An ODE Comparison Theorem that x, exits from a given domair). Using the dynamic
Wlth Application in the Optlmal programming approach, the value functions are shown to be

the viscosity solution to the Hamilton-Jacobi-Bellman aqu
Exit Time Control Problem tions [10], [11], [12]. The OETC problem studied in this
paper, however, is different from these studies in thatoaltjh

the simplified running cosL. = 1 is considered, the control

u is constrained through its aggregatig [|u|* dz instead

of pointwise on). As a result, optimal solution can no
Abstract— The optimal exit time control (OETC) problem tries longer be characterized by dynamic programming method.

to find the feedback control law with a reasonable cost that : T .
can keep the system state inside a certain subset of the stateMOre importantly, our objective is not the local properties

space, called the safe set, for the longest time under random Of optimal solutions (e.g., the characterizing PDEs), thet t

perturbations. The symmetry property of its solutions has keen more challenging global properties such as their symmaeiry o
proved previously when the state dimension is higher than aa@  symmetric domains, which can significantly reduce solution
However, the proof does not apply in the one dimensional (1- complexity. The OETC problem was first proposed in [13]

D) case. In this note, a comparison theorem is established dah : .
compares the solutions to two ODES arising in the 1-D OETC and later extended to the general setting of stochasticidhybr

problem, one with an arbitrary control and the other with a  Systems in [14]. The symmetry property of optimal solutions
symmetric control. The symmetry of solutions to the 1-D OETC has been proved in [15], [16] when the state dimension 2.
problem is proved using this comparison theorem. An example However, whenn = 1, certain multi-dimensional concepts
is presented to show how the symmetry result can help to solve gych as surface and volume, and some key results used in the
the OETC problem analytically in certain cases. proof of [15], [16] such as the isoperimetric inequalitye awot
applicable.

I. INTRODUCTION In this paper, we propose a proof of the symmetry property
gf the solutions to the 1-D OETC problem. Compared with the
direct method in the multidimensional proof in [15], [16L4r0

Unmanned Aerial Vehicles (UAV) [3], chemical processes, otProof of the 1-D case is based upon a key comparison theorem

In these applications, the system state is typically reqiito comparing the solutions to_two seqond—order OI_DEs arising in
stay inside a certain subset of the state space calledafee the 1-D OETC proble_m, which has Its own value in the general
set Whenever the system state gets outside the safe set, sGHHgY of ODES' Using the comparison theorem, we sh(_)w
costly procedure must be invoked to bring the system ba , the solut|0n.s to the 1-D QETC problem are symmetric.
to safety. Safety of deterministic systems is reIativersyeaT is, together with the results in [15], [16],.completelyad£s

to maintain by properly designed feedback control strategi lishes the Symmetry property of _the sqluﬂons to the OETC
However, practical systems are often perturbed by randcﬂﬁc’bler_n with an arbitrary sta_te <_j|menS|on._ Our proof _makes
noises, which may steer the state outside the safe set @les ﬁsentlal use of the symmetr_lzanon operation [%7]’ Wwhih ¢
the control efforts. A common approach to the probabilist ansform an ar_bltrary fu_nct|0n to a symr_netrlc one while
safety problem is through the probabilistic reachabilihala preserving certain properties. The symmetrization methexl

ysis [4]. This approach analyzes and/or designs the contp en widely used in the literature for proving the symmetry
based on the safety probability, i.e., the probability ttres of solutions to certain PDEs or PDE-constrained variationa
system state stays inside the safe set over a certain ti gblems [18], 'I[Ilg]. Its r?ppl;catlonhs_ o contr(?l problems,
horizon. However, the computation of the safety probapili owever, are still rare. Therefore, this paper also repisse

for general stochastic systems is rather challenging,cisihe an important application of the symmetrization method & th

in high-dimensional state spaces. An alternative apprcimchStudy the stochastic optlmal conFroI problems. i
The rest of the paper is organized as follows. In section II,

to measure the system safety by certain aggregate quantitje blom is f lated. Th D hod
that are relatively easy to compute, such as the expectatfdfj OETC problem is formulated. The symmetrization metho

of the first exit time of the system state from the safe sdt Priefly reviewed in Section Il and then used to prove the
The problem of designing a control law to maximize th&omparison theorem and the symmetry property in Section I1V.
expectation of the exit time is called thaptimal exit time An example is worked out in details in Section V to illustrate

control (OETC) problem, and is the focus of this paper. the applica_tion of the symmetry_property in solving the _OETC
The general stochastic optimal control problems have beBpPlem. Finally, some concluding remarks are given in Sec-

well studied in the literature [5], [6]. In particular, theoshas- 10N VI-

tic optimal exit time control problems [7], [8], [9] try to

minimize the expected integral of a running cost functional II. OPTIMAL EXIT TIME CONTROL PROBLEM

L(t, Xt,u) along a controlled Markov proces§ with control o General OETC Problem

u constrained by a feasible sé€ up to the first timer

Wei Zhang and Jianghai Hu

Safety is a critical issue in many engineering problem
such as intelligent transportation systems [1], [2], coinaf

Consider a general dynamical system whose sPatec
This work was partially supported by the National Sciencerrtation R™ is required to reside inside a bounded open connected
under Grant CNS-0643805. _ , domainQ of R™ called the safe set. To keef inside under
Wei Zhang and Jianghai Hu are with the School of Electrical @omputer h f q bati b ded bl
Engineering, Purdue University, West Lafayette, IN 479B6ail:{zhang70, the presence of random perturbations, a bounded measurable

jianghai@purdue.edu state feedback control law :  — R™ is typically adopted.



The corresponding state dynamics can then be modeled by ¢ié time, i.e., the solution to equation (2). Th&nis positive

following stochastic differential equation (SDE): on © and vanishes orﬁgl. Furthermore, it satisfied +
s~ Ty oV < 0 almost everywhere on
dX, = u(X,)dt + o(X,)dB,. (1) (2221,.7:1 (e(@)o(@)),; 500, (%) < y

Here, B, is an n-dimensional Brownian motion, and the Remark 1:The positiveness of” on  follows imme-
diffusion termo : Q — R™*" satisfies theuniformly elliptic (ihately from its def'nltIOBQ-VBy (2), the condition that +
condition on Q: o(x)o(z)T = 03I, Vo € Q, for some 32,1 (0(@)o(2)"), 575 (2) < 0 is equivalent tou -
oo > 0. VvV >0, i.e., the optimal control should always point toward

Definer £ inf{t > 0 : X; ¢ Q} as the (first) exit time the direction along which the expected exit tifeincreases
of X, from Q. Its expected value, under the initial conditiorihe fastest, an intuitively obvious conclusion.

Xo =z € Q, is denoted by It has been proved in [15] that the functidi(z) cor-
N responding to the optimal control on a radially symmetric
V(z) = E[r[Xo = z]. domain is radially symmetric when the state dimension 2.

Thus, V(z) is the expected exit time ok, from the safe set The proof makes use of the isoperimetric inequality which is

Q starting fromz at time0. By a standard result of stochastidr“lalri]d Wherg_z ~ 1'_'” t?e rest of tl'ls pape(rj, V‘:je shalldf?fcus
calculus [20],V (=) is a solution to the following second order®" the one-dimensional OETC problem and adopt a different

elliptic PDE onQ with boundary value: approach to prove the symmetry property of its solutions.

1\ 2’V
2 Zi,j:l (G(I)U(x)T)ij dw;0x; (x) B. One-Dimensional OETC Problem
n p) _
+3 i ui(@) 5 (@) +1=02€Q (2 Whenn = 1, the safe sef2 becomes an open interval
V(r)=0, €. (—a,a). The PDE (2) governing the expected exit tifvieis

Denote by (0 R") the set of all bounded measurablegeduced to the following ODE with boundary condition:

vector fields o). A feedback controk(z) is calledfeasible a2(x)V"(z) + 2u(z)V'(z) +2 =0, x€ (—a,a)
if u(x) € £°(2;R™). Our aim is to find a feasible control V(—a) = V(a) = 0. 3)
u(x) with a fixed cost that can lead to the largest average exit
time of X, from Q. For a given feedback control law(z) on The uniformly elliptic assumption is simply
Q, its total cost is defined as o(z) > 00, Vi € (—a,q).
J(u) & /Q [u(z)||*da, Remark 2:In the case of constant diffusion temz) = o,

o ) ) _ the ODE (3) has the explicit analytical solution:
while its effectiveness is measured by the performancexinde -
V(r) =203(x) / e2®) dg 4 2/ 2@ 3(x) da

W(u)é/ﬂx\(a:)w(‘/(x))d:c, P —a

2ﬁ(£€) ¢ 2a(x)
where ) is a nonnegative function oft; andw : R, — R, " B) /ﬂz " h(w) da,
is monotonically increasing oR; = [0, c0) with w(0) = 0.
For examplew(z) = z*,z > 0, for some positive integek. . .
Problem 1 (OETC Problem)F_ind the feedback co_ntrol alz) 2 %/ u(z)dz and B(z) & %/ o—20(@) g0
law u(x) € L£>(£2;R™) that achieves the large8¥ (u) with 7 Ja R
a costJ(u) < Jp for some positive constank. provided thatu is bounded or(—a, a).

From the observation that controls with larger cost have thetparefore. the 1-D OETC problem is equivalent to the
potential of achieving largeW (), an equivalent version of following var’iational problem

the above OETC problem can be for_mulated as follows. Problem 3 (1D OETC Problem)Find the optimal control
Problem 2 (Dual OETC Problem)Find the feedback con- . (—a,a) — R that
trol law u(z) € £>(Q;R™) with the least cost/(u) subject
to W(u) > Wy for some positive constaity > W (0). maximize TV (u) = /a Ao(V) ds
Note that even under zero controk= 0, it will still take the —a
state X; positive time to exit2 from inside(, i.e., W(0) > . @
0. Hence, the requiremeit/;, > W (0) in Problem 2( i)s to subject to J(u) = . u*dz < Jo and the ODE (3).
avoid the trivial solutioru = 0. Solving any one of the above By Lemma 1, the optimal expected exit time satisfles
two problems is equivalent to solving the other [15]. In théo?(z)V”(z) < 0, hence the following result.
rest of this paper, we may switch freely between these twoLemma 2:Let u € £>®(Q) £ L..(Q;R) be an optimal

a

where

3

formulations. solution to Problem 3, and 1&t be the solution to the ODE (3)
A necessary condition for the optimal solutions to the OET€orresponding ta.. ThenV is strictly concave o).
problem is given in the following lemma. Denote byV the set of all functiond” : (—a,a) — RT

Lemma 1 ([16]): Let u(x) be an optimal solution to the that are twice differentiable, strictly concave, and vhna
OETC problem, and leV (z) be the corresponding expected: = —a andxz = a. Let i be the set of feasible controls



u € L(Q) whose correspondinyy” functions belong tov.
By Lemma 2, the optimal solutions of Problem 3 must be
in Y. Thus, it suffices to only consider the controlstin(or
equivalently the expected exit time functionsiiiin studying
the 1-D OETC problem. Solving Problem 3 is nontrivial even
when the analytic solution to the ODE (3) is available.
In the rest of this paper, we will prove the following
symmetry property of the 1-D OETC problem. :
Theorem 1:Suppose that\(z) is an even function, i.e., —a x Xc
A(=z) = M), for z € (—a,a). Let V(z) be the expected
exit time of the process(; in equation (1) with the diffusion Fig 1. symmetrization of v
termo(z) > oo under a controli(x). Then there exists a skew

symmetric controli(x), i.e., i(—z) = —i(z), z € (—a,a),
with the same control cost ag J(a) = J(u), such that for at a unique pointr. € (—a,a) (see Figure 1). Denote the
the solution proces; to restrictions ofV on the two subinterval§—a, .| and [z, a]
dX; = u(X,)dt + oodB;, (4) as
e 5 . Vl:v‘[—aw]’ %:V[m al’
the expected exit tim& (x) of X; from (—a,a) starting from e o
z satisfiesWV (i) > W (u). ThenV; and 1V, are monotone functions with inverse
If o(z) = oo is constant, then_ equat_ion (4) is the same z1(p) = Vi Hp) € [—a, 2],
as (1). Hence we have the following main result. R
Corollary 1: SupposeX(z) is even ando(z) = og IS z2(p) =V (p) € [e, ], ¥p € [0, M].
constant. Then if solutions to the 1D OETC Problem 3 exidtor eacty € [0, M], the superlevel stV > p} is the interval
at least one solution is skew symmetric pAa, a). [z1(p), z2(p)] with the length (distribution function)

Remark 3:In [16, Corollary 9.4], it is shown that under
the additional assumption thit|| < M for a finite constant nv(p) = z2(p) = 21(p)- ©)
M, solutions to the OETC Problem exist. In general, howevefle can shift {V > p} to obtain a symmetric interval
solutions may not exist i.>° (Q; R). [—2vle) 1v(p)} centered at the origin. Defing* such that

its superlevel sefV* > p} is exactly[—“VT(”), “VT(”)]:
[1l. SYMMETRIZATION OF V (z)

o : Vi =uv(p)/2l =V (v (p)/2] = p, Vpe[0,M]. (6)
Symmetrization is an operation that can transform an arbi- e . o o
trary function to a symmetric one. Symmetrization of gehera The definition ofV* in (6) is in terms ofp. To find its ex-
functions on multi-dimensional domains is discussed imitiet Pression in terms of, we note that sinc&’ is continuous and
in [18], [19]. In this section, we shall use this method t&Oncave, its distribution functiopy (p) must be continuous
transform the expected exit time functién : (—a,a) — R and strictly decreasing ip, and has the property

to a symmetric functionV’* : (—a,a) — R and derive pv(0) = |9 =24, py (M) =0.
some important connections betwegifr) and V*(x) that . . o _
are useful in proving Theorem 1. Denote byy;,' the inverse function ofi, which is a strictly

Let V be an arbitrary function inV. Then, V must be decreasing function that mags,2a] to [0,M]. Let r =
continuous and strictly concave &b = (—a,a), and vanish £v(p)/2, or equivalently,p = u;' (2r). Thenr takes values
on the boundary of). Let M = max{V(z) : = € Q}. For in the range0, a}; and the definition (6) becomes
each valug in the rang€0, M] of V, denote by{V > p} £ VA (=r) = V*(r) = 55t (2r), Vre[0,a]. @)

{z € Q: V(z) > p} the p-superlevel sebf V.

Definition 1 (Distribution Function [17]):Let f : Q — Obviously,V* thus constructed is the symmetrization 10f
[0, M] be a Lebesgue measurable function. The distributidr®r simplicity, in the rest of this paper, we shall drop the
function of f, denoted byu; : [0, M] — R*, is defined as subscript and usg(-) to denote the distribution function of

N V' (or equivalently the distribution function af*).
nr(p) = [{f = pH, Vpel0,M], Some useful properties of symmetrization are summarized
Qtthe following lemma.
Lemma 3 ([19]): For an arbitrary concave continuous func-

Definition 2 (Symmetrization df): The function v* : ton V defined on the domaifl = (—a,a), let V* be its
(—a,a) — [0,M] is called the(Schwarz) symmetrizatioof symmetrization defined _Oﬂ' Then
Vif V*(z) = V*(~2), Yz € (—a,a), and py (p) = py-(p), 1) V andV* are equi-measurable, namelyV > p}| =
Vp € [0, M]. [{V* = p}| for any p. _

We now use this definition to derive the symmetrized 2) For any Lebesgue measurable functionR; — R,
function V*. Since V is strictly concave on(—a,a) and
V(a) = V(—a) = 0, V achieves its maximum valu@/

where [{f > p}| denotes the Lebesgue measure of the d

{f>p}

o[V]de = | ¢[V*]da.
Q Q



3) (Hardy-Littlewood) Let W be another function o According to the definition of/* in (7), eachp € [0, M]

andW* be its symmetrization. Then corresponds to an= u(p)/2 such thal’*(r) = V*(—r) =p
(see Figure 1). Thus, the infinitesimal bad@s< V' < p+dp}
/Vde < / VW™ du. (8) corresponds to the union of two intervatstdr, r|U[—r, —r—

Q Q

dr]. We define the symmetric contrélso that its cost on this
union is the same as the cost @fon the band{p < V <

p+ dp}, namely,Q(p)dp. Specifically,
This section is devoted to proving Theorem 1. Our strategy 4 (°)

IV. PROOF OFMAIN RESULT

" N 1 d
is to show that for an grbnrary cont(r);e] € U, there alwgys a(r) = —a(=r) 2 =/ 2Q(V*(r)) - ap
exists a (skew) symmetric contrale £>°()) that can achieve 2 dr
a no worse performance with the same cost, & (u) > QU ()2 0 11
W (u) and J(u) = J(). The proof is divided into two parts. TR €[0,a]. (11)

In the first part, we shall use the symmetrizatiofigfnamely,
V*, to construct a symmetri¢ € L, (£2) for which J(u) =
J(@). Then in the second part we will prove that thisalso
satisfies thal?’ (i) > W (u).

Lemma 5: The symmetric controli defined above has the
same cost as the original contre] namely, J(4) = J(u).
Moreover, for anyr € [0, a],

r M
/@(HC)d%Z—1 Q)2 ()2 dn.  (12)

2V*r

, , 0
A. Construction of t-he Symmetric Contiel ) Proof: For the first claim, by the symmetry af, we
Let V' be a solution to the ODE (3) corresponding to apgye

arbitrary controls € U. Our goal is to find a skew symmetric a a ( *(r))
function & € £°°(Q) such thatJ(u) = J(4) and W(a) > /u dx = 2/ W (r)dr = 2/ ” dr.

W (u). Notice thatJ and W are respectively functionals of Q 0 i (V= ()]

the functions, andV related by the ODE (3). It is convenientNote that by (7),V*(r) = p=*(2r) for r € [0,a]; hence
to write both of them in terms of’. From (3) and Lemma 1, u(V*(r)) = 2r. Taking the derivative yields

we haveu = |1+ 102V"|/V’ wheneverlV’ # 0. Using the d

same notations as in the last section, we know Wat:) = 0 WV (r)) - Vi) = 2. (13)

only whenz = z.. Therefore, the cost functiondl can also

be written as: Thus, by a change of variable= V*(r), we have

e d
Te 1_|_l 2vl/2 a1+l 2vl/2 ~2 - _ * il Ve
J(u):/ |1+ 50°V"| d:c—i—/ 14 502V . Qu dx ; Q(V*(r)) drv (r)dr
—a [V'? . V2 v
e (a) M
To defined, recall thatV andV* are related through their = —/ Q(p)dp = Q(p)dp = / u? de,
superlevel sets. For eaghe [0, M], letz (p), 22(p) andpu(p) v 0 &

be the same as in the last section. Silitces strictly concave, Where the last step follows from Lemma 4. .
2 (p) > 0 andz}(p) < 0 for p € [0, M). The derivative of ~ To prove the second claim, perform a change of variables

u(p) with respect top is n = V*(x), or equivalentlyz = ( )/2, to obtain
!/ / / / / ( 1/2
W (p) = 75(p) = 74 (p) = (7 ()] +[23())- (9) / e / T
o
Define M 1/2 ,
J F— f/ ; E"))Wg —; )4
Qlp) & —— u?der = —— u?dz.  (10) vy W
dp > dp M
{Vzp} z1(p) _ _1 Q( )1/2| /( )|1/2d
Intuitively, Q(p)dp is the part of the control cost/(u) 2 Ve (r) g w7 -
concentrated within the infinitesimal banfls < V' < p+dp} -
sandwiched between the level s¢ts = p} and{V = p+dp}. The following lemma shows that the symmetric contiol
Summing over all such bands, we have is feasible, namely, bounded.
Lemma 4:The function@ defined in (10) satisfies Lemma 6:The symmetric controli defined in (11) is
M feasible, i.e.u € L>(Q).
Q(p)dp = / u? du. Proof: By (11), it suffices to show tha®(p)/|/(p)| is
Proof: By the definition OfQ?p)' we have bounded on(0, M]. Sinceu € L>(Q), there exists & < oo

y y such thatsup,cq u(xz) = K. By (10) and (9), for each €
d (0, M), we have
o= [ ([ ) a
0 / dp /{v>p} Qlp) _ wP(x1(p)wi(p) — u?(x2(p))7h(p)
|

(p
:/ u? dI—/ u?de = / u? dz, el [21(p)| + [ ()]
{v>0} {(v>M} Q _u?(@1(p))|71 (p)] + u*(z2(p))|75(p)] < K2
which is the desired result. m |21 ()| + [25(p)] -



Taking the limit, the above is also true at= M. Hence Proof: (i) By (16), for p € (0, M), we have

u < K onf. u Nt 2 o 2 7
To sum up, for each candidate contiok ¢/, we can find Plo) = [V!(@1(p)) 21 (p) = [V'(w2(p))F22(p)

a feasible symmetric contral € £°°(Q) for which J(u) = = /1 /1 ) a7)

J(@). In the next subsection, we will show that thisalso [z (p)] [z (p)]

satisfiesiW (a) > W (u). Here the last step follows sincE(z;(p)) = p implies that
V'(zi(p))xi(p) = 1 for i = 1,2. Equivalently,

B. Comparison Theorem P(p) =V'(z1(p)) — V'(z2(p)). (18)

With the symmetric control;, let V be the corresponding Thus, by the Cauchy-Schwarz inequality,
expected exit time of the solution process to equation (1)

with the diffusion term given by (-) = oy. ThenV is the P(p)|i(p)| = (% + %) (12 (p)| + |x5(p)])
symmetric (i.e., even) solution to the ODE 123 (p)| |25 (p)
V(@) + 20()V' () +2 =0,z € (~a.0) 2l
z) + 2u(x z)+2=0, ze€(—a,a
°0 - -’ (14) (i) As p — M, /(p) = 1/V'(xi(p)) — oo for i = 1,2; thus
V(a) =V (—a) =0. i
P(p) — 0.

Our goal is show thatW( ) > W(u), namely, (i) The ODE (3) implies thaV’ = —(1 + 30*V"). Since
Jo w(V)dz > [, dw(V). This is a direct consequence ofr = oo by the uniformly elliptic assumption and” < 0 as
the foIIowmg more generadompanson theorerof ODEs. V € Vis strictly concave, we haveV’ > —(1 + 1o3V").

Theorem 2 (Comparison Theorem)et V be the solutions Hence, forp € (0, M) and smallAp > 0, denote the set
to the ODE (3) corresponding to an arbitrary contiot ¢, {p <V <p+Ap} = {xeQ:p<V(z)<p+ Ap}. Then,

andV be the solution to the ODE (14) corresponding to the , .
symmetric controli in (11). Then / uV'dzx 2—/ ( 300V ) du
{p<V <ptAp} {p<V <p+Ap}
V(z) > V*(x), Vz€|—a,al, z2(p+Ap) 1 z2(p)
(¢) > V*(@), Vo€l-azd -/ <1+ GOV,,> w- | <1 . UOV,,) i
) 2 z1(p)

whereV* is the symmetrization of’. )
We first demonstrate how to use this comparison theoremto,,(, 1 A ) — _Uop(p + Ap) — pu(p) + =02 P(p),
prove our main result Theorem 1. The proof of the comparison 2
theorem will be given afterward. where in the last step we have used (18). On the other hand,
Proof: [Theorem 1] By Theorem 2, given any contiok by the Cauchy-Schwarz inequality,
U and its corresponding expected exit tifieon €2, we can

1/2 1/2
find a symmetric control € £>°(2) with the same cost as / w2 dx / V|2 da
whose corresponding expected exit tifiefor the process (1) {p<V<ptAp} {p<V<ptAp}

with a constant diffusion termy, satisfiesV (z) > V*(x) for ,
all z € Q. Thus, = / uV dz.
{p<V <ptAp}
W(a) = / A2 w(V (z)) de > / Az)w(V*(z)) da Combining the above two inequalities, we have
QO Q 1/2 1/2
> / AMx)w(V (z))de = W (u). (15) / u? dx / |V'|2 da
Q {p<V <p+Ap} {p<V<p+Ap}

Note that the first inequality above follows from the compar- Ap) — 1, A
ison theorem and the monotonicity af(:); and the second — lalp + Ap) = ()] 200[ (p+24p) = Plp)]
inequality follows from the Hardy-Littlewood inequalitysa The desired property (iii) is then obtained by dividing both

A* = X and [w(V)]* = w(V*). As a result, the feasible sides byAp and taking the limitAp — 0. |
symmetrica has the same cost and no worse performanceThe above lemma can be used to prove an important
thanu, which proves Theorem 1. B inequality as described in the following lemma.

In the rest of this section, we will prove the comparison Lemma 8:For eachp € (0, M), the following inequality
theorem through a series of lemmas regarding the solutibalds:
V(z) to the ODE (3), i.e., the expected exit time of process (1) o2 oS T QUM 2 ()2 dn
with the diffusion termo(x).

Lemma 7:For eachp € (0, M), the functionP(p) defined W (p)e” I og Q)2 W (]2 dn dp < 2 . (19)
as N
g e Proof: By properties (i) and (iii) of Lemma 7, we have
P(p) & —— |V’ dx (16) o2 1
dp S (p) W (p) <P (p) +Q(p) PP (p) /2 - S P(p) (1 ()]

satisies that: (W (1)1 (o)| > 4 () P(p) — 0 asp — M; I O S,
(i) Q(p ) P(p )% 1 (p) — UTOP/(p). D) P'(p) + 2@(/)) W (p)|7=P(p).



By the Gronwall inequality and the fact th&(M) = 0, the Here, we adopt a dual formulation (see Problem 2) of the
above differential inequality implies that fere (0, M), OETC problem to minimize the control energj(u) =
[*, u?dx subject to the constraiit/ (u) = V(0) > T for
some constanf” > W(0). In other words, we want to find
. /M Ve IM 32 Q)M ! ()2 dny dp. (20) the cpntrol with the least energy so thgt the expected emd ti
P starting from the center dR = (—a,a), is no smaller thalT.
Y _ _ _ Whenwu = 0, the solution to the ODE (3) can be easily found
Note that["" o *Q(n)"/2| ' ()[*/? dn in (20) is well defined to be V(x) = —a? + a. Therefore, the constafit should be
as bothQ(p) and|u'(p)| are integrable. Since by Lemma 7 chosen larger thafi’ (0) = a2 to avoid a trivial solution.
P(p) > 4/l (p)| = —4/p'(p) for p € [0,M), (20) then By Theorem 1, the optimal contral is odd on(, and its
implies (19). B corresponding’ is even or2. Hence,V'(0) = 0, and.J (u) =
We are now ready to prove the comparison theorem. 2 [° 42 4z, Sinceo(-) = 1, by focusing on the subinterval
Proof: [Comparison Theorem] Sinc& is symmetric [—a,0], V satisfies the ODE
(even) and differentiable, we know that’(0) = 0. By
focusing on the positive half of the domaty the ODE (14) V" (2) +2u(z)V'(z) +2=0, V'(0)=0, V(-a)=0.
Is equivalent to Define the state variables () = V(z) andys(z) = V' (=),
ggf/”(r) + Qﬁ(r)f//(r) +2=0, rel0a, 01 for x € [—a,Q]. Then the above problem is equivalent to the
V/(0) =0, V(a) = 0. (21) following optimal control problem:

P(p) < —200—2@pr oo 2QmM 2| ()2 dn

0
Multiplying (21) by o; 2¢2/ 0 “@(x)dz gnd integrating from minimize/ u? da
0 tor, we have —a
. r . - Y1 = Y2,
2 /o o5 talw) A7 () = _200—2/ 2 o5 (@) do dr, subject to{y} _ —22u Ly Vz € [—a,0], (23)
0 g2 Y2 )
for € [0,a]. Hence, by (12), yi(—a) =0, y1(0) =T, y2(0) = 0.
f/’(r) _ —20526‘%(” o 2Q(mY2 1w ()% dn Define the Hamiltonian
. /T o Sy 02U 2l )2 g H = u? + My + Ao(=2uys — 2).
0 By the Maximum Principle, the following costate equations
A change of variablep = V*(r), i.e.,r = u(p)/2, in the can be obtained:
integral on the right hand side leads to OH OH
M —2 172, 1/2 /\/1 =5 =Y /\/2:__ =2udg — Ay, (24)
V/(,r.) — O.O_erv*(r) o) Q(n) \,u (77)| dn ayl 8y2

M M 2 a2 with the boundary conditiona,(—a) = 0, and the optimal
/ ()N/(P)e I oo QU E = dn controlu is determined by
V*(r
OH
< s w0 (22) T =D =0 > u=lgp  (25)
1% T T

Note that)\; is constant, and witl given in (25), the resulting

for r € (0,a). Here we have used (19) with replaced by Hamiltonian 2 should also be constant:

V*(r), and (13). AsV(a) = V*(a) = 0, (22) then implies
that 2X2 — A\y2 + )\gyz =C.

V(z)=V(a) _/ V'(r)dr > V*(a) _/ div*(r) dr  Solving for A2, and plugging the resulting, and in (25)
x x r

into the state equation (23), we have

vh=—2/1+13 (M y2+C) = =2/ 14 Mgl —ya(~a),

with ~ 42(0) = 0. (26)

=V*(z), VYzel0,a]

By the symmetry ofi/ () andV*(z), it follows thatV (z) >
V*(x) for all x € [—a,al. [
Hence, the dynamics qf: depends on the unknown param-
eters\; andys(—a), but is decoupled from the dynamics of
We next present an example for which the result in Corok,. Integrating fromz = —a to z = 0, we obtain the first
lary 1 can help to find the analytic solution to the 1-D OET@onstraint on\; and yo(—a):
problem. In this example, we assume th&f) = 1 is constant,

A(+) is the Kronecker delta functiod(-), and w(-) is the U\, y2(—a)) 2

V. EXAMPLE

y2(—a) dys
identity function. Then, by the property of the delta funatj _/0 V1I+My3[y2 — y2(—a)]
the performance index becomes

= 2a.

Another constraint is thag; (0) = T, i.e., ffa yodr = T. It

W) = | Ma)w(V(z)de = [ §(z)V(z)dz = V(0). can be verified that these two constraints uniquely detegmin
. . 2
Q Q the pair of parameters; < 0 andyz(—a) > 2a if T > a°.



2
1
=60 /\/
1 :
=1 -0.5 0 0.5 1
X
2 [1
JE
! [2
9 ~05 0 05 1
X
2 3]
1
5o
-1 [4]
= 0.5 0 0.5 1
X
4,
(5]
3
E
. [6]
o 0.5 0 05 1 [7]
X
4,
2 ‘ (8]
=X
N [0
-4
-1 ~0.5 0 05 1
x [10]
: 1
>
2
-1 ~0.5 0 0.5 1 (12]
X

Fig. 2. Plots of optimalu(z) and V(z) whena = 1, with T = 2 (left),  [13]

T = 3 (middle), andT’ = 6 (right).
[14]

Having determined; andyz(—a), the stateys(x), and hence
V(z) = y1(x), can be found by integrating (26) overa, 0],
which are properly defined elliptic integral functions aheit
inverses.

Figure 2 plots the optimal:(z) and V(z) computed as
above whena = 1 for T = 1, 3, 6 respectively. The left
column is the optimak(z) andV(z) for T' = 1, the middle
column for T = 3, and the right column fofl = 6. As [17]
expected, ag’ increases, the optimal feedback control layig
u(x) becomes more aggressive. An interesting fact is that the
optimalw is nearly zero around the center of the interval, whilg®!
much of the effort is spent roughly midway between the centgg,
and the boundary.

[15]

[16]

[21]
VI. CONCLUSION

This paper studies the 1-D OETC problem. A comparison
theorem is established that compares the solutions to two
ODEs arising in the 1-D OETC problem, one with an ar-
bitrary control and the other with a symmetric control. The
symmetry of solutions to the 1-D OETC problem is proved
using the comparison theorem. This together with our previo

results completely establishes the radial symmetry pigdr
the solutions to the OETC problem with an arbitrary state
dimension.
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