,
where c := sup‖z‖=1 ξ(z) > 0. Hence there exist no ρ < α
and a constant κ > 0 so that ‖x(t)‖ ≤ κρt‖x(0)‖, ∀ t.

Proposition IV.1 has been applied in Example IV.1 with
ξ(·) = V (·) and α = ρ0 in equation (9).

Proposition IV.2. Let ‖·‖ be a norm on Rn such that ‖·‖] ≤
β ‖ · ‖ for some β ≥ 0. Then, ρ∗ ≤ β.

Proof. Suppose the user adopts the control policy u∗(t) =
ut(x(t)) := arg minv maxi∈M ‖Aix(t) + Biv‖, ∀ t, which
exists by Lemma IV.2. Then for any σ ∈ S and any t ∈ Z+,

‖x(t+ 1)‖ =
∥∥Aσ(t)x(t) +Bσ(t)u

∗(t)
∥∥

≤ max
i∈M

∥∥Aix(t) +Biu
∗(t)

∥∥ = ‖x(t)‖] ≤ β‖x(t)‖.

This implies that ‖x(t)‖ ≤ βt‖x(0)‖, ∀ t, i.e., ρ∗ ≤ β.

The next result follows from Propositions IV.1 and IV.2.

Corollary IV.1. If α‖ · ‖ ≤ ‖ · ‖] ≤ β‖ · ‖ for some norm ‖ · ‖
on Rn, then α ≤ ρ∗ ≤ β.

By using the operator T (h) instead of T and considering
per-h-step growth of the state solutions, we obtain the follow-
ing result whose proof is similar hence omitted.

Proposition IV.3. Let h ∈ N. If ξ is a nonzero seminorm on
Rn and T (h)(ξ) ≥ αξ for some constant α ≥ 0, then ρ∗ ≥
h
√
α. Further, if ξ is a norm on Rn and αξ ≤ T (h)(ξ) ≤ βξ

for some constants α, β ≥ 0, then h
√
α ≤ ρ∗ ≤ h

√
β.

C. Extremal Norms

By Corollary IV.1, associated with each norm ‖ · ‖ are the
following lower and upper bounds of ρ∗:

α∗ := sup {α ∈ R+ | α‖ · ‖ ≤ ‖ · ‖]} ,
β∗ := inf {β ∈ R+ | ‖ · ‖] ≤ β‖ · ‖} .

A natural question arises: can such bounds be tight?

Definition IV.1. A norm ‖ · ‖ on Rn is called an (upper)
extremal norm of the SLCS (1) if ‖ · ‖] ≤ ρ∗‖ · ‖.

Suppose an extremal norm ‖ · ‖ exists. Then the property
‖ · ‖] ≤ ρ∗‖ · ‖ implies that there is an optimal control policy

ut(x(t)) := arg min
v

max
i∈M
‖Aix(t) +Biv‖, ∀x(t), ∀ t, (16)

under which we have ‖x(t+1)‖ ≤ ρ∗‖x(t)‖, hence ‖x(t)‖ ≤
(ρ∗)t‖x(0)‖, ∀ t ∈ Z+, x(0) ∈ Rn, σ ∈ S . This implies that
the SLCS is nondefective. The following theorem, proved in
Appendix C, shows that the converse is also true.

Theorem IV.1. An extremal norm of the SLCS exists if and
only if the SLCS is nondefective.

We next focus on seminorms that yield tight lower bounds.

Definition IV.2. A nonzero seminorm ξ on Rn is called a
lower extremal seminorm if ξ](·) ≥ ρ∗ · ξ(·).

In Appendix D, we prove the following result.

Theorem IV.2. If the SLCS is nondefective, then a lower
extremal seminorm exists.

The converse of Theorem IV.2 is not true, at least when
ρ∗ = 0. For example, the (non-switched) LTI system (A,B)

with A =

[
1 0
0 0

]
and B =

[
1
1

]
has ρ∗ = 0; hence

any seminorm is a lower extremal seminorm. However, as
discussed in Section II, this system is defective.

Some norms can be both upper and lower extremal.

Definition IV.3. A norm ‖ · ‖ on Rn is called a Barabanov
norm if ‖ · ‖] = ρ∗‖ · ‖.

The following result is proved in Appendix E.

Theorem IV.3. If the SLCS is irreducible, then a Barabanov
norm exists.

In Example II.1 with a1/b1 = a2/b2, the 1D SLCS has a
Barabanov norm | · |. Another example is given below.

Example IV.2. Consider the following SLCS on R2:

A1 =

[
1 0
0 0

]
, B1 =

[
1
1

]
; A2 =

[
0 0
0 1

]
, B2 =

[
0
1

]
.



SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 6

Fig. 1. Top: Unit ball of the norm ‖ · ‖ in Example IV.2; Bottom: v∗ for
z = (1, y), ∀ y ∈ R.

Define a norm on R2 as

‖z‖ := max{|z1|, γ|z2 − z1|}, ∀ z ∈ (z1, z2) ∈ R2,

where γ =
√

5−1
2 satisfies γ = 1/(γ+1). We claim that ‖·‖] =

γ‖ · ‖. By homogeneity, we only need to check this claim for
z = (0, 1) and for z = (1, y) where y ∈ R. If z = (0, 1), then
‖z‖ = γ, and ‖z‖] = infv max {‖(v, v)‖ , ‖(0, 1 + v)‖} =
infv max {|v|, γ|1 + v|} = γ2 = γ‖z‖, where the minimum
is achieved at v∗ = −γ2. Suppose z = (1, y). Then ‖z‖ =
max{1, γ|y−1|}, and ‖z‖] = infv max {|1 + v|, γ, γ|y + v|}.
• Case 1: Suppose y < −γ. Then ‖z‖ = γ|y − 1|, and
‖z‖] = γ2(1− y) with v∗ = −γ − γ2y;

• Case 2: Suppose −γ ≤ y ≤ γ + 2. Then ‖z‖ = 1,
and ‖z‖] = γ where v∗ can take any value between
max{−y − 1,−γ − 1} and min{−y + 1, γ − 1}.

• Case 3: Suppose y > γ + 2. Then ‖z‖ = γ|y − 1|, and
‖z‖] = γ2(y − 1) with v∗ = −γ − γ2y.

In Fig. 1, we plot the unit ball of ‖ · ‖ on the top, and the
function v∗(y) at the bottom (the shaded region indicates that
the value of v∗ is not unique). Note that the optimal control
policy can be chosen to be linear: u∗(t) = [−γ − γ2]x(t).

Remark IV.1. The notions of extremal and Barabanov norms
are originally proposed for the study of the JSR and the
stability of autonomous SLSs [23], [27], [32]. We extend
them to the resilient stabilization of the SLCS. The proofs of
Theorem IV.1 and Theorem IV.3 are inspired by those of [26,
Theorem 3] and [23], respectively. See also [25, Theorem 2.1].
Another relevant method is the variational approach [33].

Extremal norms can also be defined in terms of T (h).
Specifically, (i) a nonzero seminorm ξ is lower h-extremal
if T (h)(ξ) ≥ (ρ∗)hξ; (ii) a norm ‖ · ‖ is (upper) h-extremal

if T (h)(‖ · ‖) ≤ (ρ∗)h‖ · ‖, and it is an h-Barabanov norm if
T (h)(‖ · ‖) = (ρ∗)h‖ · ‖. Although (1-)extremal (semi)norms
are also h-extremal, the converse may not be true.

D. Norms under Linear Transformations

The norm bounding techniques introduced in this section are
independent of coordinates on Rn. To see this, consider the co-
ordinate change x = T x̃ by a nonsingular matrix T ∈ Rn×n.
A norm (resp. seminorm) ξ in x-coordinates is transformed by
T to the norm (resp. seminorm) ξ̃ := ξ◦T in the x̃-coordinates.
Denote the SLCS {(Ai, Bi)}i∈M in x-coordinates by S. In
x̃-coordinates it has the form S̃ = {(Ãi, B̃i)}i∈M where
Ãi := T−1AiT and B̃i := T−1Bi. Obviously, S and S̃ have
the same σ-resilient stabilizing rate, i.e., ρ∗ = ρ̃∗. Similar to
T defined in (15) for S, we define a mapping T̃ for S̃ by

T̃ [ξ̃](z) := inf
v∈Rp

max
i∈M

ξ̃(Ãiz + B̃iv), ∀ z ∈ Rn,

which satisfies T̃ (ξ ◦ T ) = T (ξ) ◦ T . Then a seminorm ξ
satisfies αξ ≤ T (ξ) ≤ βξ for some α, β ≥ 0 if and only if
ξ̃ = ξ ◦ T satisfies αξ̃ ≤ T̃ (ξ̃) ≤ βξ̃. In particular, if ξ is
an extremal norm (resp. lower extremal seminorm, Barabanov
norm) for S, so is ξ̃ for S̃.

Given two norms ξ and ξ′ on Rn, define

d(ξ, ξ′) := log

(
min{β ≥ 0 | ξ′ ≤ βξ}
max{α ≥ 0 | ξ′ ≥ αξ}

)
,

which measures how similar the unit balls of ξ and ξ′ are after
proper scalings. Define an equivalence relation for norms on
Rn as ξ ∼ ξ′ if and only if ξ′ = γξ for some γ > 0, and
denote by [ξ] the equivalent class that ξ belongs to. Then d(·, ·)
specifies a metric on the family of equivalent classes of norms
on Rn (see [34] for a more general metric). The mapping T (or
T̃ ), which preserves this equivalent relation, can be extended
to a mapping between equivalent classes of norms.

A norm ξ∗ is a Barabanov norm of the SLCS S if and only
if d(ξ∗, T (ξ∗)) = 0, or equivalently, if the equivalent class [ξ∗]
is a fixed point of T . In the next section, we will search for
Barabanov norms in various subsets K of norms. The distance
d(K, ξ∗) := inf{d(ξ, ξ∗) | ξ ∈ K} measures quantitatively
how well norms in K approximate the Barabanov norm ξ∗ (if
exists). In practice, as ξ∗ is difficult to find or even nonexistent,
one can use infξ∈K d(ξ, T (ξ)) as an indicator for the proximity
of the best norms in K to being a Barabanov norm.

The following result will be useful in Section V-A.

Lemma IV.4 (Fritz John’s Theorem [35]). Let ‖ · ‖ be the
Euclidean norm on Rn, and let Ke be the set of all norms
of the form ‖ · ‖ ◦ T for some nonsingular T ∈ Rn×n (such
norms are called ellipsoidal norms; see Section V-A). Then for
an arbitrary norm ξ on Rn, d(Ke, ξ) ≤ log(

√
n).

Indeed, one choice of the norm in Ke with the smallest d-
distance to ξ is such that its unit ball is the largest ellipsoid
contained in the unit ball of ξ (see [34]).

V. COMPUTING σ-RESILIENT STABILIZING RATE

Using the results in Section IV, we now use certain families
of norms to compute bounds on ρ∗. For a given σ-resiliently
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stabilizable SLCS, the computed norm ‖ · ‖ can be used to
devise a σ-resiliently stabilizing controller in the form of (16).

A. Ellipsoidal Norms

Denote by P�0 and P�0 the sets of all n×n positive definite
(P.D.) and positive semidefinite (P.S.D.) matrices, respectively.
We write P � 0 if P ∈ P�0 and P � 0 if P ∈ P�0. For each
P � 0, ‖z‖P :=

√
zTPz defines a seminorm on Rn. If P � 0,

then ‖·‖P is a norm, called an ellipsoidal norm as its unit ball
is an ellipsoid. Note that ‖ · ‖P = ‖ · ‖I ◦ T where T = P 1/2.

Applying the results in Section IV to the ellipsoidal norms,
we obtain lower and upper bounds on ρ∗. As shown below,
the best such bounds are off by at most a factor of

√
n.

Proposition V.1. Let the SLCS be irreducible. Then there
exists an ellipsoidal norm ‖ · ‖P based on which the lower
bound of ρ∗ obtained from Proposition IV.1 is at least ρ∗/

√
n

and the upper bound of ρ∗ obtained from Proposition IV.2 is
at most

√
n · ρ∗.

Proof. The irreducibility assumption implies that the SLCS
has a Barabanov norm ξ∗. By Lemma IV.4, there exists an
ellipsoidal norm ξ = ‖ · ‖P satisfying ξ ≤ ξ∗ ≤

√
n ξ.

This implies that T (ξ) ≤ T (ξ∗) = ρ∗ξ∗ ≤
√
n · T (ξ). In

particular, T (ξ) ≤ ρ∗ξ∗ ≤ ρ∗
√
n ξ and T (ξ) ≥ (ρ∗/

√
n) ξ∗ ≥

(ρ∗/
√
n) ξ. This proves the desired results.

In Proposition V.1, both the lower and upper bounds are
achieved by the same ellipsoidal norm. Using different ellip-
soidal norms, one may obtain tighter bounds. Moreover, if
the SLCS is nondefective, then only the second part of the
statement regarding the upper bound of ρ∗ holds true.

Remark V.1. By using T (h) with h > 1 and Proposition IV.3,
the results in Proposition V.1 can be improved: there exists
an ellipsoidal norm ξ = ‖ · ‖P satisfying [(ρ∗)h/

√
n] · ξ ≤

T (h)(ξ) ≤ (ρ∗)h
√
n ξ, thus providing a lower bound of at

least ρ∗/ 2h
√
n and an upper bound of at most 2h

√
n · ρ∗ for

ρ∗. For a fixed n, as h → ∞, estimate errors can be made
arbitrarily small. The drawback of using a large h, however,
is the much increased complexity in evaluating T (h)(ξ).

To find the bounds of ρ∗ from the ellipsoidal norms, we
introduce the following notation. Let m = |M|, and define

∆ :=
{
θ ∈ Rm | θi ≥ 0, ∀ i ∈M,

∑
i∈Mθi = 1

}
to be the m-simplex. For each θ ∈ ∆ and P � 0, define

Γθ(P ) :=
∑
i∈M

θiA
T
i PAi −

(∑
i∈M

θiA
T
i PBi

)
×

(∑
i∈M

θiB
T
i PBi

)†(∑
i∈M

θiB
T
i PAi

)
, (17)

where † denotes the matrix pseudo inverse. Note that Γθ(P ) is
the (generalized) Schur complement [36, pp. 28] of the lower
right block of the following P.S.D. matrix:

Υθ(P ) :=
∑
i∈M

θi

[
ATi PAi ATi PBi
BTi PAi BTi PBi

]
. (18)

From this we conclude that: (i) Γθ(P ) � 0; and (ii) for a fixed
P (resp. θ), Γθ(P ) is a PSD-concave mapping of θ (resp. P )
into P�0 under the partial order � (cf. [29]). Define the set

Γ∆(P ) := {Γθ(P ) | θ ∈ ∆} ⊂ P�0.

Lemma V.1. For each P � 0, denote ‖ · ‖P] := T (‖ · ‖P )
where the operator T is defined in (15). Then, ∀ z ∈ Rn,

‖z‖P] = sup
θ∈∆
‖z‖Γθ(P ) = sup

Q∈Γ∆(P )

‖z‖Q. (19)

Proof. It follows from (15) that (‖z‖P])2 is the optimal value
of the following optimization problem in r ∈ R and v ∈ Rp:

minimize r ≥ 0 (20)

subject to (Aiz +Biv)TP (Aiz +Biv) ≤ r, ∀ i ∈M.

By introducing the multipliers (dual variables) θi ≥ 0 for each
i ∈M, the dual problem of (20) is easily seen to be

max
θ∈∆

zTΓθ(P )z. (21)

Since the optimization problem (20) is both convex (indeed a
second order cone programming) and strongly feasible (r can
be made arbitrarily large), it has the same optimal value as
that of (21). This proves the desired result.

We now apply Proposition IV.1 to the ellipsoidal norm ‖·‖P
for P � 0. By Lemma V.1, the condition ‖ · ‖P] ≥ α‖ · ‖P is
equivalent to supθ∈∆ zTΓθ(P )z ≥ α2zTPz, ∀z. A sufficient
condition for this to hold is Γθ(P ) � α2P for some θ ∈ ∆,
or by using the Schur complement

Υθ(P )−
[
α2P 0

0 0

]
� 0 (22)

for some θ ∈ ∆, where Υθ(P ) is defined in (18). Hence,
Proposition IV.1 implies the following result.

Proposition V.2. Suppose the matrix inequality (22) holds
for some α ≥ 0, P � 0, and θ ∈ ∆. Then the σ-resilient
stabilizing rate ρ∗ satisfies ρ∗ ≥ α.

If P � 0 is given, then a lower bound of ρ∗ is obtained by
finding the largest possible α satisfying (22) for some θ ∈ ∆,
which is a semidefinite program (SDP) that is easily solvable.
To find the best such lower bound, we can solve the bilinear
matrix inequality (BMI) problem in (α2, P, θ):

max
α2≥0, P�0, θ∈∆

α2, subject to the constraint (22). (23)

We next apply Proposition IV.2 to the ellipsoidal norms.
Given P � 0, the condition ‖ · ‖P] ≤ β‖ · ‖P is equivalent to
supθ∈∆ zTΓθ(P )z ≤ β2zTPz, ∀z, or equivalently, Γθ(P ) �
β2P for all θ ∈ ∆. As a result, an upper bound of ρ∗ is
provided by the solution β∗ to the following problem:

min
β≥0

β, subject to Γθ(P ) � β2P, ∀ θ ∈ ∆. (24)

The above problem is difficult to solve since it is insufficient
to check the constraint at the vertices of the m-simplex ∆ only
as Γθ(P ) is concave in θ.
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An easily computed upper bound of ρ∗ is described as
follows. For a given P � 0, the condition ‖ · ‖P] ≤ β‖ · ‖P
for some β ≥ 0 is equivalent to

inf
v

max
i

(Aiz +Biv)TP (Aiz +Biv) ≤ β2zTPz, ∀ z. (25)

Set v = Kz for some K ∈ Rp×n. Then using Schur
complement, a sufficient condition for (25) is given by[

βQ (AiQ+BiF )T

AiQ+BiF βQ

]
� 0, ∀ i ∈M, (26)

where Q := P−1 � 0 and F := KP−1. This leads to the
following result previously reported in [20, Remark 7].

Proposition V.3 ( [20]). Suppose β ≥ 0 is such that (26)
holds for some Q ∈ P�0 and F ∈ Rp×n. Then ρ∗ ≤ β.

For a fixed β, (26) is an LMI feasibility problem that
can be solved efficiently. The tightest upper bound β can
be obtained by a bisection algorithm. If (26) is satisfied for
some Q � 0, F , and β, then under the linear state feedback
controller ut(x(t)) = FQ−1x(t), we have ‖x(t + 1)‖Q−1 ≤
β‖x(t)‖Q−1 , ∀ t, for all x(0) and σ ∈ S.

Remark V.2. It is proved in [21] that a constant β ≥ 0 is an
upper bound of ρ∗ if there exist Qi = QTi ∈ Rn×n, i ∈ M,
and G ∈ Rn×n, Y ∈ Rp×n such that, for any i, j ∈M,[

β(G+GT −Qi) GTATi + Y TBTi
AiG+BiY βQj

]
� 0. (27)

If (27) holds for some β < 1, the controller u(t) = Y G−1x(t)
σ-resiliently stabilizes the SLCS. This test is better than that in
Proposition V.3 (see Example V.1), but it remains conservative
as it assumes linear controllers (see Example V.2).

B. Polyhedral Norms

For a matrix C = [c1, · · · , c`] ∈ Rn×` with ci ∈ Rn, define

ξ(z) := max
j=1,...,`

|cTj z|, ∀ z ∈ Rn.

Obviously, ξ is a seminorm on Rn with the set {z ∈
Rn | ξ(z) ≤ 1} being a possibly unbounded polyhedron. We
call ξ the polyhedral seminorm with parameter C. If the range
of C is Rn, then ξ becomes a polyhedral norm, denoted by
‖ · ‖C , whose unit ball is a (centrally) symmetric polytope.

Let Kp be the set of all polyhedral norms on Rn. For any
norm ξ on Rn, d(Kp, ξ) = 0, i.e., Kp is a dense subset of
norms [34]. Therefore, bounds on ρ∗ obtained from polyhedral
norms can be arbitrarily tight. On the other hand, polyhedral
norms have high representation complexity. For example, the
number of facets of the unit ball of a polyhedral norm ξ on
Rn satisfying d(ξ, ‖·‖) ≤ ε for the Euclidean norm ‖·‖ and a
constant ε > 0 increases exponentially in n [34]. As a result,
algorithms to be developed in this section based on polyhedral
norms are suitable when the state dimension n is small.

The following result is straightforward.

Lemma V.2. Let ξ and ξ̃ be two polyhedral seminorms on
Rn with the parameters C = [c1, · · · , c`] ∈ Rn×` and
C̃ = [c̃1, · · · , c̃˜̀] ∈ Rn×˜̀, respectively. Then ξ ≤ ξ̃ if and only

if cosym(C) ⊂ cosym(C̃), where cosym(C) denotes the sym-
metric convex hull generated by {c1, . . . , c`,−c1, . . . ,−c`}
and similarly for cosym(C̃). As a result, ξ = ξ̃ if and only
if cosym(C) = cosym(C̃).

Note that a column cj of the parameter matrix C of a
polyhedral seminorm ξ is redundant if cj is in the symmetric
convex hull generated by all the other columns of C.

Lemma V.3. Suppose ξ is a polyhedral seminorm on Rn with
the parameter C = [c1, · · · , c`] ∈ Rn×`. Then

ξ](z) = max
c̃∈ΩC

c̃T z, ∀ z ∈ Rn,

for some symmetric polytope ΩC in Rn. In other words, ξ] is
also a polyhedral seminorm on Rn.

Proof. For each z ∈ Rn, ξ](z) defined in (15) is the optimal
value of the following linear program:

min
v∈Rp, r∈R

r, s.t. ± cTj (Aiz +Biv) ≤ r, ∀ i, ∀ j. (28)

Its dual problem, which has the same optimal value, is

max
θ+
ij ,θ
−
ij

∑
i,j

(θ+
ij − θ

−
ij)c

T
j Aiz (29)

subject to
∑
ij

(θ+
ij − θ

−
ij)c

T
j Bi = 0, ∀ i, j, and (30)∑

ij

(θ+
ij + θ−ij) = 1, θ+

ij , θ
−
ij ≥ 0, ∀ i, j. (31)

The optimal value of problem (29) can be written as
max{c̃T z | c̃ ∈ ΩC}, where ΩC ⊂ Rn is given by

ΩC :=

∑
i,j

(θ+
ij − θ

−
ij)A

T
i cj

∣∣∣∣∣ (30) and (31) hold

 . (32)

Clearly, ΩC is a bounded convex polytope. It is centrally
symmetric because the constraints (30) and (31) are invariant
to exchanging θ+

ij and θ−ij for each i, j. Let the matrix C] be
such that its columns consist of exactly those vertices of ΩC
in any generic half space. Then ΩC = cosym(C]) and ξ] is
exactly the polyhedral seminorm with the parameter C].

We now apply Proposition IV.1 to the polyhedral semi-
norms. Let ξ be a polyhedral seminorm on Rn with the
parameter C = [c1, · · · , c`] ∈ Rn×`, and let ξ] be the
polyhedral seminorm defined by the set ΩC in Lemma V.3.
By Lemma V.2, ξ] ≥ αξ for some α ≥ 0 if and only if
αck ∈ ΩC for all k = 1, . . . , `, or equivalently, if and only
if α ≤ mink=1,...,` α

∗
k, where α∗k := sup{α ≥ 0 |αck ∈

ΩC}, k = 1, . . . , `. By the definition of ΩC in (32), α∗k is the
optimal value of the following linear program:

max
θ+
ij , θ

−
ij , α≥0

α (33)

subject to (30), (31), and αck =
∑
i,j

(θ+
ij − θ

−
ij)A

T
i cj .

Consequently, we obtain the following result.

Proposition V.4. For any C = [c1, · · · , c`] ∈ Rn×`, the
σ-resilient stabilizing rate ρ∗ satisfies ρ∗ ≥ mink=1,...,` α

∗
k,

where α∗k is the optimal value of the linear program (33).
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Algorithm 1
1: Initialize C ∈ Rn×` with columns cj , j = 1, . . . , `
2: repeat
3: for k = 1, . . . , ` do
4: Solve the linear program (33) to obtain α∗k
5: end for
6: k1 ← arg maxk α

∗
k, k2 ← arg mink α

∗
k

7: ck1
←
√
α∗k1

/α∗k2
· ck1

, ck2
←
√
α∗k2

/α∗k1
· ck2

8: until (maxk α
∗
k)/(mink α

∗
k) ≤ 1+ε or maximum number

of iterations is reached
9: return α∗ = mink α

∗
k

Typically, the closer α∗k’s are to being identical, the closer
ξ is to being a Barabanov norm. Thus those columns ck of
C with larger (resp. smaller) α∗k should be scaled up (resp.
down) for better lower bounds of ρ∗. This leads to Algorithm 1
that updates C iteratively. The algorithm terminates if α∗k’s
are almost identical or a prescribed number of iterations is
reached. To find a good initial guess of C, one can first run the
algorithms in Section V-A to obtain a good ellipsoidal norm
‖·‖P ; do a coordinate change x = P−1/2x̃ (see Section IV-D);
and in the x̃-coordinates initialize C so that its columns are a
uniform quantization of (half of) the unit sphere Sn−1.

Proposition IV.2 can also be applied to the polyhedral norms
to obtain upper bounds of ρ∗. We first cite a well known fact.

Lemma V.4. Suppose C = [c1, · · · , c`] ∈ Rn×` has range Rn
so that ‖ · ‖C is a polyhedral norm whose unit ball is denoted
by B. Let {z1, . . . , zq} be an enumeration of the vertices of
B. Then, cosym(C) is the polar dual of B, or more precisely,

cosym(C) =
{
c ∈ Rn

∣∣ |cT zk| ≤ 1, k = 1, . . . , q
}
.

For a polyhedral norm ‖·‖C , denote ‖·‖C] = T (‖·‖C). By
Lemma V.3, ‖z‖C] = maxc̃∈ΩC c̃

T z with ΩC defined in (32).
For any β ≥ 0, Lemma V.2 implies that ‖ · ‖C] ≤ β‖ · ‖C if
and only if ΩC ⊆ cosym(βC). By Lemma V.4, the latter is
equivalent to |cT zk| ≤ β for all c ∈ ΩC and all vertices zk of
the unit ball of ‖ · ‖C . This condition is further equivalent to
‖zk‖C] ≤ β for all zk. This leads to the following result.

Proposition V.5. For any C = [c1, · · · , c`] ∈ Rn×` whose
range is Rn, the σ-resilient stabilizing rate ρ∗ satisfies ρ∗ ≤
maxk=1,...,q ‖zk‖C], where zk, k = 1, . . . , q, are the vertices
of the closed unit ball of ‖ · ‖C .

Note that, for each zk, ‖zk‖C] can be computed by solving
the linear program (28) or (29) with z replaced by zk.

Example V.1. Consider the following SLCS on R2:

A1 =a1

[
1 1
1 −1

]
, B1 =

[
0
1

]
; A2 =

[
0 1
−1 0

]
, B2 =

[
1
0

]
.

In the first case we set a1 = 0.5. By solving the BMI
problem (23), the lower bound of ρ∗ obtained using ellipsoidal
norms is α∗ = 0.8031. By using Proposition V.3 and a
bisection algorithm, the tightest upper bound of ρ∗ by using
ellipsoidal norms is β∗ = 0.8956. Solving the LMI (27) in
Remark V.2 yields a slightly improved upper bound 0.8949. In

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

a
1
=0.5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

a
1
=1

Fig. 2. Unit spheres of the polyhedral norms ‖ · ‖C (bold lines) and ‖ · ‖]
(dashed lines) obtained by Algorithm 1 for the SLCS in Example V.1 when
a1 = 0.5 (top) and a1 = 1 (bottom). Unit spheres of the ellipsoidal norms
computed by Proposition V.3 are also plotted (dash-dotted lines).

comparison, by using polyhedral norms, namely, Algorithm 1
and Proposition V.5, with C ∈ R2×36 initialized to have
columns that are uniform samplings of the unit circle, we
find that ρ∗ has the lower bound 0.8660 and the upper bound
0.8732, both better than the results from ellipsoidal norms.

In the second case we set a1 = 1. The best lower and
upper bounds obtained by solving problem (23) and by using
Proposition V.3 are 1.1305 and 1.2927, respectively. Solving
the problem (27) yields the upper bound 1.2910. Using Algo-
rithm 1 and Proposition V.5 with the same initial C as in the
case of a1 = 0.5, the lower and upper bounds of ρ∗ obtained
by polyhedral norms are 1.2183 and 1.2239, respectively.

The unit spheres of the computed polyhedral and ellipsoidal
norms are plotted in Fig. 2. The former is close to being a
Barabanov norm, while the latter has some general semblance.

Example V.2. This example shows that the optimal user
control policy is in general nonlinear. Consider the SLCS:

A1 =

[
1 0
0 0

]
, B1 =

[
1
1

]
; A2 =

[
0 0
0 1

]
, B2 =

[
−1
1

]
.

The unit spheres of the computed polyhedral norms ‖ · ‖C by
Algorithm 1 with ` = 144 and the corresponding ‖ · ‖C] are
displayed on the top of Fig. 3. Using ‖·‖C in Propositions V.4
and V.5 yield 0.6302 ≤ ρ∗ ≤ 0.6309. The corresponding
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Fig. 3. Top: Unit spheres of the polyhedral norms ‖ · ‖C (in bold lines) and
‖·‖C] (in dashed lines) obtained by Algorithm 1 for the SLCS in Example V.2.
Bottom: optimal u∗ for z = (1, z2) where z2 ∈ [−10, 10].

optimal user control u∗(z) with z = (1, z2) for z2 ∈ [−10, 10]
is shown at the bottom of Fig. 3, which is clearly nonlinear.

We now show formally that a linear control policy u(t) =
Kx(t) =

[
k1 k2

]
x(t) is not optimal. Under this policy, the

SLCS becomes the SLS {Āi}i=1,2, where Ā1 = A1 +B1K =[
1 + k1 k2

k1 k2

]
and Ā2 = A2 + B2K =

[
−k1 −k2

k1 1 + k2

]
. Let

ρ∗i be the spectral radius of Āi for i = 1, 2. We show next that
max{ρ∗1, ρ∗2} > ρ0 =

√
0.4 ≈ 0.6325 for any choice of K.

Define ∆1 := (1 + k1 + k2)2 − 4k2 and ∆2 := (1 −
k1 + k2)2 + 4k1. The pairs of (possibly complex) eigenvalues
of Ā1 and Ā2 are given by µ1,2 = (1 + k1 + k2 ±

√
∆1)/2

and λ1,2 = (1 − k1 + k2 ±
√

∆2)/2, respectively. Suppose
there exist k1, k2 such that max{|µ1|, |µ2|, |λ1|, |λ2|} ≤ ρ0.
This implies that |k2| = |det(Ā1)| ≤ (ρ0)2 = 0.4 and |k1| =
|det(Ā2)| ≤ (ρ0)2 = 0.4, i.e., k1, k2 ∈ [−0.4, 0.4].

Consider the following two cases:
Case 1: k2 ≥ 0. Since ∆2 as a function of k1 has the

minimum ∆2,min = 4k2 ≥ 0, λ1 = (1− k1 + k2 +
√

∆2)/2 is
real. For each fixed k1 ∈ [−0.4, 0.4], in view of 1−k1+k2 ≥ 0,
∆2 (and hence λ1) is nondecreasing in k2. Therefore, λ1 ≥
limk2↓0 λ1 = 1 for any |k1| ≤ 0.4, contradicting |λ1| ≤ ρ0.

Case 2: k2 < 0. Then, ∆1 ≥ 0 and µ1 = (1 + k1 +
k2 +

√
∆1)/2 ∈ R. Since 1 + k1 + k2 ≥ 0, ∆1 and µ1 are

nondecreasing in k1. Thus, µ1 ≥ limk1→−0.4 µ1 = f(k2) :=
1
2

(
0.6 + k2 +

√
(0.6 + k2)2 − 4k2

)
≥ 0. As f(k2) is strictly

decreasing in k2 ∈ [−0.4, 0] with f(−0.0558) = ρ0, we need
k2 ∈ [−0.0558, 0) for µ1 ≤ ρ0. For such k2, ∆2 > 0, ∀ k1 ∈
[−0.4, 0.4]. Thus λ1 ∈ R and λ1 ≥ limk2→−0.0558 λ1 =

Fig. 4. A networked control system with data package drops [16].

1
2

(
0.9442 − k1 +

√
(0.9442− k1)2 + 4k1

)
≥ 0.8995 for any

|k1| ≤ 0.4, a contradiction to the assumption |λ1| ≤ ρ0.
To sum up, the stabilizing rate achieved by any linear control

policy, i.e., the JSR of {Ā1, Ā2}, is at least 0.6325 and outside
the interval [0.6302, 0.6309] containing ρ∗. In fact, the gap
is even bigger than it appears, as max{ρ∗1, ρ∗2} is in general
strictly less than the JSR of {Ā1, Ā2}. For example, it is
found numerically that max{ρ∗1, ρ∗2} attains its minimum value
0.6489 at k1 = −0.4211 and k2 = −0.1294. The JSR of the
resulting {Ā1, Ā2}, on the other hand, is at least 0.7156.

VI. APPLICATIONS IN NETWORKED CONTROL SYSTEMS

Consider the networked control system with data pack-
age drops studied in [16]. Suppose a plant with the state
xr ∈ Rn and the input ur ∈ Rp follows the dynamics
xr(t + 1) = Arxr(t) + Brur(t), t ∈ Z+, for some given
constant matrices Ar and Br. At time t0 = 0, the state x(0)
of the plant is transmitted successfully via a communication
network to a remote control site. The state received by the
control site, x̂r(0) := xr(0), is stored in a cache and used by
a controller to produce the control command ûr(0), which is
then transmitted successfully back to the plant. Upon receiving
the control command ur(0) := ûr(0), the plant stores it
in cache and used it as the control input so that xr(1) =
Arxr(0)+Brur(0). However, starting from time t = 1 on, an
adversary blocks the communications between the plant and
the controller by a duration of at most m−1 time steps, where
m ∈ N is given. Then the next successful communication
reassumes at a time t1 ∈ {1, 2, . . . ,m}. Between t0 and
t1, the plant keeps using the last received control command
ur(0) stored in its cache as its control input, resulting in
xr(t1) = (Ar)

t1xr(0) +
∑t1−1
t=0 (Ar)

tBrur(0). This process
is then repeated.

Denote by 0 = t0 < t1 < t2 < · · · the sequence of
times at which the communications between the plant and
the controller are successful, and define x(k) := xr(tk),
u(k) := ur(tk), k ∈ Z+. Then the dynamics of x(k) are
given by the following SLCS:

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), k ∈ Z+, (34)

where the mode σ(k) := tk+1 − tk ∈ M = {1, . . . ,m} is
determined by the adversary, and for each i ∈M,

Ai = (Ar)
i, Bi :=

[
(Ar)

i−1 + (Ar)
i−2 + · · ·+ I

]
Br.
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The problem of stabilizing the plant regardless of how the
adversary blocks the communication network becomes the
resilient stabilization problem of the SLCS (34).

Example VI.1. Suppose the system matrices of the plant are

Ar =

 0 1 0
0 0 1
−2 3 0

 , Br =

0
0
1

 ,
and the adversary blocks up to two rounds of communication
consecutively, i.e., m = 3. For the resulting SLCS (34), the
bisection algorithm derived from Proposition V.3 returns an
upper bound of ρ∗ as 1.0911 and an associated solution

P = Q−1 =

 162.5237 328.9297 166.4328
−328.9297 666.4824 −337.5884
166.4328 337.5884 171.1676

 .
Using this P in the LMI problem (22) results in a lower bound
0.9170. Furthermore, using P as the initial guess and solving
the BMI problem (23) yields a lower bound 0.9505. Hence,
using ellipsoidal norms, ρ∗ ∈ [0.9505, 1.0911].

Algorithm 1 is then applied to the SLCS after the coordinate
change x = P−1/2x̃. By initializing C ∈ R3×85 so that its
columns are a roughly uniform sampling of a half of the unit
sphere S2, Algorithm 1 returns a lower bound 0.9881 of ρ∗.
See Fig. 5 for the plots (in x̃-coordinates) of the unit ball
of the returned polyhedral norm. This same norm yields via
Proposition V.5 an upper bound 1.0590 of ρ∗. By perturbing C
locally, a better upper bound 1.0510 is obtained. Thus, using
polyhedral norms, we conclude ρ∗ ∈ [0.9881, 1.0510].

VII. CONCLUSIONS AND FUTURE DIRECTIONS

The switching-resilient stabilization problem of discrete-
time switched linear control systems is formulated. Both
theoretical results and practical bounding techniques are de-
rived for characterizing a stabilizability metric. Examples are
presented to demonstrate the obtained results. Future research
includes extensions to the case with bounded continuous
control inputs and different information structures.

APPENDIX A
PROOF OF THEOREM II.1

Proof. We only prove one direction as the other is trivial.
Let the SLCS be σ-resiliently asymptotically stabilized by a
control policy u ∈ U . Let the z be any nonzero initial state.
Without loss of generality, assume that z is in the unit sphere
Sn−1. Then x(t;σ,u, z)→ 0 as t→∞ for any σ ∈ S.

Claim: there exists Nz ∈ Z+ such that for any σ ∈ S,

‖x(tσ;σ,u, z)‖ < 1

2
for some tσ ≤ Nz . (35)

Suppose otherwise. Then there exist an increasing sequence
of times N1 < N2 < · · · and a sequence of switching
sequences σ(1), σ(2), . . . ∈ S such that ‖x(t;σ(k),u, z)‖ ≥ 1

2 ,
∀ t = 0, . . . , Nk for each k ∈ N. At each fixed time t, since
σ(k)(t), k = 1, 2, . . ., take values in the finite set M, at
least one value, denoted by σ(∞)(t), must appear infinitely

Fig. 5. Unit ball of the polyhedral norm returned by Algorithm 1 for
Example VI.1.

often. Assemble σ(∞)(t) for all t into a switching sequence
and denote it by σ(∞) ∈ S . By taking progressively finer
subsequences of σ(k), k ∈ N, and using induction on the
time t, we obtain ‖x(t;σ(∞),u, z)‖ ≥ 1

2 at all t ∈ Z+. This
contradicts the assumption that u is stabilizing, thus proving
the claim in (35).

We next show that Nz in Claim (35) can be chosen to
be uniformly bounded for all z ∈ Sn−1. To this end, fix an
arbitrary z ∈ Sn−1. For any σ ∈ S, denote by uz(t;σ) ∈ Rp
the actual control input implemented at time t ∈ Z+ when
generating x(t;σ,u, z). Since u is admissible, so is the control
policy uz := (uz(0;σ), uz(1;σ), . . .). In fact, uz is obtained
by running a simulator of the SLCS with identical dynamics
but the fixed initial state z and mimicking the controls pro-
duced by the simulator under the control policy u in response
to any σ ∈ S . By Claim (35), under uz and for any σ ∈ S ,
‖x(t;σ,uz, z)‖ < 1

2 for some t ≤ Nz . Since the solution
x(t;σ,uz, z

′) is continuous in its initial state z′ for any fixed
t ∈ Z+ and σ ∈ S , there exists an open neighborhood Uz
of z such that for any z′ ∈ Uz ∩ Sn−1 and any σ ∈ S ,
‖x(t;σ,uz, z

′)‖ < 1
2 for some t ≤ Nz . The family of all such

open sets Uz for z ∈ Sn−1 is an open cover of the compact set
Sn−1; thus there exist finitely many z(1), . . . , z(p) in Sn−1 such
that the union of the corresponding neighborhoods Uz(i) covers
Sn−1. A feasible control policy u∗ can then be constructed by
patching together the control policies uz(i) : if the initial state
x(0) ∈ Sn−1 belongs to some Uz(i) , then uz(i) is invoked.



SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 12

Let Nmax := maxi=1,...,pNz(i) < ∞. Under this u∗, for any
z ∈ Sn−1 and any σ ∈ S, ‖x(t;σ,u∗, z)‖ < 1

2 for some
t ≤ Nmax. By a homogeneous extension of u∗ from Sn−1 to
Rn \ {0}, we conclude that ‖x(t;σ,u∗, z)‖ < 1

2‖z‖ for some
t ≤ Nmax, ∀ z 6= 0, ∀σ ∈ S . By restarting u∗ whenever this
occurs and using a standard argument (e.g., [37, Proposition
2.1]), we obtain an admissible control policy that σ-resiliently
exponentially stabilizes the SLCS.

APPENDIX B
PROOF OF THEOREM III.1

Proof. By suitably scaling the matrices Ai’s, we can assume
without loss of generality that ρ∗ = 1.

We first show that W defined in (8) is control σ-invariant.
For any z ∈ W , ζ(z) < ∞ implies that there exist a
policy u = (u0,u1, . . .) ∈ U and κz ∈ [0,∞) such that
‖x(t;σ,u, z)‖ ≤ κz , ∀ t, ∀σ = (σ0, σ1, . . .) ∈ S . Let
v = u0(z) and let σ0 = i be arbitrary. Then the solution
starting from x(1) = Aiz + Biv under the control policy
u+ := (u1,u2, . . .) satisfies ‖x(t;σ+,u+, x(1))‖ = ‖x(t +
1;σ,u, z)‖ ≤ κz for all t and all σ+ := (σ1, σ2, . . .) ∈ S . As
a result, ζ(x(1)) ≤ κz <∞ and thus x(1) ∈ W . This proves
that W is control σ-invariant. As the SLCS is irreducible, W
is either {0} or Rn. We show by contradiction that the former
is impossible. Suppose W = {0}. Then for any z ∈ Sn−1 and
any u ∈ U , there exist some σ ∈ S and sz,u,σ ∈ Z+ such
that ‖x(sz,u,σ;σ,u, z)‖ > 2. We claim that the times sz,u,σ
are uniformly bounded in z and u:

Claim: ∃N ∈ Z+ such that ∀u ∈ U , ∀ z ∈ Sn−1,
‖x(t;σ,u, z)‖ > 2 for some σ ∈ S and t ≤ N .

(36)

Suppose Claim (36) fails. Then there exist a sequence (zk)
in Sn−1, a sequence of control policies (uk) in U , and a
strictly increasing sequence of times (sk) such that for any
σ ∈ S, ‖x(t;σ,uk, zk)‖ ≤ 2, ∀ t = 0, . . . , sk for each
k ∈ N. By passing to a subsequence if necessary, we assume
that (zk) converges to some z∗ ∈ Sn−1. We next construct
a control policy u∗ under which ‖x(t;σ,u∗, z∗)‖ ≤ 2 for
all t ∈ Z+ and all σ ∈ S . To this purpose, for each k,
we denote by ukzk,σ(t) the actual control at time t produced
by the control policy uk for the initial state zk in response
to an arbitrary switching sequence σ ∈ S . We assume
without loss of generality that ukzk,σ(t) lies in the orthogonal
complement of ∩i∈MN (Bi) since the component of ukzk,σ(t)
in ∩i∈MN (Bi) will not affect the state dynamics, where N (·)
denotes the null space of a matrix. For any k and each t =
0, . . . , sk−1, it follows from ‖x(t;σ,uk, zk)‖ ≤ 2 and ‖x(t+
1;σ,uk, zk)‖ = ‖Aσ(t)x(t;σ,uk, zk) + Bσ(t)u

k
zk,σ

(t)‖ ≤ 2,
∀σ(t) ∈M that maxi∈M ‖Biukzk,σ(t)‖ ≤ 2

(
maxi∈M ‖Ai‖+

1), which in turn implies that ukzk,σ(t) is uniformly bounded
in (∩i∈MN (Bi))

⊥. Thus, for each fixed σ ∈ S and t ∈ Z+,(
ukzk,σ(t)

)
has a convergent subsequence whose limit is de-

noted by u∗z∗,σ(t). Let u∗ be the control policy that produces
the actual control u∗z∗,σ(t) at time t for the initial state z∗
in response to any σ ∈ S , which is feasible since it is the
limit of a sequence of feasible control policies (uk). By the
continuity of the state solution in initial state and control input

for each fixed σ, we deduce that ‖x(t;σ,u∗, z∗)‖ ≤ 2 for all
t ∈ Z+ and all σ ∈ S . It follows from ρ∗ = 1 that ζ(z∗) ≤ 2
and hence z∗ ∈ W , a contradiction to W = {0}. This proves
Claim (36).

Claim (36) then implies that, regardless of x(0) and u, there
always exists a switching sequence of length no more than N
under which the state norm is at least doubled. Repeating this
switching strategy by the adversary, we conclude that ρ∗ > 1,
which contradicts the assumption ρ∗ = 1. Therefore, W 6=
{0}. This implies W = Rn, i.e., ζ(·) is finite everywhere on
Rn. Thus ζ(·) is a norm on Rn, and ζ(·) ≤ κ‖ · ‖ for some
constant κ > 0. This shows that the SLCS is nondefective.

APPENDIX C
PROOF OF THEOREM IV.1

Proof. The “only if” part has been proved; we prove the “if”
part as follows. Suppose the SLCS is nondefective with ρ∗ >
0. Then ζ(·) defined in (7) is finite everywhere and is thus
a norm on Rn. Given u ∈ U and σ ∈ S, let (u0,u+) be a
decomposition of u and (σ(0), σ+) a decomposition of σ. For
each z ∈ Rn, we can rewrite

ζ(z) = inf
u0

inf
u+

sup
σ(0)

sup
σ+

sup
t∈Z+

‖x(t;σ,u, z)‖
(ρ∗)t

= inf
u0

sup
σ(0)

inf
u+

sup
σ+

sup
t∈Z+

‖x(t;σ,u, z)‖
(ρ∗)t

.

The reason that supσ(0) and infu+
can switch order is due to

the observation in Remark II.1: for the objective of maximizing
supt∈Z+

‖x(t)‖/(ρ∗)t, knowing the optimal state feedback
control policy u+ after time 0 gives no extra advantage to the
adversary for its decision on σ(0). By denoting u0(z) = v and
σ(0) = i, and using x(t + 1;σ,u, z) = x(t;σ+,u+, xi,v(1))
where xi,v(1) := Aiz +Biv, we have, for any z ∈ Rn,

ζ(z)

= inf
v

sup
i

inf
u+

sup
σ+

max

(
‖z‖, sup

t∈Z+

‖x(t;σ+,u+, xi,v(1))‖
(ρ∗)t+1

)
= inf

v
sup
i

max
(
‖z‖, ζ(Aiz +Biv)/ρ∗

)
= max

(
‖z‖, ζ](z)/ρ∗

)
.

It follows then that ζ(·) ≥ ζ](·)/ρ∗, i.e., ζ](·) ≤ ρ∗ · ζ(·),
making ζ(·) an extremal norm of the SLCS.

Finally, if the SLCS is nondefective with ρ∗ = 0, then for
any z ∈ Rn, there exists v ∈ Rp such that Aiz+Biv = 0,∀ i ∈
M. This means that any norm ‖·‖ on Rn is an extremal norm
since ‖ · ‖] ≡ 0.

APPENDIX D
PROOF OF THEOREM IV.2

Proof. Suppose the SLCS is nondefective and ρ∗ > 0. Let
‖·‖ be an arbitrary norm on Rn, and use T in (15) to define a
sequence of seminorms on Rn as ξ(0)(·) := ‖·‖, and ξ(t)(·) :=
T ◦ · · · ◦ T︸ ︷︷ ︸

t times

(‖ · ‖) for each t ∈ N. By induction,

ξ(t)(z) = inf
u∈U

sup
σ∈S
‖x(t;σ,u, z)‖, ∀ z ∈ Rn, t ∈ N. (37)



SUBMITTED TO IEEE TRANS. AUTOMATIC CONTROL 13

Therefore, ξ(t)(z)/(ρ∗)t ≤ ζ(z), ∀ t ∈ N, ∀ z ∈ Rn, where
ζ is defined in (7). Since the SLCS is nondefective, ζ is
pointwise finite on Rn; thus for each s ∈ N, supt≥s ξ

(t)/(ρ∗)t

is pointwise finite (and easily seen to be a seminorm) on Rn.
Consider the following function defined for z ∈ Rn:

η(z) := lim sup
t→∞

ξ(t)(z)

(ρ∗)t
= inf
s∈N

(
sup
t≥s

ξ(t)(z)

(ρ∗)t

)
. (38)

Clearly, η ≤ ζ. Being the limit of a nonincreasing sequence
of seminorms supt≥s ξ

(t)/(ρ∗)t as s → ∞, η is a seminorm
on Rn. We next show that η 6≡ 0. Suppose otherwise. Then
for any z ∈ Sn−1, we have limt→∞ ξ(t)(z)/(ρ∗)t → 0.
By (37), there exist Nz ∈ N and uz ∈ U such that for
any σ ∈ S , ‖x(t;σ,uz, z)‖ < 1

2 (ρ∗)t for some t ≤ Nz .
Similar to the proof of Theorem II.1, we can first modify
uz in an open neighborhood Uz of z in Sn−1 to obtain
a policy ũz so that for any z′ ∈ Uz and any σ ∈ S,
‖x(t;σ, ũz, z

′)‖ < 1
2 (ρ∗)t for some t ≤ Nz; obtain finitely

many such Uz’s to cover Sn−1; patch their corresponding ũz
together to form an overall control policy ũ ∈ U and a finite
uniform time bound Nmax such that for any z ∈ Sn−1 and
any σ ∈ S, ‖x(t;σ, ũ, z)‖ < 1

2 (ρ∗)t for some t ≤ Nmax.
Repeating this argument via induction, we deduce that the σ-
resilient stabilizing rate is strictly less than ρ∗, a contradiction.
Hence η is a nonzero seminorm on Rn. By applying T to
both sides of (38) and using the monotone continuity property
established in Lemma IV.3, we have

η] = inf
s∈N
T
[
sup
t≥s

ξ(t)

(ρ∗)t

]
≥ inf

s∈N

(
sup
t≥s

ξ
(t)
]

(ρ∗)t

)

= inf
s∈N

(
sup
t≥s

ξ(t+1)

(ρ∗)t

)
= ρ∗ · inf

s∈N

(
sup
t≥s+1

ξ(t)

(ρ∗)t

)
= ρ∗ · η,

where the second step follows from Lemma IV.3. Therefore,
η is a lower extremal seminorm of the SLCS.

When the SLCS is nondefective with ρ∗ = 0, it is easily
verified that any seminorm ξ on Rn satisfies ξ] ≡ 0 and thus
is a lower extremal seminorm.

APPENDIX E
PROOF OF THEOREM IV.3

Proof. Suppose that the SLCS is irreducible with ρ∗ > 0.
By Theorem III.1, the SLCS is also nondefective; thus the
function ζ defined in (7) is pointwise finite on Rn. Define

χ(z) := inf
u∈U

sup
σ∈S

lim sup
t→∞

‖x(t;σ,u, z)‖
(ρ∗)t

, ∀ z ∈ Rn.

Obviously, χ ≤ ζ. Hence χ is pointwise finite on Rn. Further,
it is easy to see that χ is convex and positively homogeneous
on Rn. Therefore, χ is a seminorm on Rn, whose kernel
Nχ := {z |χ(z) = 0} is a subspace of Rn. Note that
χ(z + z′) = χ(z) for all z ∈ Rn and all z′ ∈ Nχ.

We claim that Nχ is control σ-invariant. Fix an ar-
bitrary z ∈ Nχ. For any ε > 0, there exists a
control policy uε = (uε0,u

ε
1, . . .) ∈ U such that

lim supt→∞ ‖x(t;σ,uε, z)‖/(ρ∗)t < ε, ∀σ ∈ S. Let vε :=
uε0(z) be the control input at t = 0 specified by uε and

let σ(0) = i ∈ M be arbitrary. Then the solution start-
ing from x(1) := Aiz + Biv

ε under uε+ := (uε1,u
ε
2, . . .)

satisfies x(t;σ+,u
ε
+, x(1)) = x(t + 1;σ,uε, z) and hence

lim supt→∞ ‖x(t;σ+,u
ε
+, x(1))‖/(ρ∗)t ≤ ρ∗ ·ε, for all σ+ :=

(σ(1), σ(2), . . .) ∈ S. This shows that χ(Aiz+Biv
ε) ≤ ρ∗ · ε

for all i ∈ M. Let εk > 0, k ∈ N, be such that εk ↓ 0, and
let vk := vεk for each k, which satisfies

χ(Aiz +Bivk) ≤ ρ∗ · εk, ∀ i ∈M. (39)

Define the subspace V := {v |χ(Biv) = 0, ∀ i ∈ M} ⊂
Rp, and denote by V⊥ its orthogonal complement. Let v′k
be the projection of vk onto V⊥ for each k. Using (39) and
the argument in the proof of Lemma IV.2, we conclude that
the sequence (v′k) is bounded. Hence a subsequence of (v′k)
converges to some v∗ ∈ V⊥. Taking the limit of (39) for this
subsequence with vk replaced by v′k which does not change
the value of χ(·), we obtain via the continuity of the seminorm
χ(·) that χ(Aiz + Biv∗) = 0 for all i ∈ M. This shows that
Nχ is a control σ-invariant subspace.

As the SLCS is irreducible, Nχ is either {0} or Rn. We
rule out the latter via contradiction. Suppose χ ≡ 0 on
Rn. Consider the scaled SLCS {(Ai/ρ∗, Bi/ρ∗)}i∈M whose
solutions x̃(t;σ,u, z) = x(t;σ,u, z)/(ρ∗)t. Fix an arbitrary
z ∈ Sn−1. For any ε > 0, there exists uz ∈ U such that for any
σ ∈ S , there exists tz,σ ∈ Z+ such that ‖x̃(t;σ,uz, z)‖ < ε
for all t ≥ tz,σ . Following the argument in the proof of Claim
(35) in Theorem II.1, we conclude that there exists a uniform
Tz ∈ Z+ such that for any σ ∈ S, ‖x̃(t;σ,uz, z)‖ < ε
for some t ≤ Tz . By setting ε = 1/2 and using a similar
argument as in Theorem II.1, we deduce that the scaled
SLCS is σ-resiliently exponentially stabilizable. Hence its σ-
resilient stabilizing rate ρ̃∗ < 1. By Lemma II.1, the σ-resilient
stabilizing rate of the original SLCS is ρ∗ · ρ̃∗ which is strictly
less than ρ∗, a contradiction. This shows that Nχ = {0}, i.e.,
χ is a norm on Rn.

To show χ] = ρ∗ · χ, let z ∈ Rn be arbitrary. Decompose
u ∈ U and σ ∈ S as u = (u0,u+) and σ = (σ(0), σ+) as
before. Denote v := u0(z) and i := σ(0). Then

χ(z) = inf
u0

sup
σ(0)

inf
u+

sup
σ+

lim sup
t→∞

‖x(t;σ,u, z)‖
(ρ∗)t

= inf
v∈Rp

sup
i∈M

inf
u+

sup
σ+

lim sup
t→∞

‖x(t;σ+,u+, Aiz +Biv)‖
(ρ∗)t+1

= inf
v∈Rp

sup
i∈M

χ(Aiz +Biv)

ρ∗
=

χ](z)

ρ∗
.

Again, in deriving the first equality we use the observation in
Remark II.1 to exchange the order of infu+

and supσ(0). As
a result, χ] = ρ∗ · χ, proving that χ is a Barabanov norm.

If an irreducible SLCS has ρ∗ = 0, then any norm ‖ · ‖
satisfies ‖ · ‖] = 0 and is a Barabanov norm.
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