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Abstract— The optimal exit time control (OETC) problem tries
to find the feedback control law with a reasonable cost that
can keep the system state inside a certain subset of the state
space, called the safe set, for the longest time under random
perturbations. The symmetry property of its solutions has been
proved previously when the state dimension is higher than one.
However, the proof does not apply in the one dimensional (1-
D) case. In this note, a comparison theorem is established that
compares the solutions to two ODEs arising in the 1-D OETC
problem, one with an arbitrary control and the other with a
symmetric control. The symmetry of solutions to the 1-D OETC
problem is proved using this comparison theorem. An example
is presented to show how the symmetry result can help to solve
the OETC problem analytically in certain cases.

I. INTRODUCTION

Safety is a critical issue in many engineering problems,
such as intelligent transportation systems [1], [2], control of
Unmanned Aerial Vehicles (UAV) [3], chemical processes, etc.
In these applications, the system state is typically required to
stay inside a certain subset of the state space called thesafe
set. Whenever the system state gets outside the safe set, some
costly procedure must be invoked to bring the system back
to safety. Safety of deterministic systems is relatively easy
to maintain by properly designed feedback control strategies.
However, practical systems are often perturbed by random
noises, which may steer the state outside the safe set despite
the control efforts. A common approach to the probabilistic
safety problem is through the probabilistic reachability anal-
ysis [4]. This approach analyzes and/or designs the control
based on the safety probability, i.e., the probability thatthe
system state stays inside the safe set over a certain time
horizon. However, the computation of the safety probability
for general stochastic systems is rather challenging, especially
in high-dimensional state spaces. An alternative approachis
to measure the system safety by certain aggregate quantities
that are relatively easy to compute, such as the expectation
of the first exit time of the system state from the safe set.
The problem of designing a control law to maximize the
expectation of the exit time is called theoptimal exit time
control (OETC) problem, and is the focus of this paper.

The general stochastic optimal control problems have been
well studied in the literature [5], [6]. In particular, the stochas-
tic optimal exit time control problems [7], [8], [9] try to
minimize the expected integral of a running cost functional
L(t, Xt, u) along a controlled Markov processXt with control
u constrained by a feasible setC, up to the first timeτ
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that Xt exits from a given domainΩ. Using the dynamic
programming approach, the value functions are shown to be
the viscosity solution to the Hamilton-Jacobi-Bellman equa-
tions [10], [11], [12]. The OETC problem studied in this
paper, however, is different from these studies in that, although
the simplified running costL ≡ 1 is considered, the control
u is constrained through its aggregation

∫

Ω
‖u‖2 dx instead

of pointwise on Ω. As a result, optimal solution can no
longer be characterized by dynamic programming method.
More importantly, our objective is not the local properties
of optimal solutions (e.g., the characterizing PDEs), but the
more challenging global properties such as their symmetry on
symmetric domains, which can significantly reduce solution
complexity. The OETC problem was first proposed in [13]
and later extended to the general setting of stochastic hybrid
systems in [14]. The symmetry property of optimal solutions
has been proved in [15], [16] when the state dimensionn ≥ 2.
However, whenn = 1, certain multi-dimensional concepts
such as surface and volume, and some key results used in the
proof of [15], [16] such as the isoperimetric inequality, are not
applicable.

In this paper, we propose a proof of the symmetry property
of the solutions to the 1-D OETC problem. Compared with the
direct method in the multidimensional proof in [15], [16], our
proof of the 1-D case is based upon a key comparison theorem
comparing the solutions to two second-order ODEs arising in
the 1-D OETC problem, which has its own value in the general
study of ODEs. Using the comparison theorem, we show
that the solutions to the 1-D OETC problem are symmetric.
This, together with the results in [15], [16], completely estab-
lishes the symmetry property of the solutions to the OETC
problem with an arbitrary state dimension. Our proof makes
essential use of the symmetrization operation [17], which can
transform an arbitrary function to a symmetric one while
preserving certain properties. The symmetrization methodhas
been widely used in the literature for proving the symmetry
of solutions to certain PDEs or PDE-constrained variational
problems [18], [19]. Its applications to control problems,
however, are still rare. Therefore, this paper also represents
an important application of the symmetrization method in the
study the stochastic optimal control problems.

The rest of the paper is organized as follows. In section II,
the OETC problem is formulated. The symmetrization method
is briefly reviewed in Section III and then used to prove the
comparison theorem and the symmetry property in Section IV.
An example is worked out in details in Section V to illustrate
the application of the symmetry property in solving the OETC
problem. Finally, some concluding remarks are given in Sec-
tion VI.

II. OPTIMAL EXIT TIME CONTROL PROBLEM

A. General OETC Problem

Consider a general dynamical system whose stateXt ∈
R

n is required to reside inside a bounded open connected
domainΩ of R

n called the safe set. To keepXt insideΩ under
the presence of random perturbations, a bounded measurable
state feedback control lawu : Ω → R

n is typically adopted.



The corresponding state dynamics can then be modeled by the
following stochastic differential equation (SDE):

dXt = u(Xt)dt + σ(Xt)dBt. (1)

Here, Bt is an n-dimensional Brownian motion, and the
diffusion termσ : Ω → R

n×n satisfies theuniformly elliptic
condition on Ω: σ(x)σ(x)T � σ2

0In, ∀x ∈ Ω, for some
σ0 > 0.

Define τ , inf{t ≥ 0 : Xt /∈ Ω} as the (first) exit time
of Xt from Ω. Its expected value, under the initial condition
X0 = x ∈ Ω, is denoted by

V (x) , E[τ |X0 = x].

Thus,V (x) is the expected exit time ofXt from the safe set
Ω starting fromx at time0. By a standard result of stochastic
calculus [20],V (x) is a solution to the following second order
elliptic PDE onΩ with boundary value:










1
2

∑n
i,j=1

(

σ(x)σ(x)T
)

ij
∂2V

∂xi∂xj
(x)

+
∑n

i=1 ui(x) ∂V
∂xi

(x) + 1 = 0, x ∈ Ω

V (x) = 0, x ∈ ∂Ω.

(2)

Denote byL∞(Ω; Rn) the set of all bounded measurable
vector fields onΩ. A feedback controlu(x) is calledfeasible
if u(x) ∈ L∞(Ω; Rn). Our aim is to find a feasible control
u(x) with a fixed cost that can lead to the largest average exit
time of Xt from Ω. For a given feedback control lawu(x) on
Ω, its total cost is defined as

J(u) ,

∫

Ω

‖u(x)‖2dx,

while its effectiveness is measured by the performance index

W (u) ,

∫

Ω

λ(x)w(V (x))dx,

whereλ is a nonnegative function onΩ; andw : R+ → R+

is monotonically increasing onR+ = [0,∞) with w(0) = 0.
For example,w(x) = xk, x ≥ 0, for some positive integerk.

Problem 1 (OETC Problem):Find the feedback control
law u(x) ∈ L∞(Ω; Rn) that achieves the largestW (u) with
a costJ(u) ≤ J0 for some positive constantJ0.

From the observation that controls with larger cost have the
potential of achieving largerW (u), an equivalent version of
the above OETC problem can be formulated as follows.

Problem 2 (Dual OETC Problem):Find the feedback con-
trol law u(x) ∈ L∞(Ω; Rn) with the least costJ(u) subject
to W (u) ≥ W0 for some positive constantW0 ≥ W (0).

Note that even under zero controlu ≡ 0, it will still take the
stateXt positive time to exitΩ from insideΩ, i.e., W (0) >
0. Hence, the requirementW0 ≥ W (0) in Problem 2 is to
avoid the trivial solutionu ≡ 0. Solving any one of the above
two problems is equivalent to solving the other [15]. In the
rest of this paper, we may switch freely between these two
formulations.

A necessary condition for the optimal solutions to the OETC
problem is given in the following lemma.

Lemma 1 ([16]): Let u(x) be an optimal solution to the
OETC problem, and letV (x) be the corresponding expected

exit time, i.e., the solution to equation (2). ThenV is positive
on Ω and vanishes on∂Ω. Furthermore, it satisfies1 +
1
2

∑n
i,j=1

(

σ(x)σ(x)T
)

ij
∂2V

∂xi∂xj
(x) ≤ 0 almost everywhere on

Ω.
Remark 1:The positiveness ofV on Ω follows imme-

diately from its definition. By (2), the condition that1 +
1
2

∑n
i,j=1

(

σ(x)σ(x)T
)

ij
∂2V

∂xi∂xj
(x) ≤ 0 is equivalent tou ·

∇V ≥ 0, i.e., the optimal control should always point toward
the direction along which the expected exit timeV increases
the fastest, an intuitively obvious conclusion.

It has been proved in [15] that the functionV (x) cor-
responding to the optimal control on a radially symmetric
domain is radially symmetric when the state dimensionn ≥ 2.
The proof makes use of the isoperimetric inequality which is
invalid whenn = 1. In the rest of this paper, we shall focus
on the one-dimensional OETC problem and adopt a different
approach to prove the symmetry property of its solutions.

B. One-Dimensional OETC Problem

When n = 1, the safe setΩ becomes an open interval
(−a, a). The PDE (2) governing the expected exit timeV is
reduced to the following ODE with boundary condition:
{

σ2(x)V ′′(x) + 2u(x)V ′(x) + 2 = 0, x ∈ (−a, a)

V (−a) = V (a) = 0.
(3)

The uniformly elliptic assumption is simply

σ(x) ≥ σ0, ∀x ∈ (−a, a).

Remark 2: In the case of constant diffusion termσ(x) ≡ σ,
the ODE (3) has the explicit analytical solution:

V (x) =2β(x)

∫ a

x

e2α(x) dx + 2

∫ x

−a

e2α(x)β(x) dx

−
2β(x)

β(a)

∫ a

−a

e2α(x)β(x) dx,

where

α(x) , 1
σ2

∫ x

−a

u(x) dx andβ(x) , 1
σ2

∫ x

−a

e−2α(x) dx,

provided thatu is bounded on(−a, a).
Therefore, the 1-D OETC problem is equivalent to the

following variational problem.
Problem 3 (1D OETC Problem):Find the optimal control

u : (−a, a) → R that

maximize W (u) =

∫ a

−a

λw(V ) dx

subject to J(u) =

∫ a

−a

u2 dx ≤ J0 and the ODE (3).

By Lemma 1, the optimal expected exit time satisfies1 +
1
2σ2(x)V ′′(x) ≤ 0, hence the following result.

Lemma 2:Let u ∈ L∞(Ω) , L∞(Ω; R) be an optimal
solution to Problem 3, and letV be the solution to the ODE (3)
corresponding tou. ThenV is strictly concave onΩ.

Denote byV the set of all functionsV : (−a, a) → R
+

that are twice differentiable, strictly concave, and vanish at
x = −a and x = a. Let U be the set of feasible controls



u ∈ L∞(Ω) whose correspondingV functions belong toV .
By Lemma 2, the optimal solutions of Problem 3 must be
in U . Thus, it suffices to only consider the controls inU (or
equivalently the expected exit time functions inV) in studying
the 1-D OETC problem. Solving Problem 3 is nontrivial even
when the analytic solution to the ODE (3) is available.

In the rest of this paper, we will prove the following
symmetry property of the 1-D OETC problem.

Theorem 1:Suppose thatλ(x) is an even function, i.e.,
λ(−x) = λ(x), for x ∈ (−a, a). Let V (x) be the expected
exit time of the processXt in equation (1) with the diffusion
termσ(x) ≥ σ0 under a controlu(x). Then there exists a skew
symmetric control̂u(x), i.e., û(−x) = −û(x), x ∈ (−a, a),
with the same control cost asu, J(û) = J(u), such that for
the solution procesŝXt to

dX̂t = u(X̂t)dt + σ0dBt, (4)

the expected exit timêV (x) of X̂t from (−a, a) starting from
x satisfiesW (û) ≥ W (u).

If σ(x) ≡ σ0 is constant, then equation (4) is the same
as (1). Hence we have the following main result.

Corollary 1: Supposeλ(x) is even andσ(x) ≡ σ0 is
constant. Then if solutions to the 1D OETC Problem 3 exist,
at least one solution is skew symmetric on(−a, a).

Remark 3: In [16, Corollary 9.4], it is shown that under
the additional assumption that‖u‖ ≤ M for a finite constant
M , solutions to the OETC Problem exist. In general, however,
solutions may not exist inL∞(Ω; R).

III. SYMMETRIZATION OF V (x)

Symmetrization is an operation that can transform an arbi-
trary function to a symmetric one. Symmetrization of general
functions on multi-dimensional domains is discussed in details
in [18], [19]. In this section, we shall use this method to
transform the expected exit time functionV : (−a, a) → R

to a symmetric functionV ∗ : (−a, a) → R and derive
some important connections betweenV (x) and V ∗(x) that
are useful in proving Theorem 1.

Let V be an arbitrary function inV . Then, V must be
continuous and strictly concave onΩ = (−a, a), and vanish
on the boundary ofΩ. Let M = max{V (x) : x ∈ Ω}. For
each valueρ in the range[0, M ] of V , denote by{V > ρ} ,

{x ∈ Ω : V (x) ≥ ρ} the ρ-superlevel setof V .
Definition 1 (Distribution Function [17]):Let f : Ω →

[0, M ] be a Lebesgue measurable function. The distribution
function of f , denoted byµf : [0, M ] → R

+, is defined as

µf (ρ) , |{f ≥ ρ}|, ∀ρ ∈ [0, M ],

where |{f ≥ ρ}| denotes the Lebesgue measure of the set
{f ≥ ρ}.

Definition 2 (Symmetrization ofV ): The function V ∗ :
(−a, a) → [0, M ] is called the(Schwarz) symmetrizationof
V if V ∗(x) = V ∗(−x), ∀x ∈ (−a, a), andµV (ρ) = µV ∗(ρ),
∀ρ ∈ [0, M ].

We now use this definition to derive the symmetrized
function V ∗. Since V is strictly concave on(−a, a) and
V (a) = V (−a) = 0, V achieves its maximum valueM

M
( )V x * ( )V x

ρ

M

ρ

a− a1x 2x r− ra− a

( )Vµ ρ ( )Vµ ρ

cx

Fig. 1. Symmetrization of V

at a unique pointxc ∈ (−a, a) (see Figure 1). Denote the
restrictions ofV on the two subintervals[−a, xc] and [xc, a]
as

V1 = V
∣

∣

[−a,xc]
, V2 = V

∣

∣

[xc,a]
.

ThenV1 andV2 are monotone functions with inverse

x1(ρ) = V −1
1 (ρ) ∈ [−a, xc],

x2(ρ) = V −1
2 (ρ) ∈ [xc, a], ∀ρ ∈ [0, M ].

For eachρ ∈ [0, M ], the superlevel set{V ≥ ρ} is the interval
[x1(ρ), x2(ρ)] with the length (distribution function)

µV (ρ) = x2(ρ) − x1(ρ). (5)

We can shift {V ≥ ρ} to obtain a symmetric interval
[−µV (ρ)

2 , µV (ρ)
2 ] centered at the origin. DefineV ∗ such that

its superlevel set{V ∗ ≥ ρ} is exactly[−µV (ρ)
2 , µV (ρ)

2 ]:

V ∗ [−µV (ρ)/2] = V ∗ [µV (ρ)/2] = ρ, ∀ρ ∈ [0, M ]. (6)

The definition ofV ∗ in (6) is in terms ofρ. To find its ex-
pression in terms ofx, we note that sinceV is continuous and
concave, its distribution functionµV (ρ) must be continuous
and strictly decreasing inρ, and has the property

µV (0) = |Ω| = 2a, µV (M) = 0.

Denote byµ−1
V the inverse function ofµV , which is a strictly

decreasing function that maps[0, 2a] to [0, M ]. Let r =
µV (ρ)/2, or equivalently,ρ = µ−1

V (2r). Thenr takes values
in the range[0, a]; and the definition (6) becomes

V ∗(−r) = V ∗(r) = µ−1
V (2r), ∀r ∈ [0, a]. (7)

Obviously,V ∗ thus constructed is the symmetrization ofV .
For simplicity, in the rest of this paper, we shall drop the
subscript and useµ(·) to denote the distribution function of
V (or equivalently the distribution function ofV ∗).

Some useful properties of symmetrization are summarized
in the following lemma.

Lemma 3 ([19]): For an arbitrary concave continuous func-
tion V defined on the domainΩ = (−a, a), let V ∗ be its
symmetrization defined onΩ. Then

1) V and V ∗ are equi-measurable, namely,|{V ≥ ρ}| =
|{V ∗ ≥ ρ}| for any ρ.

2) For any Lebesgue measurable functionφ : R+ → R+,
∫

Ω

φ[V ]dx =

∫

Ω

φ[V ∗]dx.



3) (Hardy-Littlewood) Let W be another function onΩ
andW ∗ be its symmetrization. Then

∫

Ω

V W dx ≤

∫

Ω

V ∗W ∗ dx. (8)

IV. PROOF OFMAIN RESULT

This section is devoted to proving Theorem 1. Our strategy
is to show that for an arbitrary controlu ∈ U , there always
exists a (skew) symmetric controlû ∈ L∞(Ω) that can achieve
a no worse performance with the same cost, i.e.,W (û) ≥
W (u) andJ(u) = J(û). The proof is divided into two parts.
In the first part, we shall use the symmetrization ofV , namely,
V ∗, to construct a symmetriĉu ∈ L∞(Ω) for which J(u) =
J(û). Then in the second part we will prove that thisû also
satisfies thatW (û) ≥ W (u).

A. Construction of the Symmetric Controlû

Let V be a solution to the ODE (3) corresponding to an
arbitrary controlu ∈ U . Our goal is to find a skew symmetric
function û ∈ L∞(Ω) such thatJ(u) = J(û) and W (û) ≥
W (u). Notice thatJ and W are respectively functionals of
the functionsu andV related by the ODE (3). It is convenient
to write both of them in terms ofV . From (3) and Lemma 1,
we haveu = |1 + 1

2σ2V ′′|/V ′ wheneverV ′ 6= 0. Using the
same notations as in the last section, we know thatV ′(x) = 0
only whenx = xc. Therefore, the cost functionalJ can also
be written as:

J(u) =

∫ xc

−a

|1 + 1
2σ2V ′′|2

|V ′|2
dx +

∫ a

xc

|1 + 1
2σ2V ′′|2

|V ′|2
dx.

To defineû, recall thatV andV ∗ are related through their
superlevel sets. For eachρ ∈ [0, M ], let x1(ρ), x2(ρ) andµ(ρ)
be the same as in the last section. SinceV is strictly concave,
x′

1(ρ) > 0 and x′
2(ρ) < 0 for ρ ∈ [0, M). The derivative of

µ(ρ) with respect toρ is

µ′(ρ) = x′
2(ρ) − x′

1(ρ) = −(|x′
1(ρ)| + |x′

2(ρ)|). (9)

Define

Q(ρ) , −
d

dρ

∫

{V ≥ρ}

u2 dx = −
d

dρ

∫ x2(ρ)

x1(ρ)

u2 dx. (10)

Intuitively, Q(ρ) dρ is the part of the control costJ(u)
concentrated within the infinitesimal bands{ρ ≤ V ≤ ρ+dρ}
sandwiched between the level sets{V = ρ} and{V = ρ+dρ}.
Summing over all such bands, we have

Lemma 4:The functionQ defined in (10) satisfies
∫ M

0

Q(ρ) dρ =

∫

Ω

u2 dx.

Proof: By the definition ofQ(ρ), we have
∫ M

0

Q(ρ) dρ = −

∫ M

0

d

dρ

(

∫

{V ≥ρ}

u2 dx

)

dρ

=

∫

{V ≥0}

u2 dx −

∫

{V ≥M}

u2 dx =

∫

Ω

u2 dx,

which is the desired result.

According to the definition ofV ∗ in (7), eachρ ∈ [0, M ]
corresponds to anr = µ(ρ)/2 such thatV ∗(r) = V ∗(−r) = ρ
(see Figure 1). Thus, the infinitesimal bands{ρ ≤ V ≤ ρ+dρ}
corresponds to the union of two intervals[r+dr, r]∪[−r,−r−
dr]. We define the symmetric controlû so that its cost on this
union is the same as the cost ofu on the band{ρ ≤ V ≤
ρ + dρ}, namely,Q(ρ)dρ. Specifically,

û(r) = −û(−r) , −

√

1

2
Q(V ∗(r)) ·

dρ

dr

= −
Q(V ∗(r))1/2

|µ′(V ∗(r))|1/2
, r ∈ [0, a]. (11)

Lemma 5:The symmetric control̂u defined above has the
same cost as the original controlu, namely,J(û) = J(u).
Moreover, for anyr ∈ [0, a],

∫ r

0

û(x) dx = −
1

2

∫ M

V ∗(r)

Q(η)1/2|µ′(η)|1/2 dη. (12)

Proof: For the first claim, by the symmetry of̂u, we
have

∫

Ω

û2 dx = 2

∫ a

0

û2(r) dr = 2

∫ a

0

Q(V ∗(r))

|µ′(V ∗(r))|
dr.

Note that by (7),V ∗(r) = µ−1(2r) for r ∈ [0, a]; hence
µ(V ∗(r)) = 2r. Taking the derivative yields

µ′(V ∗(r)) ·
d

dr
V ∗(r) = 2. (13)

Thus, by a change of variableρ = V ∗(r), we have
∫

Ω

û2 dx = −

∫ a

0

Q(V ∗(r)) ·
d

dr
V ∗(r) dr

= −

∫ V ∗(a)

V ∗(0)

Q(ρ) dρ =

∫ M

0

Q(ρ) dρ =

∫

Ω

u2 dx,

where the last step follows from Lemma 4.
To prove the second claim, perform a change of variables

η = V ∗(x), or equivalently,x = µ(η)/2, to obtain
∫ r

0

û(x) dx = −

∫ r

0

Q(V ∗(x))1/2

|µ′(V ∗(x))|1/2
dx

=

∫ M

V ∗(r)

Q(η)1/2

|µ′(η)|1/2

µ′(η)

2
dη

= −
1

2

∫ M

V ∗(r)

Q(η)1/2|µ′(η)|1/2 dη.

The following lemma shows that the symmetric controlû
is feasible, namely, bounded.

Lemma 6:The symmetric controlû defined in (11) is
feasible, i.e.,̂u ∈ L∞(Ω).

Proof: By (11), it suffices to show thatQ(ρ)/|µ′(ρ)| is
bounded on(0, M ]. Sinceu ∈ L∞(Ω), there exists aK < ∞
such thatsupx∈Ω u(x) = K. By (10) and (9), for eachρ ∈
(0, M), we have

Q(ρ)

|µ′(ρ)|
=

u2(x1(ρ))x′
1(ρ) − u2(x2(ρ))x′

2(ρ)

|x′
1(ρ)| + |x′

2(ρ)|

=
u2(x1(ρ))|x′

1(ρ)| + u2(x2(ρ))|x′
2(ρ)|

|x′
1(ρ)| + |x′

2(ρ)|
≤ K2.



Taking the limit, the above is also true atρ = M . Hence
û ≤ K on Ω.

To sum up, for each candidate controlu ∈ U , we can find
a feasible symmetric control̂u ∈ L∞(Ω) for which J(u) =
J(û). In the next subsection, we will show that thiŝu also
satisfiesW (û) ≥ W (u).

B. Comparison Theorem

With the symmetric control̂u, let V̂ be the corresponding
expected exit time of the solution process to equation (1)
with the diffusion term given byσ(·) ≡ σ0. Then V̂ is the
symmetric (i.e., even) solution to the ODE
{

σ2
0V̂

′′(x) + 2û(x)V̂ ′(x) + 2 = 0, x ∈ (−a, a)

V̂ (a) = V̂ (−a) = 0.
(14)

Our goal is show thatW (û) ≥ W (u), namely,
∫

Ω λw(V̂ )dx ≥
∫

Ω λw(V ). This is a direct consequence of
the following more generalcomparison theoremof ODEs.

Theorem 2 (Comparison Theorem):Let V be the solutions
to the ODE (3) corresponding to an arbitrary controlu ∈ U ,
and V̂ be the solution to the ODE (14) corresponding to the
symmetric control̂u in (11). Then

V̂ (x) ≥ V ∗(x), ∀x ∈ [−a, a],

whereV ∗ is the symmetrization ofV .
We first demonstrate how to use this comparison theorem to

prove our main result Theorem 1. The proof of the comparison
theorem will be given afterward.

Proof: [Theorem 1] By Theorem 2, given any controlu ∈
U and its corresponding expected exit timeV on Ω, we can
find a symmetric control̂u ∈ L∞(Ω) with the same cost asu
whose corresponding expected exit timeV̂ for the process (1)
with a constant diffusion termσ0 satisfiesV̂ (x) ≥ V ∗(x) for
all x ∈ Ω. Thus,

W (û) =

∫

Ω

λ(x)w(V̂ (x)) dx ≥

∫

Ω

λ(x)w(V ∗(x)) dx

≥

∫

Ω

λ(x)w(V (x)) dx = W (u). (15)

Note that the first inequality above follows from the compar-
ison theorem and the monotonicity ofw(·); and the second
inequality follows from the Hardy-Littlewood inequality as
λ∗ = λ and [w(V )]∗ = w(V ∗). As a result, the feasible
symmetric û has the same cost and no worse performance
thanu, which proves Theorem 1.

In the rest of this section, we will prove the comparison
theorem through a series of lemmas regarding the solution
V (x) to the ODE (3), i.e., the expected exit time of process (1)
with the diffusion termσ(x).

Lemma 7:For eachρ ∈ (0, M), the functionP (ρ) defined
as

P (ρ) , −
d

dρ

∫ x2(ρ)

x1(ρ)

|V ′|2 dx (16)

satisfies that: (i)P (ρ)|µ′(ρ)| ≥ 4; (ii) P (ρ) → 0 asρ → M ;
(iii) Q(ρ)

1
2 P (ρ)

1
2 ≥ µ′(ρ) −

σ2
0

2 P ′(ρ).

Proof: (i) By (16), for ρ ∈ (0, M), we have

P (ρ) = |V ′(x1(ρ))|2x′
1(ρ) − |V ′(x2(ρ))|2x′

2(ρ)

=
1

|x′
1(ρ)|

+
1

|x′
2(ρ)|

. (17)

Here the last step follows sinceV (xi(ρ)) = ρ implies that
V ′(xi(ρ))x′

i(ρ) = 1 for i = 1, 2. Equivalently,

P (ρ) = V ′(x1(ρ)) − V ′(x2(ρ)). (18)

Thus, by the Cauchy-Schwarz inequality,

P (ρ)|µ′(ρ)| =

(

1

|x′
1(ρ)|

+
1

|x′
2(ρ)|

)

(|x′
1(ρ)| + |x′

2(ρ)|)

≥ (1 + 1)2 = 4.

(ii) As ρ → M , x′
i(ρ) = 1/V ′(xi(ρ)) → ∞ for i = 1, 2; thus

P (ρ) → 0.
(iii) The ODE (3) implies thatuV ′ = −(1 + 1

2σ2V ′′). Since
σ ≥ σ0 by the uniformly elliptic assumption andV ′′ < 0 as
V ∈ V is strictly concave, we haveuV ′ ≥ −(1 + 1

2σ2
0V ′′).

Hence, forρ ∈ (0, M) and small∆ρ > 0, denote the set
{ρ ≤ V ≤ ρ + ∆ρ} , {x ∈ Ω : ρ ≤ V (x) ≤ ρ + ∆ρ}. Then,
∫

{ρ≤V ≤ρ+∆ρ}

uV ′ dx ≥−

∫

{ρ≤V ≤ρ+∆ρ}

(

1+
1

2
σ2

0V ′′

)

dx

=

∫ x2(ρ+∆ρ)

x1(ρ+∆ρ)

(

1+
1

2
σ2

0V ′′

)

dx−

∫ x2(ρ)

x1(ρ)

(

1 +
1

2
σ2

0V ′′

)

dx

=µ(ρ + ∆ρ) −
1

2
σ2

0P (ρ + ∆ρ) − µ(ρ) +
1

2
σ2

0P (ρ),

where in the last step we have used (18). On the other hand,
by the Cauchy-Schwarz inequality,
(

∫

{ρ≤V ≤ρ+∆ρ}

u2 dx

)1/2(
∫

{ρ≤V ≤ρ+∆ρ}

|V ′|2 dx

)1/2

≥

∫

{ρ≤V ≤ρ+∆ρ}

uV ′ dx.

Combining the above two inequalities, we have
(

∫

{ρ≤V ≤ρ+∆ρ}

u2 dx

)1/2(
∫

{ρ≤V ≤ρ+∆ρ}

|V ′|2 dx

)1/2

≥ [µ(ρ + ∆ρ) − µ(ρ)] −
1

2
σ2

0 [P (ρ + ∆ρ) − P (ρ)].

The desired property (iii) is then obtained by dividing both
sides by∆ρ and taking the limit∆ρ → 0.

The above lemma can be used to prove an important
inequality as described in the following lemma.

Lemma 8:For eachρ ∈ (0, M), the following inequality
holds:

σ−2
0 e

∫ M
ρ

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη

·

∫ M

ρ

µ′(ρ)e−
∫

M
ρ

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη dρ ≤

2

µ′(ρ)
. (19)

Proof: By properties (i) and (iii) of Lemma 7, we have

µ′(ρ) ≤
σ2

0

2
P ′(ρ) + Q(ρ)1/2P (ρ)1/2 ·

1

2
P (ρ)1/2|µ′(ρ)|1/2

=
σ2

0

2
P ′(ρ) +

1

2
Q(ρ)1/2|µ′(ρ)|1/2P (ρ).



By the Gronwall inequality and the fact thatP (M) = 0, the
above differential inequality implies that forρ ∈ (0, M),

P (ρ) ≤ −2σ−2
0 e

∫

M
ρ

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη

·

∫ M

ρ

µ′(ρ)e−
∫

M
ρ

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη dρ. (20)

Note that
∫M

ρ
σ−2

0 Q(η)1/2|µ′(η)|1/2 dη in (20) is well defined
as bothQ(ρ) and |µ′(ρ)| are integrable. Since by Lemma 7,
P (ρ) ≥ 4/|µ′(ρ)| = −4/µ′(ρ) for ρ ∈ [0, M), (20) then
implies (19).

We are now ready to prove the comparison theorem.
Proof: [Comparison Theorem] SincêV is symmetric

(even) and differentiable, we know that̂V ′(0) = 0. By
focusing on the positive half of the domainΩ, the ODE (14)
is equivalent to

σ2
0V̂

′′(r) + 2û(r)V̂ ′(r) + 2 = 0, r ∈ [0, a],

V ′(0) = 0, V (a) = 0.
(21)

Multiplying (21) by σ−2
0 e2

∫

r
0

σ−2
0 û(x) dx and integrating from

0 to r, we have

e2
∫ r
0

σ−2
0 û(x) dxV̂ ′(r) = −2σ−2

0

∫ r

0

e2
∫ r
0

σ−2
0 û(x) dx dr,

for r ∈ [0, a]. Hence, by (12),

V̂ ′(r) = −2σ−2
0 e

∫

M
V ∗(r)

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη

·

∫ r

0

e−
∫ M

V ∗(r)
σ−2
0 Q(η)1/2|µ′(η)|1/2 dη dr.

A change of variableρ = V ∗(r), i.e., r = µ(ρ)/2, in the
integral on the right hand side leads to

V̂ ′(r) = σ−2
0 e

∫ M
V ∗(r)

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη

·

∫ M

V ∗(r)

µ′(ρ)e−
∫

M
ρ

σ−2
0 Q(η)1/2|µ′(η)|1/2 dη dρ

≤
2

µ′(V ∗(r))
=

d

dr
V ∗(r), (22)

for r ∈ (0, a). Here we have used (19) withρ replaced by
V ∗(r), and (13). AsV̂ (a) = V ∗(a) = 0, (22) then implies
that

V̂ (x) = V̂ (a) −

∫ a

x

V̂ ′(r) dr ≥ V ∗(a) −

∫ a

x

d

dr
V ∗(r) dr

= V ∗(x), ∀x ∈ [0, a].

By the symmetry ofV̂ (x) andV ∗(x), it follows that V̂ (x) ≥
V ∗(x) for all x ∈ [−a, a].

V. EXAMPLE

We next present an example for which the result in Corol-
lary 1 can help to find the analytic solution to the 1-D OETC
problem. In this example, we assume thatσ(·) ≡ 1 is constant,
λ(·) is the Kronecker delta functionδ(·), and w(·) is the
identity function. Then, by the property of the delta function,
the performance index becomes

W (u) =

∫

Ω

λ(x)w(V (x)) dx =

∫

Ω

δ(x)V (x) dx = V (0).

Here, we adopt a dual formulation (see Problem 2) of the
OETC problem to minimize the control energyJ(u) =
∫ a

−a u2 dx subject to the constraintW (u) = V (0) ≥ T for
some constantT ≥ W (0). In other words, we want to find
the control with the least energy so that the expected exit time,
starting from the center ofΩ = (−a, a), is no smaller thanT .
Whenu ≡ 0, the solution to the ODE (3) can be easily found
to beV (x) = −x2 + a2. Therefore, the constantT should be
chosen larger thanW (0) = a2 to avoid a trivial solution.

By Theorem 1, the optimal controlu is odd onΩ, and its
correspondingV is even onΩ. Hence,V ′(0) = 0, andJ(u) =

2
∫ 0

−a
u2 dx. Sinceσ(·) ≡ 1, by focusing on the subinterval

[−a, 0], V satisfies the ODE

V ′′(x) + 2u(x)V ′(x) + 2 = 0, V ′(0) = 0, V (−a) = 0.

Define the state variablesy1(x) = V (x) andy2(x) = V ′(x),
for x ∈ [−a, 0]. Then the above problem is equivalent to the
following optimal control problem:

minimize
∫ 0

−a

u2 dx

subject to

{

y′
1 = y2,

y′
2 = −2uy2 − 2,

∀x ∈ [−a, 0], (23)

y1(−a) = 0, y1(0) = T, y2(0) = 0.

Define the Hamiltonian

H = u2 + λ1y2 + λ2(−2uy2 − 2).

By the Maximum Principle, the following costate equations
can be obtained:

λ′
1 = −

∂H

∂y1
= 0, λ′

2 = −
∂H

∂y2
= 2uλ2 − λ1, (24)

with the boundary conditionsλ2(−a) = 0, and the optimal
control u is determined by

∂H

∂u
= 2u − 2λ2y2 = 0 ⇒ u = λ2y2. (25)

Note thatλ1 is constant, and withu given in (25), the resulting
HamiltonianH should also be constant:

2λ2 − λ1y2 + λ2
2y

2
2 ≡ C.

Solving for λ2, and plugging the resultingλ2 and u in (25)
into the state equation (23), we have

y′
2 =−2

√

1+y2
2(λ1y2+C)=−2

√

1+λ1y2
2 [y2−y2(−a)],

with y2(0) = 0. (26)

Hence, the dynamics ofy2 depends on the unknown param-
etersλ1 andy2(−a), but is decoupled from the dynamics of
λ2. Integrating fromx = −a to x = 0, we obtain the first
constraint onλ1 andy2(−a):

Ψ(λ1, y2(−a)) ,

∫ y2(−a)

0

dy2
√

1+λ1y2
2 [y2 − y2(−a)]

= 2a.

Another constraint is thaty1(0) = T , i.e.,
∫ 0

−a y2 dx = T . It
can be verified that these two constraints uniquely determine
the pair of parametersλ1 ≤ 0 and y2(−a) ≥ 2a if T ≥ a2.
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Fig. 2. Plots of optimalu(x) and V (x) when a = 1, with T = 2 (left),
T = 3 (middle), andT = 6 (right).

Having determinedλ1 andy2(−a), the statey2(x), and hence
V (x) = y1(x), can be found by integrating (26) over[−a, 0],
which are properly defined elliptic integral functions and their
inverses.

Figure 2 plots the optimalu(x) and V (x) computed as
above whena = 1 for T = 1, 3, 6 respectively. The left
column is the optimalu(x) andV (x) for T = 1, the middle
column for T = 3, and the right column forT = 6. As
expected, asT increases, the optimal feedback control law
u(x) becomes more aggressive. An interesting fact is that the
optimalu is nearly zero around the center of the interval, while
much of the effort is spent roughly midway between the center
and the boundary.

VI. CONCLUSION

This paper studies the 1-D OETC problem. A comparison
theorem is established that compares the solutions to two
ODEs arising in the 1-D OETC problem, one with an ar-
bitrary control and the other with a symmetric control. The
symmetry of solutions to the 1-D OETC problem is proved
using the comparison theorem. This together with our previous

results completely establishes the radial symmetry property of
the solutions to the OETC problem with an arbitrary state
dimension.
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