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On the Optimal Solutions of the Infinite-Horizon
Linear Sensor Scheduling Problem

Lin Zhao, Wei Zhang, Jianghai Hu, Alessandro Abate and Claire J.
Tomlin

Abstract—This paper studies the infinite-horizon sensor scheduling
problem for linear Gaussian processes with linear measurement functions.
Several important properties of the optimal infinite-horizon schedules are
derived. In particular, it is proved that under some mild conditions, both
the optimal infinite-horizon average-per-stage cost and the corresponding
optimal sensor schedules are independent of the covariance matrix of
the initial state. It is also proved that the optimal estimation cost can
be approximated arbitrarily closely by a periodic schedule with a finite
period. Moreover, it is shown that the sequence of the average-per-stage
costs of the optimal schedule must converge. These theoretical results
provide valuable insights into the design and analysis of various infinite-
horizon sensor scheduling algorithms.

I. INTRODUCTION

The sensor scheduling problem seeks an optimal schedule over a
certain time horizon to activate/deactivate a subset of available sen-
sors to improve the estimation performance and reduce the estimation
cost (e.g. energy consumption and communication overheads). It has
numerous applications in various engineering fields [8], [10], [11].

Previous research has mainly focused on the finite-horizon sensor
scheduling problem for linear Gaussian processes. In this case,
a straightforward solution is to enumerate all the possible finite-
horizon schedules [10]. The complexity of such an approach grows
exponentially fast as the horizon size increases. Various methods
have been proposed in the literature to tackle this challenge. These
methods can be roughly divided into the following three categories:
(i) methods that focus on certain simple special classes of schedules,
such as myopic schedules that only consider immediate performance
at each time step instead of the overall performance over the whole
horizon [9], [13]; (ii) methods that “embed” discrete schedules
into a larger class of schedules with continuously-variable sensor
indices [4], [12]; (iii) and methods that prune the search tree based
on certain properties of the Riccati recursions [3], [15].

The methods in the first category are often easy to implement, but
provide no guarantees on the overall estimation performance. The
“embedding” approach in the second category is a common trick to
tackle complex discrete optimization or optimal control problems [1],
[6]. The resulting relaxed schedule can often be interpreted as
the time-average “frequencies” or “probabilities” for using different
sensors. It has been recently proved that, in continuous time, the per-
formance of the optimal relaxed schedule can be approximated with
arbitrary accuracy by a discrete schedule through fast switchings [12].
This is analogous to the result derived in [1] for solving the optimal
control problem of switched systems using embedding. However, in
discrete time, the result no longer holds as the switching rate is
fixed; in this case, the relaxed schedule can only be implemented
probabilistically [4], resulting in a random scheduling of the sensors.
The pruning methods in the third category make essential use of
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the monotonicity and concavity properties of the Riccati mapping to
obtain conditions under which the exploration of certain branches
can be avoided without losing the optimal schedule. In our earlier
paper [15], an efficient sub-optimal algorithm was proposed to prune
out not only the non-optimal branches but also less important ones to
further reduce the complexity. Further error bounds associated with
this pruning algorithm have also been derived in [16].

Different from most previous research, this paper studies the
infinite-horizon sensor scheduling problem for discrete-time linear
Gaussian processes observed by linear sensors. The problem is much
more challenging than its finite-horizon counterpart and has not
been adequately investigated in the literature. Instead of proposing a
specific scheduling algorithm, we focus on deriving several properties
of the problem which are of fundamental importance for the design
and analysis of various infinite-horizon sensor scheduling algorithms.
In particular, it is proved that under some mild conditions, both the
optimal infinite-horizon average-per-stage cost and the corresponding
optimal sensor schedule are independent of the covariance matrix
of the initial state. It is also proved that the optimal estimation
cost can be approximated arbitrarily closely by a periodic schedule
with a finite period. Furthermore, it is concluded that the sequence
of the average-per-stage costs of the optimal schedule must con-
verge. These theoretical properties provide us valuable insight into
the infinite-horizon sensor scheduling problem and will be useful
for developing algorithms. In addition, the existence of a periodic
suboptimal schedule justifies the experimental results of many finite-
horizon scheduling algorithms [5], [15] that yield periodic schedules
for relatively large horizons.

The rest of the paper is organized as follows. The infinite-horizon
sensor scheduling problem is formulated in Section II. Some impor-
tant properties of the difference Riccati recursion are reviewed in
Section III. These properties are then used in Section IV to prove the
universal approximation property of the periodic schedule. Finally,
some concluding remarks are given in Section V.

Notation: Let A be the semi-definite cone, namely, the set of all
the positive semidefinite matrices. Denote by λmin(·) and λmax(·) the
smallest and the largest eigenvalues, respectively, of a given matrix
in A. Let R+ and Z+ be the set of nonnegative real numbers and
integers, respectively. Denote by | · | the standard Euclidean norm of
vectors or absolute value of numbers, and ∥ · ∥ the vector-induced
matrix norm. For any ϕc ∈ A and r > 0, define B(ϕc; r) := {ϕ ∈
A : ∥ϕ−ϕc∥ ≤ r}. Denote by In the identity matrix of dimension n,
and diag{., .} the diagonal matrix composed of the input arguments.

II. PROBLEM FORMULATION

Consider the following linear time-invariant stochastic system:

x(t+ 1) = Ax(t) + w(t), t ∈ Z+, (1)

where x(t) ∈ Rn is the state of the system and w(t) is the process
noise. The initial state, x(0), is assumed to be Gaussian with zero
mean and covariance matrix ϕ0, i.e., x(0) ∼ N (0, ϕ0). There are
M different sensors attached to the process. At each time step, we
assume that only one sensor is available to take measurements. The
measurement of the ith sensor is given by:

yi(t) = Cix(t) + vi(t), t ∈ Z+, (2)

where yi(t) ∈ Rp and vi(t) ∈ Rp are the measurement output
and measurement noise of the ith sensor at time t, respectively. We
assume that the process noise and all the measurement noises are
mutually independent Gaussian white noises given by:

w(t) ∼ N (0,Φw), vi(t) ∼ N (0,Φv
i ),
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all of which are also independent of the initial state x(0).
Define λ−

w = λmin(Φ
w) and λ−

v = mini∈M{λmin(Φ
v
i )}. Assume

that λ−
w > 0 and λ−

v > 0. Let M := {1, . . . ,M} be the set of
sensor indices. For each N ∈ Z+, denote by MN the set of all the
sequences of sensor indices of length N . An element σ ∈ MN is
called an N -horizon sensor schedule. The set of all infinite-horizon
sensor schedules is denoted by M∞. An infinite-horizon schedule
σ ∈ M∞ is called periodic with a period l ∈ Z+ if σ(t) = σ(t+l) for
all t ∈ Z+. Under a given sensor schedule σ ∈ M∞, the measurement
sequence is determined by:

y(t) = yσ(t)(t) = Cσ(t)x(t) + vσ(t)(t), t ∈ Z+.

For each t1 ≤ t2 < ∞, denote by x̂σ(t2|t1) the minimum mean-
square error (MMSE) estimate of x(t2) given the measurements
{y(0), . . . , y(t1)}, the initial covariance ϕ0 and the sensor schedule
σ ∈ M∞. Define the prediction error eσ(t|t− 1) by

eσ(t|t− 1) = x(t)−Ax̂σ(t− 1|t− 1),

and let Σσ
t (ϕ0) be its covariance matrix. When no ambiguity arises,

we may drop the dependence on the initial covariance matrix and
simply write Σσ

t . By a standard result of linear estimation theory,
the prediction error covariance can be updated recursively using the
Riccati map:

Σσ
t+1 = Φw +AΣσ

t A
T −AΣσ

t C
T
σ(t)

×
(
Cσ(t)Σ

σ
t C

T
σ(t) +Φv

σ(t)

)−1

Cσ(t)Σ
σ
t A

T . (3)

For any finite integer N , the performance of an N -horizon sensor
schedule σ ∈ MN can be evaluated according to the total estimation
error defined by:

JN (σ;ϕ0) ≜
N∑
t=1

tr(Σσ
t (ϕ0)), (4)

or according to the average-per-stage estimation error defined by:

J̄N (σ;ϕ0) ≜
1

N
JN (σ;ϕ0). (5)

When N is finite, the two cost functions JN and J̄N are equivalent
in the sense that they produce the same set of optimal solutions.
However, the total cost JN (σ;ϕ0) → ∞ as N → ∞ for all σ ∈
M∞ and ϕ0 ∈ A, because the system is constantly perturbed by a
nontrivial Gaussian noise w(t). Thus, the performance of an infinite-
horizon sensor schedule is usually measured by the limsup of the
N -horizon average-per-stage cost:

J̄∞(σ;ϕ0) ≜ lim sup
N→∞

J̄N (σ;ϕ0).

This cost function has been extensively used for studying various
infinite-horizon optimal control and estimation problems [12], [2].
However, this cost function depends only on the limiting behavior
of the schedule, which may lead to rather unexpected optimal
solutions. For example, one can manipulate a finite portion of an
optimal schedule to create an arbitrary transient behavior for the
error trajectory without affecting the optimality of the schedule. In
some extreme cases, the trajectory of the error covariance under an
optimal schedule may even grow unbounded. The following example
illustrates such a situation.

Example 1. (Unbounded Optimal Schedule) Consider a simple 2-
dimensional system with A =diag {λ, 0}, λ > 1, C1 = [1, 0], C2 =
[0, 1], and Φw = diag {c, c} ≻ 0. For simplicity, let Φυ

1 = Φυ
2 = 0.

Note that the system is detectable under sensor 1, but undetectable
if using only sensor 2. One optimal schedule can be easily identified
as using exclusively sensor 1, which leads to a minimum cost of

tr(Φw) = 2c. Now consider an infinite-horizon sensor schedule σ̂
that alternates between sensor 1 and sensor 2 on time intervals I1

k

and I2
k , respectively. Let the length of I1

k be kλ2k, and the length
of I2

k be k. Define tk12 as the kth switching instants from sensor 2
to sensor 1 and tk21 the other way around. The switching times can
be determined recursively as: tk21 = tk12 + k and tk+1

12 = tk21 + kλ2k,
where k = 1, 2, ... and t012 = 0. Therefore, I2

k = [tk12, t
k
21), I1

k =
[tk21, t

k+1
12 ), and σ̂ can be represented as

σ̂(t) =

{
2, t ∈ [tk12, t

k
21)

1, t ∈ [tk21, t
k+1
12 ),

where t ∈ Z+, t012 = 0 and k = 1, 2, ... It can be calculated that
the average-per-stage cost on ∪k

i=1Ik with Ik = I2
k ∪ I1

k goes to
2c as k → ∞, which is the same as the optimal cost. However,
the subsequence consisting of error covariances Σσ

tk21−1
diverges as

k → ∞.

To exclude such abnormalities, we introduce the following feasible
set of sensor schedules which yield a bounded trajectory under a given
initial condition ϕ ∈ A:

M∞
ϕ = {σ ∈ M∞: ∃β <∞, s.t. Σσ

t (ϕ)⪯βIn,∀t ∈ Z+}.

An infinite-horizon sensor schedule σ is called feasible for ϕ ∈ A
if σ ∈ M∞

ϕ . The following assumption is adopted throughout this
paper.

Assumption 1. M∞
ϕ ̸= ∅, ∀ϕ ∈ A.

Remark 1. The assumption requires that for any initial covariance,
there always exists an infinite-horizon schedule that can keep the
estimation error covariance bounded for all time. This is a reasonable
assumption for typical estimation applications. It can be guaranteed
if, for example, one of the subsystems is detectable.

Problem 1. For a given ϕ0 ∈ A, solve the following problem

V̄ ∗(ϕ0) ≜ inf
σ∈M∞

ϕ0

lim sup
N→∞

J̄N (σ;ϕ0) (6)

Assumption 1 implies that V̄ ∗(ϕ0) is finite for all ϕ0 ∈ A. The
function V̄ ∗ : A → R+ defined implicitly by equation (6) is called
the optimal infinite-horizon cost function. For a general ϕ ∈ A, a
schedule that achieves the cost V ∗(ϕ) will be referred to as an optimal
schedule for ϕ.

III. THE SEQUENTIAL RICCATI MAPPING AND ITS STABILITY

The Riccati recursion in (3) can be viewed as a mapping from
Σσ

t ∈ A to Σσ
t+1 ∈ A depending on the sensor index chosen at

time t. In general, for each sensor i ∈ M, we can define the Riccati
mapping as

ρi(Q) = Φw +AQAT

−AQCT
i

(
CiQC

T
i +Φv

i

)−1

CiQA
T , Q ∈ A.

With this notation, for a generic initial covariance matrix ϕ ∈ A,
the covariance matrix Σσ

t (ϕ), defined in (3), is the trajectory of the
following matrix-valued time-varying nonlinear system:

Σσ
t+1 = ρσ(t) (Σ

σ
t ) , for t ∈ Z+, with Σσ

0 = ϕ. (7)

One can also view Σσ
t (·) as the composition of a sequence of

Riccati mappings, i.e.

Σσ
t = ρσ(t−1) ◦ ρσ(t−2) · · · ◦ ρσ(0), t ∈ Z+. (8)

We will also refer to Σσ
t as the composite Riccati map associated

with σ.
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To solve Problem 1, it is critical to understand the dynamic
behavior of the matrix-valued nonlinear system (7) under different
infinite-horizon schedules. Two well-known properties of the Riccati
mapping are useful for this purpose.

Lemma 1. For any i ∈ M, Q1, Q2 ∈ A and c ∈ [0, 1], we have

(i) Q1 ⪯ Q2 ⇒ ρi(Q1) ⪯ ρi(Q2);
(ii) ρi(cQ1 + (1− c)Q2) ⪰ cρi(Q1) + (1− c)ρi(Q2).

Remark 2. The lemma indicates that the Riccati mapping is monotone
and concave. The monotonicity property is a well-known result and
its proof can be found in [7]. The concavity property is an immediate
consequence of Lemma 1-(e) in [14].

Based on these two properties, one can prove the following results.

Proposition 1. (Theorem 5 of [17]) For any ϕ ∈ A, ϵ ∈ R+, σ ∈
M∞, and t ∈ Z+, we have Σσ

t (ϕ+ ϵIn) ⪯ Σσ
t (ϕ)+g

σ
t (ϕ) · ϵ, where

gσt (ϕ) is the directional derivative of the t-step Riccati mapping Σσ
t

at ϕ along direction In. Furthermore, if Σσ
t (ϕ) ⪯ βIn for all t ∈ Z+

and for some β <∞, then tr(gσt (ϕ)) ≤ nβηt/λ−
w , ∀t ∈ Z+, where

η =
1

1 + αλ−
w

< 1 and α =
λ−
w

∥A∥2β2 + λ−
wβ

. (9)

The above theorem reveals an important property of system (7),
namely, that boundedness of its trajectory implies an exponential
disturbance attenuation. This property plays a crucial role in the
derivation of the various properties of Problem 1 in Section IV.

IV. MAIN RESULTS

In this section, we will use the properties of the sequential Riccati
mapping derived in the last section to gain some insights into the
solution of Problem 1.

A. Independence of the Initial Covariance

We first show that the feasible set is independent of the initial
covariance.

Lemma 2. If σ ∈ M∞
ϕ1

for some ϕ1 ∈ A, then σ ∈ M∞
ϕ for all

ϕ ∈ A.

Proof: Fix arbitrary ϕ, ϕ1 ∈ A, and σ ∈ M∞
ϕ1

. Since ϕ ⪯
ϕ1 + ∥ϕ− ϕ1∥In, we have by Proposition 1,

Σσ
t (ϕ) ⪯ Σσ

t (ϕ1) + gσt (ϕ1) · ∥ϕ− ϕ1∥.

The first term on the right-hand side is bounded because σ ∈ M∞
ϕ1

,
while the second term is bounded due to Proposition 1. Thus, σ ∈
M∞

ϕ .
Therefore, if an infinite-horizon schedule is feasible for some initial

covariance matrix, it is also feasible for all initial covariances. This
allows us to drop the dependence on the initial covariance and simply
define

M∞
f = {σ ∈ M∞ : ∀ϕ ∈ A, ∃β <∞, s.t.

Σσ
t (ϕ) ⪯ βIn, ∀t ∈ Z+}.

We next show that under a fixed schedule σ ∈ M∞
f , all the

trajectories starting from different initial covariances will eventually
converge to the same trajectory.

Theorem 1. For any feasible schedule σ ∈ M∞
f , we have that

∥Σσ
t (ϕ1)− Σσ

t (ϕ2)∥ → 0 exponentially as t→ ∞,

for all ϕ1, ϕ2 ∈ A.

Proof: Fix arbitrary ϕ1 ∈ A and ϕ2 ∈ A. Define ϵ = ∥ϕ1 −
ϕ2∥. Without loss of generality, let β < ∞ be the bound such that

Σσ
t (ϕi) ⪯ βIn for all t ∈ Z+ and i = 1, 2. By Proposition 1, we

have

Σσ
t (ϕ2) ⪯ Σσ

t (ϕ1 + ∥ϕ2 − ϕ1∥In)
⪯ Σσ

t (ϕ1) + gσt (ϕ1) · ϵ

⪯ Σσ
t (ϕ1) +

(
nβϵ

λ−
w

ηt
)
· In.

Similarly, we can obtain Σσ
t (ϕ1) ⪯ Σσ

t (ϕ2) +
(

nβϵ

λ−
w
ηt
)
· In, for all

t ∈ Z+. The result follows directly from the above inequalities as
t→ ∞.

An immediate consequence of the above theorem is that the
infinite-horizon average-per-stage cost of any feasible schedule is
independent of the initial covariance matrix.

Corollary 1. For any σ ∈ M∞
f , J̄∞(σ;ϕ1) = J̄∞(σ;ϕ2) for all

ϕ1, ϕ2 ∈ A.

Proof: By Theorem 1, Σσ
t (ϕ1) → Σσ

t (ϕ2) as t → ∞. Thus,
the two average-per-stage cost sequences { 1

N

∑N
t=1 Σ

σ
t (ϕi)}N , N ∈

Z+, i = 1, 2, must have the same limsup.
By the above corollary, it is easy to see that if a feasible schedule

σ is optimal for some initial covariance ϕ1, then it must also be
optimal for any other initial covariance ϕ2. In addition, the optimal
infinite-horizon average-per-stage costs corresponding to these two
initial covariances must also be the same.

Corollary 2. For any ϕ1, ϕ2 ∈ A, if σ∗ is optimal for ϕ1, then it
must also be optimal for ϕ2; and in addition, V̄ ∗(ϕ1) = V̄ ∗(ϕ2).

Therefore, to solve Problem 1, we can start from any initial
covariance matrix at our convenience. The obtained optimal solution
would also be optimal for all the other initial covariances.

B. Properties of the Accumulation Set

For any σ ∈ M∞
f , let Lσ be the accumulation set of the closed-

loop trajectory of the nonlinear system (7) under schedule σ. In other
words, the set Lσ contains all the points whose arbitrary neighbor-
hoods will be visited infinitely often by the trajectory {Σσ

t (ϕ)}t∈Z+

for some initial condition ϕ ∈ A. Under Assumption 1, the sequence
{Σσ

t (ϕ)}t∈Z+ is bounded if σ is feasible. Therefore, there exists a
convergent subsequence and Lσ is not empty. Moreover, Lσ is closed
since the subsequential limits of a bounded sequence in a metric
space X form a closed subset of X . It follows that Lσ is bounded
and closed in A, and is thus compact.

According to Theorem 1, a trajectory {Σσ
t (ϕ)}t∈Z+ under sched-

ule σ starting from any initial covariance ϕ ∈ A has the same
accumulation set Lσ . This implies that Lσ is globally attractive, i.e.
lim
t→∞

d(Σσ
t (ϕ),Lσ) = 0, ∀ϕ ∈ A , where d(ϕ,Lσ) = inf

z∈Lσ
∥ϕ− z∥

represents the distance from the point ϕ to the set Lσ .
We summarize the above results in the following proposition:

Proposition 2. The accumulation set of any feasible schedule is
nonempty, compact and globally attractive.

C. Universal Approximation Property of Periodic Schedules

The goal of this subsection is to show that the optimal infinite-
horizon cost can be approximated with an arbitrary accuracy by
periodic schedules. Actually a more general result is proved for
approximating infinite-horizon costs of any feasible schedule. First,
we derive the following result which will facilitate our main proof.

Lemma 3. (Uniform Bound) Given σ ∈ M∞
f , for any bounded set

E ⊂ A, there exists finite constants βE , αE , and ηE ∈ (0, 1), such
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that Σσ
t (ϕ) ⪯ βEIn and tr(gσt (ϕ)) ≤ αEη

t
E , for all t ∈ Z+ and

ϕ ∈ E.

Proof: Fix an arbitrary ϕ1 ∈ E. Define the covariance trajectory
under σ with initial covariance ϕ1 as ψt = Σσ

t (ϕ1), t ∈ Z+. Since σ
is feasible, there must exist a finite constant β1 such that ψt ≤ β1In
for all t ∈ Z+. By Proposition 1, there exist constants α1 <∞ and
η1 ∈ (0, 1) such that tr(gσt (ϕ1)) ≤ α1η

t
1, for all t ∈ Z+. It follows

that

Σσ
t (ϕ) ⪯ Σσ

t (ϕ1 + ∥ϕ− ϕ1∥In) ⪯ Σσ
t (ϕ1) + gσt (ϕ1)∥ϕ− ϕ1∥

⪯ ψt + α1η
t
1(κE + β1)In,

for all ϕ ∈ E, where κE ≜ supϕ∈E ∥ϕ∥. This implies the existence
of the desired constant βE , which in turn guarantees the existence of
the desired constants αE and ηE according to Proposition 1.

The above lemma indicates that the covariance trajectories starting
from any initial covariance in a bounded set E are bounded uniformly
by βEIn. The bound βE depends only on the underlying set E instead
of the particular value of the initial covariance.

The following theorem presents the main contribution of this paper.

Theorem 2. (Universal Approximation) For any feasible schedule
σ ∈ M∞

f and any δ > 0, there exists a periodic schedule σ̃ with
a finite period N ∈ Z+, such that the infinite-horizon cost of σ is
approximated by σ̃ with the error bound

∣∣J̄∞(σ̃)− J̄∞(σ)
∣∣ < δ.

Proof: Pick an arbitrary feasible schedule σ ∈ M∞
f and an

accumulation point ϕ̂ ∈ Lσ . Suppose that Σσ
t (ϕ̂) < βIn. By

Proposition 1 and Lemma 3, we have

Σσ
t (ϕ) ⪯ Σσ

t (ϕ̂) + rαrη
t
rIn ⪯ (β + rαrη

t
r)In, ∀ϕ ∈ B(ϕ̂; r)

where αr > 0 and 0 < ηr < 1 are constants depending on r. Denote
β̂ = β+rαr . It is clear that Σσ

t (ϕ) is bounded by β̂In, ∀ϕ ∈ B(ϕ̂; r).
Define E = {ϕ : ϕ ⪯ β̂In}. Clearly Lσ ⊂ E, and B(ϕ̂; r) ⊂ E.
These sets are illustrated in Fig. 1.

The rest of the proof consists of three major steps. (i) Firstly, we
show that there exists a common l-horizon schedule σl that can drive
the covariance trajectory to B(ϕ̂; r) at the end of the l horizon for
any initial covariance in E; (ii) Secondly, we show that there exists
a subschedule σNk whose average-per-stage cost converges to the
infinite-horizon cost of σ uniformly for all initial condition in E;
(iii) Lastly, we will construct a periodic schedule σ̃ based on σl and
σNk , which satisfies the desired error bound δ for all large enough
k.

Step (i): By Proposition 1 and Lemma 3, ∀ϕ ∈ E,∥∥∥Σσ
t (ϕ)− Σσ

t (ϕ̂)
∥∥∥ ≤ β̂αEηtE , (10)

where αE > 0 and 0 < ηE < 1 are constants associated with E.
Therefore ∃l0 > 0 such that∥∥∥Σσ

t (ϕ)− Σσ
t (ϕ̂)

∥∥∥ ≤
r

2
, ∀t > l0. (11)

Since ϕ̂ ∈ Lσ and Lσ is attractive, ∃l ≥ l0 such that∥∥∥Σσ
l (ϕ̂)− ϕ̂

∥∥∥ ≤
r

2
. (12)

By (11) and (12), we have ∀ϕ ∈ E∥∥∥Σσ
l (ϕ)− ϕ̂

∥∥∥ ≤
∥∥∥Σσ

l (ϕ)− Σσ
l (ϕ̂)

∥∥∥+
∥∥∥Σσ

l (ϕ̂)− ϕ̂
∥∥∥ ≤ r. (13)

Denote the first l steps of σ by σl. Equation (13) shows that under
σl, the final covariance Σ

σl
l (ϕ) ∈ B(ϕ̂; r), ∀ϕ ∈ E.

Step (ii): Now we construct another finite length sub-schedule
σNk , under which the performance obtained can be arbitrarily close
to J̄∞(σ) when k is large enough.

Fig. 1. Domain of consideration: bounded set E which contains all the
trajectories starting from B(ϕ̂; r)

Suppose J̄N (σ;ϕ0) is the average-per-stage cost of the first N
steps of σ for some initial condition ϕ0 ∈ E. For brevity, define
bN = J̄N (σ;ϕ0). Since σ is feasible, bN is bounded. Therefore, there
exists a subsequence {bNk}k, such that J̄∞(σ;ϕ0) = lim

k→∞
bNk . It

follows ∀δ > 0, ∃K1 ∈ Z+, such that∣∣J̄∞(σ;ϕ0)− bNk

∣∣ < δ

3
, ∀k > K1. (14)

Let σNk be the first Nk steps of σ. Note that {bNk}k and the
associated sub-schedule {σNk}k are constructed based on the initial
condition ϕ0. We need to be shown that the cost convergence is
uniform with respect to all ϕ ∈ E. To this end, consider arbitrary
ϕ1, ϕ2 ∈ E. We know that ∥ϕ1 − ϕ2∥ ≤ β̂. It follows from
Proposition 1 and Lemma 3 that

∆ ≜
∣∣J̄Nk

(σNk
;ϕ1)− J̄Nk

(σNk
;ϕ2)

∣∣
≤

1

Nk

Nk

Σ
t=1

|tr(Σσ
t (ϕ1))− tr(Σσ

t (ϕ2))|

≤
1

Nk

Nk

Σ
t=1

nβ̂αEηtE ≤
nβ̂αEηE

Nk(1− ηE)
.

Note that n, β̂, αE , ηE are all constants. Hence, ∃K2 ∈ Z+, such
that ∆ < δ

3
, ∀k > K2. Choose K = max{K1,K2}, we have∣∣J̄∞(σ;ϕ0)− J̄Nk

(σNk
;ϕ)

∣∣ ≤
∣∣J̄∞(σ;ϕ0)− J̄Nk

(σNk
;ϕ0)

∣∣
+
∣∣J̄Nk

(σNk
;ϕ0)− J̄Nk

(σNk
;ϕ)

∣∣
<

2δ

3
, ∀ϕ ∈ E, ∀k > K

Step (iii): Now construct a periodic schedule σ̃ =
{σN , σN , · · · · · · }, where σN = {σNk , σl}, N = Nk + l.
Recall that Nk is constructed in Step (ii) for some large k to be
determined later; and l ≥ l0 is from Step (i) so that equations
(12) and (13) hold. Note that Σ

σNk
Nk

(ϕ) ∈ E, ∀ϕ ∈ B(ϕ̂; r). It
follows from (13) that ΣσN

N (ϕ) ∈ B(ϕ̂; r), ∀ϕ ∈ B(ϕ̂; r). Therefore
ΣσN

N (ϕ) is an invariant mapping with respect to B(ϕ̂; r). Further
note that (10) and (11) implies ∀ϕ1, ϕ2 ∈ B(ϕ̂; r),

∥Σσ
t (ϕ1)− Σσ

t (ϕ2)∥ ≤ αEη
t
E ∥ϕ1 − ϕ2∥

≤ r

2β̂
∥ϕ1 − ϕ2∥ , ∀t > l0

Recall that B(ϕ̂; r) ⊂ E as discussed in Step 1, and therefore r < 2β̂.
It follows that ΣσN

N is a contraction mapping on B(ϕ̂; r). Let P be
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the unique fixed point of ΣσN
N on B(ϕ̂; r). Since P ∈ Lσ̃ and Lσ̃ is

an N -cycle 1, the performance of σ̃ can be obtained as

J̄∞(σ̃;P ) =
NkJ̄Nk(σNk ;P ) + lJ̄l(σl;ϕP )

Nk + l
,

where ϕP denotes the point Σ
σNk
Nk

(P ).
Since l is independent of Nk and J̄l(σl;ϕP ) is bounded,

J̄Nk(σNk ;P ) → J̄∞(σ̃;P ) as k → ∞. That is ∀δ > 0, ∃K3 ∈
Z+, such that

∣∣J̄∞(σ̃;P )− J̄Nk (σNk ;P )
∣∣ < δ

3
, ∀k > K3. Let

K̄ = max{K3,K}, and it follows
∣∣J̄∞(σ̃;P )− J̄∞(σ;P )

∣∣ < δ
when k > K̄ and the length of the period of σ̃ is N = NK̄ + l. By
Theorem 1, we know that the infinite-horizon cost is independent of
the initial condition, and thus the desired result follows.

Remark 3. The proof of Theorem 2 can also be applied to prove
that the lim inf (or any subsequential limits) of the sequence of
average-per-stage costs can be approximated by periodic schedules
arbitrarily closely by choosing σNk corresponding to the lim inf
subsequences (or any convergent subsequences). Then the following
corollary follows immediately from Theorem 2:

Corollary 3. Suppose σ∗ is an optimal sensor schedule to Problem 1,
and {b∗N} is the corresponding sequence of the N -horizon average-
per-stage costs. Then {b∗N} converges and the optimal cost is
V̄ ∗ = lim

N→∞
b∗N .

Proof: Suppose {b∗N} does not converge. Let ε = lim sup
N→∞

b∗N −
lim inf
N→∞

b∗N > 0. By Theorem 2 and Remark 3, there exists a periodic

schedule σ̃ with finite period such that
∣∣∣J̄∞(σ̃)− lim inf

N→∞
b∗N

∣∣∣ < ε
2

. It

follows J̄∞(σ̃) < lim inf
N→∞

b∗N + ε
2
< lim sup

N→∞
b∗N . Thus σ̃ has a smaller

infinite cost than the optimal schedule σ∗, which is a contradiction.

In addition, the proof of Theorem 2 also implies the stability of
the covariance trajectory under a feasible periodic sensor schedule.

Corollary 4. For any feasible periodic schedule σ̃, the discrete
nonlinear system ϕk+1 = Σσ̃

N (ϕk), k ∈ Z+, ∀ϕ0 ∈ A is globally
asymptotically and locally exponentially stable.

Proof: From the proof of Theorem 2, the fixed point P of the
contraction mapping Σσ̃

N on B(ϕ̂; r) is also the equilibrium of the
system ϕk+1 = Σσ̃

N (ϕk). The result follows by futher noting that
P ∈ Lσ̃ is globally attractive.

V. DISCUSSION AND CONCLUSIONS

Under a mild feasibility assumption, we have proven that both the
optimal infinite-horizon cost and the corresponding optimal schedule
are independent of the initial error covariance. Furthermore, we have
proven that the accumulation set of the composite Riccati mapping
under a feasible schedule is nonempty, compact, and globally at-
tractive. The most important result is the universal approximation
theorem (Theorem 2) which states that the performance of any fea-
sible schedule can be approximated arbitrarily closely by a periodic
schedule with a finite period. Interestingly, this result leads to the
conclusion that the average-per-stage cost of an optimal schedule
must converge (Corollary 3).

These theoretical results provide us valuable insights into the
infinite-horizon sensor scheduling problem. Theorem 2 motivates
us to focus on the periodic schedules in solving Problem 1. A
straightforward way to approach this problem is to first find the
best N -periodic schedule by enumeration, and gradually increase

1By N -cycle, we mean a sequence (ϕ0, ϕ1, · · · , ϕN−1) where
ρσ̃(0)(ϕ0) = ϕ1, ρσ̃(1)(ϕ1) = ϕ2,· · · , and ρσ̃(N−1)(ϕN−1) = ϕ0.

the length of the period until the performance no longer improves.
Although the complexity of this approach grows exponentially as
N increases, it is still a practically reasonable solution procedure
because the infinite-horizon performance of the periodic schedule
can be computed efficiently and large periods are not preferred
in practice. In addition, Corollary 3 can be used to simplify the
objective function (cost function) in optimization-based approaches
for finding the optimal/suboptimal periodic solutions. Our future
research will focus on developing efficient infinite-horizon sensor
scheduling algorithms with guaranteed suboptimal performance.
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