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SYMMETRY OF SOLUTIONS TO THE OPTIMAL EXIT TIME
CONTROL PROBLEM∗

JIANGHAI HU† AND WEI ZHANG‡

Abstract. In this paper, we study the solutions to the optimal exit time control problem. Such
a problem tries to find the state feedback control law with a fixed cost that can keep the state of
a randomly perturbed system inside a subset of the state space, called the safe set, for as long as
possible on average. By formulating the problem as an optimization problem with PDE constraints
and using symmetrization techniques, we show that, when the safe set is a ball, the optimal feedback
control (if it exists) must be radially symmetric. Furthermore, we show that, among all safe sets
with a fixed volume, the ball is the best in that it yields the most efficient optimal exit time control.
The proofs make essential use of the general isoperimetric inequality.

Key words. optimal stochastic control, exit time, symmetrization

AMS subject classifications. 93E20, 93C20, 49K20, 35B37

DOI. 10.1137/080734455

1. Introduction. The optimal control problems for systems under uncertainty
have many practical applications, such as aircraft conflict resolution [13], formation
flight of unmanned aerial vehicles (UAVs) [28], automated highway systems [27], and
robotics. In many such applications, the system under study can be modeled as a
control system whose state dynamics is perturbed by random noises, and the primary
control goal is to keep the system safe, i.e., to keep the state within a subset of the
state space called the safe set. As a practical example, consider a platoon of vehicles
driving on a highway, as shown in Figure 1.1. The goal is to design controllers for the
vehicles so that a tight yet safe formation is maintained. In this case, the safe set is
the set of vehicle locations with sufficient separations. Due to factors such as wind,
road conditions, sensor and actuator errors, etc., the distances between vehicles may
fluctuate randomly despite the effort of the controllers.

In this paper, we focus on an instance of the optimal control problems of sys-
tems under uncertainty called the optimal exit time control problem that is par-
ticularly relevant in safety-critical applications. For the stochastic control system
dXt = u(Xt)dt+σdBt, we aim at finding the optimal state feedback control law u over
the safe set Ω̄ that can keep the state Xt within Ω̄ for as long as possible on average,
with a fixed control cost

∫
Ω̄
‖u‖2 dx. This problem was first proposed in [10]. Under

the assumption that the solutions are symmetric, the optimal control is characterized
analytically in a one-dimensional state space in [10]. In [24], the problem is extended
to the setting of stochastic hybrid systems, and a numerical solution is presented based
on the adjoint method. In [30], a generalized version of the problem is studied in the
one-dimensional state space. In these studies, the symmetry property of the optimal
solutions plays a key role but has not been established rigorously in its full generality.
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Fig. 1.1. A platoon of vehicles in formation.

A main contribution of this paper is the proof of the symmetry property of the so-
lutions to the optimal exit time control problem in arbitrary dimensional state spaces.
Namely, we prove that if the state space is a ball, then the solutions to the optimal
exit time control problem, if they exist, are radially symmetric (see Theorem 3.1).
Another contribution is our proof that, among all safe sets with a fixed volume, the
ball is the best in that it yields the most efficient optimal exit time control scheme
(see Theorem 3.2). With these results, the complexity of finding the solutions to
multidimensional problems is greatly reduced.

The technique used in the proofs, the symmetrization method [3, 12], was orig-
inally employed in [21, 22] in the study of various mathematical physics problems.
For example, by symmetrizing the scalar function f in the partial differential equa-
tion (PDE) − 1

2ΔV = f , V |∂Ω ≡ 0, it was shown in [21] that a Brownian motion
takes the longest expected time to exit a ball among all the domains with the same
volume. This approach was later extended to more general elliptic and parabolic
PDEs [7, 11, 15, 18]. In particular, a version of Talenti’s theorem [2, 26] symmetrizes

f in the PDE σ2

2 ΔV +u ·∇V = f to conclude that for a Brownian motion with drift u
of bounded amplitude ‖u‖ ≤ M , the largest expected exit time is achieved when the
domain is a ball and the drift u points to its center with constant maximal amplitude

M . In comparison, the PDE studied in this paper is of the form σ2

2 ΔV + u · ∇V = 1.
Instead of symmetrizing a scalar function, we symmetrize the vector field u to obtain
a symmetric vector field u∗ of varying amplitude, and we show that for a maximal
exit time of a Brownian motion with drift determined by a vector field with bounds
on its L∞ and L2 norms, one should choose a symmetric domain and a symmetric u∗.
Our proof is inspired by the original work [22]; a modern treatment, as in [12], may
lead to a more succinct proof.

The rest of the paper is organized as follows. In section 2, the problem of optimal
exit time control is formulated. To prove the main results outlined in section 3, an
equivalent formulation of the problem is derived in section 4. Using the symmetriza-
tion techniques introduced in section 5 and the preliminary results in section 6, the
main results are proved in section 7 and extended in section 8. Finally, sections 9 and
10 contain some numerical examples and concluding remarks, respectively.

2. Problem formulation.

2.1. Expected exit time. Let Ω be a bounded, connected, and simply con-
nected, open subset of Rn with a C2 boundary ∂Ω. Its closure Ω̄ = Ω ∪ ∂Ω, which is
compact, is called the safe set. Consider a stochastic process Xt given as the solution
to the following stochastic differential equation (SDE) on Ω̄:

(2.1) dXt = u(Xt)dt+ σdBt,

where σ is a positive constant, Bt is an n-dimensional standard Brownian motion,
and u ∈ UM (Ω̄) is an admissible control vector field in the set

UM (Ω̄) := {u : Ω̄ → R
n
∣∣ ‖u(x)‖ ≤ M}.
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Here M ∈ (0,∞] is a constant modeling the physical limitation on the control mag-
nitude.

Define τ := inf{t ≥ 0 : Xt �∈ Ω} as the (first) exit time, or escape time, of Xt from
Ω. Then τ is a stopping time and its expectation is denoted by

(2.2) V (x) = Ex[τ ], x ∈ Ω̄.

Here Ex indicates that the expectation is taken under the initial condition X0 = x.
Thus V (x) is the expected time the state Xt will stay inside the safe set before its
first exit, given that it starts from x at time t = 0. Obviously V (x) ≡ 0 for x ∈ ∂Ω.

Lemma 2.1. The function V (x) defined in (2.2) is the weak solution in the Soblev
space H2(Ω̄) to the following second order elliptic PDE:

(2.3)

{
σ2

2 ΔV + u · ∇V + 1 = 0, x ∈ Ω̄,

V (x) = 0, x ∈ ∂Ω.

Here ΔV :=
∑n

i=1
∂2V
∂x2

i
is the Laplacian of V , and ∇V := ( ∂V

∂x1
, . . . , ∂V

∂xn
) is the

gradient vector of V .
Proof. This is a standard result in stochastic analysis. We include a brief proof

here since some of the notions introduced will be used in later proofs. By [19], the
infinitesimal generator L of the diffusion (2.1) is given by

(2.4) Lg =
σ2

2
Δg + u · ∇g

for functions g : Ω̄ → R with weak second order derivatives almost everywhere (a.e.)
on Ω̄.

For an admissible control u, let V ∈ H2(Ω̄) be a weak solution to the PDE (2.3).
Such a V exists by [5, Theorem 6.4]. Thus, LV ≡ −1 on Ω̄, and V ≡ 0 on ∂Ω. By
Dynkin’s formula [19], we have

Ex[V (Xτ )]− Ex[V (X0)] = Ex

[∫ τ

0

LV (Xt) dt

]
= −Ex[τ ].

Note that V (Xτ ) = 0 as Xτ ∈ ∂Ω. Hence, Ex[V (X0)] = V (x) is indeed the expected
exit time Ex[τ ].

Since weak solutions may have exotic behaviors (see [5, Example 5.4]), it is more
convenient to work with classical solutions of (2.3). Therefore, we impose the following
assumption.

Assumption 2.2. For the admissible controls u considered in this paper, assume
that the expected exit time V is a classical solution to the PDE (2.3). In other words,
at almost all x ∈ Ω, V (x) is second order differentiable and (2.3) holds.

In the case when the state dimension n = 1, the safe set Ω̄ becomes an interval,
say, Ω̄ = [−a, a], for some a > 0. Then (2.3) reduces to a second order ordinary
differential equation (ODE),

σ2

2
V ′′(x) + u(x)V ′(x) + 1 = 0, x ∈ [−a, a],(2.5)

with boundary condition V (−a) = V (a) = 0. The solution to (2.5) can be verified to
be

V (x) = 2u2(x)

∫ a

x

e2u1(y) dy + 2

∫ x

−a

e2u1(y)u2(y) dy −
2u2(x)

u2(a)

∫ a

−a

e2u1(y)u2(y) dy,
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where u1(x) :=
1
σ2

∫ x

−a
u(y) dy and u2(x) :=

1
σ2

∫ x

−a
e−2u1(y) dy. Thus, Assumption 2.2

is trivially satisfied when n = 1.

2.2. Optimal exit time control problem and its dual. We now formulate
the problems to be studied in this paper. The SDE (2.1) defines the dynamics of a
control system whose state Xt is subject to the feedback control law u in the state
space Ω̄. A natural problem is to find the least expensive control u that can keep Xt

inside Ω for at least a certain amount of time on average. More precisely, define the
(aggregated) energy or cost for an admissible control u as

(2.6) J(u) :=

∫
Ω̄

‖u‖2 dx ∀u ∈ UM (Ω̄).

The performance of the control u is measured by the aggregated expected exit time

(2.7) W (u) :=

∫
Ω̄

w(V ) dx,

where V is the expected exit time defined in (2.2), and w : R+ → R+ is a strictly
increasing function on R+ = [0,∞) with limx→∞ w(x) = ∞, e.g., w(x) = xα for some
α > 0. In particular, if α = 1, W (u) reflects the overall expected exit time under u
when the initial position X0 = x is uniformly distributed in Ω̄.

Problem 1 (optimal exit time control). Find the admissible control u ∈ UM (Ω̄)
to maximize W (u) subject to J(u) ≤ J0.

Problem 2 (dual optimal exit time control). Find the admissible control u ∈
UM (Ω̄) to minimize J(u) subject to W (u) ≥ W0.

The choices of the parameters J0 and W0 in the above problems cannot be arbi-
trary. For example, in Problem 1, to prevent the constraint J(u) ≤ J0 from being a
trivial result of u ∈ UM (Ω̄), we need to assume J0 < M2|Ω̄|, where |Ω̄| is the volume
of Ω̄. On the other hand, since zero control u ≡ 0 has cost J(0) = 0 but performance
W (0) > 0, we need to assume W0 > W (0) so that the solution to Problem 2 is not the
trivial zero control. Also, as the performance W (u) of admissible controls u in UM (Ω̄)
may be bounded from above by a finite value (see Corollary 9.3), W0 needs to be
upper bounded by the same value to ensure the existence of solutions to Problem 2.

Remark 2.3. Let W ∗(J0) = sup{W (u)|u ∈ UM (Ω̄), J(u) ≤ J0} be the opti-
mal expected exit time achieved by the solutions to Problem 1, and let J∗(W0) =
inf{J(u)|u ∈ UM (Ω̄),W (u) ≥ W0} be the minimal cost achieved by the solutions
to Problem 2. By Lemma 4.2 in section 4, we will show that W ∗(J0), J0 ≥ 0, and
J∗(W0), W0 ≥ W (0), are strictly increasing functions. Indeed, they are the inverse
functions of each other on their proper domains of definition.

3. Summary of main results. We will now outline the main results of this
paper. Suppose first that Ω̄ = B̄(a) := {x ∈ R

n : ‖x‖ ≤ a} is the n-dimensional ball
of radius a.1 A function g : Ω̄ → R is called (radially) symmetric if g(x) = g̃(‖x‖) for
some function g̃ : [0, a] → R; and a vector field u : Ω̄ → R

n is (radially) symmetric if
it is of the form u(x) = ũ(‖x‖) x

‖x‖ , x �= 0, for some function ũ : (0, a] → R, i.e., u(x)

always points along the radial direction, with an amplitude dependent only on ‖x‖.
By formulating Problems 1 and 2 as PDE-constrained optimization problems,

Raffard, Hu, and Tomlin [24] obtained their numerical solutions by using the adjoint-
based method [14]. It was observed that the solutions on a ball Ω̄ are always radially

1In this paper, balls are assumed to be centered at the origin by default.
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symmetric. Motivated by this observation, in this paper we will prove the following
result.

Theorem 3.1. Suppose that Ω̄ = B̄(a) is a ball. Then solutions u to Problem 1
(or Problem 2), if they exist, can be chosen to be radially symmetric.

Furthermore, if the shape of Ω̄ can be designed, we have the following result.
Theorem 3.2. Suppose that the volume of Ω̄ is fixed and that solutions to Prob-

lems 1 and 2 exist for each Ω̄.
(i) Denote by Wmax(Ω̄) = sup{W (u) |u ∈ UM (Ω̄), J(u) ≤ J0} the solution to

Problem 1 on Ω̄ for a fixed J0. Then among all Ω̄ with the same volume, the ball Ω̄∗

is the best in that Wmax(Ω̄
∗) ≥ Wmax(Ω̄) for all other Ω̄.

(ii) Denote by Jmin(Ω̄) = inf{J(u) |u ∈ UM (Ω̄),W (u) ≥ W0} the solution to
Problem 2 on Ω̄ for a fixed W0. Then among all Ω̄ with the same volume, the ball Ω̄∗

is the best in that Jmin(Ω̄
∗) ≤ Jmin(Ω̄) for all other Ω̄.

Thus, the “best” shape of Ω̄ for designing a control u with large W (u) and small
J(u) is a ball, and on such a domain, the optimal u and V are both radially symmetric.

4. Reformulation of the problems. To prove Theorems 3.1 and 3.2, we next
reformulate the problems in terms of the function V . To this purpose, we shall first
study the set of feasible V , i.e., the set of all V that are the expected exit times for
the optimal solutions u to Problems 1 and 2.

Let V be the expected exit time corresponding to an admissible control u ∈
UM (Ω̄). According to Lemma 2.1, V satisfies the PDE (2.3). Therefore,

u · ∇V = −
(
1 +

σ2

2
ΔV

)
on Ω̄.(4.1)

It directly follows that V must satisfy ΔV = −2σ−2 at those critical points of V
where ∇V = 0. Another implication is that, for different controls u, as long as u ·∇V
remain the same at each x ∈ Ω̄ and satisfy (4.1), the same function V can be the
solution to the PDE (2.3), and hence the expected exit time, associated with these
u. Since among all such u, the one whose direction is aligned with ∇V at each x ∈ Ω̄
has the least energy J(u), we have the following lemma.

Lemma 4.1. Let u ∈ UM (Ω̄) be a solution to Problem 1 or 2, and let V be the

corresponding expected exit time. Then, for almost all x ∈ Ω̄, 1 + σ2

2 ΔV ≤ 0, and

u =

{
−(1 + σ2

2 ΔV ) ∇V
‖∇V ‖2 if ∇V �= 0,

0 if ∇V = 0.
(4.2)

Proof. Define a control û as follows. At each x ∈ Ω̄, project u(x) onto ∇V (x)
and, if necessary, reverse its direction to be of the same direction as ∇V (x):

û =

{
|u · ∇V | ∇V

‖∇V ‖2 if ∇V �= 0,

0 if ∇V = 0.

It is easily verified that ‖û‖ ≤ ‖u‖, and hence J(û) ≤ J(u), with equality only if u and
∇V are collinear a.e. on Ω̄. It can also be verified that û ·∇V ≥ u ·∇V . Now consider
the system under the new control û: dX̂t = û(X̂t)dt+σdBt. Its infinitesimal generator

L̂ is given by L̂g = σ2

2 Δg+û·∇g. Thus, L̂V = σ2

2 ΔV +û·∇V ≥ σ2

2 ΔV +u·∇V = −1.

Denote by τ̂ the first exit time of X̂t from Ω. Then by Dynkin’s formula,

Ex[V (X̂τ̂ )]− Ex[V (X̂0)] = Ex

[∫ τ̂

0

L̂V (X̂t) dt

]
≥ −Ex[τ̂ ],(4.3)
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or equivalently, Ex(τ̂ ) ≥ Ex(τ), for all x ∈ Ω. By the optimality of u, we must have
both J(û) = J(u) and Ex(τ̂ ) = Ex(τ). From the construction of û, this is possible
only if u and ∇V are of the same direction a.e. on Ω̄. Together with (4.1), this implies

that u is of the form (4.2) and that 1 + σ2

2 ΔV ≤ 0 a.e. on Ω̄.
Hence, the optimal control u always points towards the direction along which

the corresponding expected exit time V increases the fastest. By following a similar
procedure, we can show the following useful fact.

Lemma 4.2. Suppose that the expected exit time V corresponding to an admis-

sible control u satisfies 1 + σ2

2 ΔV ≤ 0 a.e. on Ω̄. Then, the expected exit time V̂

corresponding to another control û satisfies V̂ (x) > V (x) for x ∈ Ω if û = λu for
some function λ(x) ≥ 1 with strict inequality on a subset of Ω̄ of nonzero measure.

Based on the above results, we can focus our attention on a restricted family of
the functions V defined below when looking for optimal solutions.

Definition 4.3 (feasible V for optimal solutions). The set V(Ω̄) is defined to be
the family of all functions V : Ω̄ → R+ satisfying the following properties:

1. V is positive in the interior Ω and zero on the boundary ∂Ω.
2. V ∈ C1(Ω̄) and has second order derivatives a.e. on Ω̄.
3. The corresponding control u as defined in (4.2) is admissible: u ∈ UM (Ω̄).

4. 1 + σ2

2 ΔV ≤ 0 a.e. on Ω̄.
To exclude certain pathological cases, we make an additional technical assump-

tion, which will greatly simplify our proofs later on.
Assumption 4.4. The set {x ∈ Ω̄ : ∇V (x) = 0} of the critical points of V ∈

V(Ω̄) and the set {V (x) : ∇V (x) = 0} of the corresponding critical values both have
measure zero. Moreover, all maximizers of V in Ω are nondegenerate; i.e., the Hessian
matrices of V are negative definite at those x with V (x) = maxx∈Ω̄ V (x).

Remark 4.5. Since V must satisfy the PDE (2.5) for some admissible control
u, ∇V cannot be identically zero in any open subset of Ω. We also note that the
functions V satisfying Assumption 4.4 are dense in C1(Ω) in its strong topology [8]:
a slight perturbation of an arbitrary V ∈ C1(Ω), if necessary, will result in another
satisfying Assumption 4.4. This is because the set of Morse functions (which trivially
satisfy Assumption 4.4) is dense in the set of smooth functions on Ω (see [17, Corollary
6.8]), and the latter is in turn dense in C1(Ω) (see [8, Theorem 2.4]).

In view of Assumption 4.4, for V ∈ V(Ω̄), the control u specified by (4.2) satisfies

the PDE σ2

2 ΔV + u · ∇V + 1 = 0 and has the cost

J(u) =

∫
Ω̄

(1 + σ2

2 ΔV )2

‖∇V ‖2 dx < ∞.(4.4)

Problem 1 can now be equivalently formulated in terms of V ∈ V(Ω̄) as follows.
Problem 3. Among all functions V ∈ V(Ω̄), find the ones that

maximize W (u) =

∫
Ω̄

w(V ) dx subject to J(u) =

∫
Ω̄

(1 + σ2

2 ΔV )2

‖∇V ‖2 dx ≤ J0.

Problem 2 can also be similarly reformulated in terms of V , which is omitted
here. The main results, Theorems 3.1 and 3.2, can be proved for the reformulated
problems instead. To this purpose, we will prove the following key proposition in
section 7.
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Proposition 4.6. For each V ∈ V(Ω̄), there exists a radially symmetric function
V ∗ ∈ V(Ω̄∗) defined on the ball Ω̄∗ in R

n with the same volume as Ω̄ such that

∫
Ω̄∗

(1 + σ2

2 ΔV ∗)2

‖∇V ∗‖2 dx =

∫
Ω̄

(1 + σ2

2 ΔV )2

‖∇V ‖2 dx(4.5)

and

∫
Ω̄∗

w(V ∗) dx ≥
∫
Ω̄

w(V ) dx.(4.6)

It is easy to see that Proposition 4.6 implies Theorem 3.1. Indeed, suppose
that u is an optimal control on a ball Ω̄ that solves Problem 3 (hence Problem 1)
and V is the corresponding expected exit time function. Then V ∈ V(Ω̄), and,
according to Proposition 4.6, there exists a radially symmetric expected exit time
function V ∗ ∈ V(Ω̄) on the same domain Ω̄ whose corresponding control u∗ satisfies
J(u∗) = J(u) and W (u∗) ≥ W (u). In other words, u∗ is no worse a solution to
Problem 3 than u. Similarly, Theorem 3.2 is also a direct result of Proposition 4.6.

5. Symmetrization. Proposition 4.6 will be proved using the method of sym-
metrization, which is an operation that transforms a domain and the functions defined
on it into symmetric ones while preserving certain associated quantities. Symmetriza-
tion has proved to be a powerful tool in establishing the symmetry of solutions to PDE-
constrained variational problems [3, 22]. Among the various types of symmetrization
operations, the one employed in this paper for proving radial symmetry is called
Schwarz symmetrization, henceforth referred to as symmetrization for simplicity. In
the following, some basic notions and properties of symmetrization are reviewed. More
details can be found in [3, 12].

Definition 5.1 (symmetrization of sets). The symmetrization of a bounded
measurable set Ω̄ ⊂ R

n is the unique ball in R
n with the same Lebesgue measure as

Ω̄. The symmetrization of Ω̄ is denoted by Ω̄�.
Since the volume of the unit ball in R

n is given by [1]

ωn :=
∣∣B̄(1)

∣∣ = πn/2

Γ(1 + n
2 )

,(5.1)

where Γ(·) is the Gamma function and | · | denotes the Lebesgue measure, we must
have Ω̄� = B̄(a), with the radius a satisfying ωna

n = |Ω̄|. In particular, in the one-

dimensional case, the symmetrization of Ω̄ ⊂ R is the interval [− |Ω̄|
2 , |Ω̄|

2 ]. Note that
in the above definition, Ω̄ is not required to be simply connected or even connected.

Let Ω̄ ⊂ R
n be a bounded measurable domain, and let V : Ω̄ → R+ be a mea-

surable function with 0 ≤ V ≤ ρm for some ρm := supx∈Ω̄ V (x) < ∞. For each
ρ ∈ [0, ρm], define the ρ-level set and the ρ-superlevel set of V as

Cρ := {x ∈ Ω̄ : V (x) = ρ}, Dρ := {x ∈ Ω̄ : V (x) ≥ ρ},(5.2)

respectively. Note that as ρ increases from 0 to ρm, the set Dρ shrinks monotonically
from D0 = Ω̄ to Dρm , a set consisting of the maximizers of V in Ω.

Definition 5.2 (symmetrization of functions). The symmetrization of the func-
tion V : Ω̄ → R+ is the unique radially symmetric function V � : Ω̄� → R in which
each superlevel set is the symmetrization of the corresponding superlevel set of V , i.e.,
{x ∈ Ω̄� : V �(x) ≥ ρ} = (Dρ)

� for all ρ ∈ [0, ρm]. Or equivalently,

V �(x) := sup{ρ : x ∈ (Dρ)
�} ∀x ∈ Ω̄�.
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Fig. 5.1. Symmetrization of a function in the one-dimensional case.
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Fig. 5.2. Symmetrization of a function on a two-dimensional domain. (a) Function V ; (b)
level sets of V ; (c) symmetrization V � of V ; (d) level sets of V �.

As ρ increases from 0 to ρm, the shrinking sets Dρ after symmetrization will
result in a set of concentric balls (Dρ)

� with decreasing radii. Since these balls form
the superlevel sets of V �, V � must be radially symmetric. As an example, Figure
5.1 illustrates the symmetrization of a continuous function V defined on the one-
dimensional domain Ω̄ = [a, b]. In this case, for each ρ ∈ [0, ρm), Cρ consists of two
points x1 and x2 with x1 < x2, and Dρ = [x1, x2]. Let r = (x2 − x1)/2. Then the
function V � satisfies V �(−r) = V �(r) = ρ. This equality uniquely defines V � as ρ
varies continuously from 0 to ρm. The symmetrization of a function defined on a
two-dimensional domain is shown in Figure 5.2.

Several useful properties of the symmetrization operation are listed below. Their
proofs and more thorough discussions of the operation can be found in [3, 12].

Lemma 5.3. Let U, V : Ω̄ → R+ be two bounded, nonnegative measurable func-
tions defined on the bounded measurable domain Ω̄.

1. If V is (Lipschitz) continuous, so is its symmetrization V �.
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2. For any measurable function φ : R+ → R+,∫
Ω̄�

φ(V �) dx =

∫
Ω̄

φ(V ) dx.

In particular, the integral of V is preserved:
∫
Ω̄� V

� dx =
∫
Ω̄
V dx.

3. (Hardy–Littlewood inequality) For U, V ∈ L2(Ω̄), we have∫
Ω̄

U(x)V (x) dx ≤
∫
Ω̄�

U �(x)V �(x) dx.

As we shall see later on, to preserve certain quantities other than the integral
of V : Ω̄ → R+, it is often necessary to follow the symmetrization operation by a
scaling operation using a suitably defined monotonically increasing function f : R+ →
R+, resulting in the new function V ∗ := f ◦ V � = f(V �). In this case, V ∗ can be
characterized as the unique radially symmetric function on Ω̄� whose f(ρ)-superlevel
set is the symmetrization of the ρ-superlevel set of V :

{x ∈ Ω̄� : V ∗(x) ≥ f(ρ)} = {x ∈ Ω̄ : V (x) ≥ ρ}� ∀ρ ∈ [0, ρm].

6. Construction of the scaling function. The main idea for proving Propo-
sition 4.6 is as follows. Given a function V ∈ V(Ω̄) that is the expected exit time
under some control u on Ω̄, we will find a suitable scaling function f : R+ → R+

so that V ∗ = f ◦ V � defined on Ω̄� satisfies the two properties (4.5) and (4.6) with
Ω̄∗ := Ω̄�; hence V ∗ corresponds to a radially symmetric control u∗ on Ω̄∗ with no
worse performance. The construction of f makes essential use of the famed isoperi-
metric inequality, which is valid only when the state dimension n ≥ 2. Thus, in the
rest of the paper, we shall assume n ≥ 2. The proof of the main results for the case
n = 1 has been established in [30].

Let V ∈ V(Ω̄) be a function defined on Ω̄ with the range [0, ρm], and let

S := {ρ : ∇V �= 0 ∀x ∈ Cρ}

be the set of its regular values. Since Sc := [0, ρm] \ S = V ({x ∈ Ω̄ : ∇V = 0}) is
the image of a compact set {x : ∇V = 0} under the continuous map V , Sc is also
compact and hence closed, and Sc has measure zero by Assumption 4.4. Thus, S is a
dense open subset of [0, ρm].

For each ρ ∈ S, the level set Cρ is a smooth (n − 1)-dimensional submanifold
(hypersurface) whose unit normal field pointing inward is denoted by −→n . Let x ∈ Cρ

be arbitrary. Then the volume element dx of Rn at x can be decomposed as dx =
dσ dn, where dσ is the area element of the (n−1)-dimensional hypersurface Cρ and dn
is the infinitesimal element along its normal −→n (see Figure 6.1(a)). Note that dx, dσ,
and dn are all scalars. Furthermore, since the gradient ∇V at x is orthogonal to the
level set Cρ, and hence of the same direction as −→n , we have ‖∇V ‖ = dV

dn = dρ
dn �= 0,

and thus dn = ‖∇V ‖−1dρ. As a result, at x ∈ Cρ,

dx = dσ dn = ‖∇V ‖−1dσ dρ.

Using this decomposition, the following result can be easily obtained.
Lemma 6.1 ([22]). For any integrable function φ ∈ L1(Ω̄), we have∫

Ω̄

φdx =

∫ ρm

0

∫
Cρ

φ ‖∇V ‖−1dσ dρ.
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ρC

ρρ dC +

V∇

n
→

σd
x

r

r + dr
∇V ∗

(a) Symmetrization of level sets of V

ρ1C

∇V

ρ2C

Dρ1
\Dρ2

∇V

−→n

−→n

(b) The set Dρ1 \Dρ2

Fig. 6.1. Decomposition of Ω̄ into ring-shaped domains.

More generally, for any constant ρ ∈ [0, ρm],∫
Dρ

φdx =

∫ ρm

ρ

∫
Cρ

φ ‖∇V ‖−1dσ dρ.

See also the so-called co-area theorem in [6]. Intuitively, Lemma 6.1 implies that
the integration of a function over the domain Ω̄ (or Dρ) can be carried out alterna-
tively through its decomposition into an infinite number of ring-shaped infinitesimal
domains, each one sandwiched between the level sets Cρ and Cρ+dρ (see Figure 6.1(a)).

6.1. Some preliminary functions. Inspired by [22], we now define several
functions that will be useful later on. By choosing φ ≡ 1 in Lemma 6.1, we define

A(ρ) := |Dρ| =
∫
Dρ

dx =

∫ ρm

ρ

∫
Cρ

‖∇V ‖−1 dσ dρ,(6.1)

i.e., A(ρ) is the volume of Dρ. In the case when Dρ has more than one connected
component, A(ρ) is the total volume of all of them. By Assumption 4.4, as ρ increases
from 0 to ρm, Dρ shrinks from D0 = Ω̄ to a set Dρm of zero measure; hence A(ρ)
decreases monotonically from |Ω̄| to 0. By Assumption 4.4, |Cρ| = 0 for all ρ. Thus
A(ρ) is an absolutely continuous function and is differentiable a.e. on [0, ρm]. Indeed,
since the inner integral

∫
Cρ

‖∇V ‖−1 dσ in (6.1) is well defined for ρ ∈ S, we have

A′(ρ) = −
∫
Cρ

‖∇V ‖−1 dσ ∈ (−∞, 0) ∀ρ ∈ S.(6.2)

In the following, we shall extend the definition of A′(ρ) in (6.2) to all ρ ∈ [0, ρm], with
the understanding that it is possible that A′(ρ) = −∞ for ρ �∈ S.

Define another function P (ρ) ≥ 0 by

P (ρ) :=

∫
Cρ

‖∇V ‖ dσ, ρ ∈ [0, ρm].(6.3)

Note that P (ρ) is continuous (hence bounded) on [0, ρm] as both Cρ and ∇V vary
continuously with ρ. It is also easy to see that P (ρm) = 0, and P ′(ρ) exists at ρ ∈ S.

Lemma 6.2 (lower bound on P (ρ)). The function P (ρ) defined in (6.3) satisfies

(6.4) P (ρ) ≥ n2ω
2/n
n A(2n−2)/n(ρ)

|A′(ρ)| ∀ρ ∈ [0, ρm].
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Here we recall that the constant ωn is the volume of the unit ball in R
n given in

(5.1).
Proof. First assume ρ ∈ S. By applying the Cauchy–Schwarz inequality, we have

P (ρ) |A′(ρ)| =
∫
Cρ

‖∇V ‖ dσ ·
∫
Cρ

‖∇V ‖−1 dσ ≥
(∫

Cρ

dσ

)2

=
[
area(Cρ)

]2
.

Here area(Cρ) denotes the (n− 1)-dimensional area of the hypersurface Cρ. Applying
the isoperimetric inequality in R

n (see [20] and the references therein) to Cρ and the
region Dρ it encloses, we have

area (Cρ) ≥ nω1/n
n |Dρ|(n−1)/n = nω1/n

n A(n−1)/n(ρ),

with equality if and only if Cρ is a sphere. The above two inequalities together yield
(6.4). This completes the proof for ρ ∈ S. The same reasoning still applies if ρ �∈ S
but |A′(ρ)| < ∞. If ρ �∈ S and |A′(ρ)| = ∞, then (6.4) is trivially satisfied.

Define two more nonnegative functions Q(ρ) and G(ρ) for ρ ∈ [0, ρm] by

Q(ρ) :=

∫
Cρ

(1 + σ2

2 ΔV )2

‖∇V ‖3 dσ, G(ρ) :=
2|A′(ρ)|1/2

nω
1/n
n A(n−1)/n(ρ)

Q1/2(ρ).(6.5)

Since ‖∇V ‖ > 0, and 1+ σ2

2 ΔV = −u · ∇V is finite for ρ ∈ S, the function Q(ρ), and
hence G(ρ), is well defined and finite on S. Even though Q(ρ) and G(ρ) may have
infinite values for ρ �∈ S, the following lemma shows that they are integrable.

Lemma 6.3. Both Q(ρ) and G(ρ) are integrable on [0, ρm].
See Appendix A for the proof of Lemma 6.3.
Lemma 6.4. The functions P (ρ) and Q(ρ) satisfy

P 1/2(ρ)Q1/2(ρ) ≥ A′(ρ)− σ2

2
P ′(ρ) for almost all ρ ∈ [0, ρm].

Proof. Assume ρ ∈ S. An application of the Cauchy–Schwarz inequality yields

P (ρ)Q(ρ) =

∫
Cρ

‖∇V ‖ dσ ·
∫
Cρ

(1 + σ2

2 ΔV )2

‖∇V ‖3 dσ ≥
(∫

Cρ

|1 + σ2

2 ΔV |
‖∇V ‖ dσ

)2

.

Since 1 + σ2

2 ΔV ≤ 0 as V ∈ V(Ω̄), taking the square root of both sides and
integrating over a neighborhood [ρ1, ρ2] of ρ contained entirely within S, we obtain∫ ρ2

ρ1

P 1/2(ρ)Q1/2(ρ) dρ ≥ −
∫ ρ2

ρ1

∫
Cρ

1 + σ2

2 ΔV

‖∇V ‖ dσ dρ

= −
∫
Dρ1\Dρ2

(
1 +

σ2

2
ΔV

)
dx (by Lemma 6.1)

= −[A(ρ1)−A(ρ2)]−
σ2

2

∫
Dρ1\Dρ2

ΔV dx.(6.6)

For the second term in (6.6), since the integration domain Dρ1 \Dρ2 is a ring-shaped
domain sandwiched between the two hypersurfaces Cρ1 and Cρ2 (see Figure 6.1(b)),
by the divergence theorem in multivariate calculus [4],∫

Dρ1\Dρ2

ΔV dx =

∫
Dρ1\Dρ2

div (∇V ) dx =

∫
∂(Dρ1\Dρ2 )

∇V · −→n dσ,
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where −→n is the outer normal direction of Dρ1 \ Dρ2 along its boundary. Note that
the boundary ∂(Dρ1 \Dρ2) = Cρ1 ∪ Cρ2 , and that the outer normal −→n and ∇V are
of the opposite direction on Cρ1 and the same direction on Cρ2 . Therefore, we have∫

Dρ1\Dρ2

ΔV dx =

∫
Cρ2

‖∇V ‖ dσ −
∫
Cρ1

‖∇V ‖ dσ = P (ρ2)− P (ρ1).

Thus (6.6) becomes∫ ρ2

ρ1

P 1/2(ρ)Q1/2(ρ) dρ ≥ A(ρ2)−A(ρ1)−
σ2

2

[
P (ρ2)− P (ρ1)

]
.

Since both A(ρ) and P (ρ) are differentiable on S, we rewrite the above inequality as∫ ρ2

ρ1

[
P 1/2(ρ)Q1/2(ρ)−A′(ρ) +

σ2

2
P ′(ρ)

]
dρ ≥ 0 ∀ [ρ1, ρ2] ⊂ S.

Thus, the integrand is nonnegative a.e. on S, which is the desired conclusion.
Using Lemma 6.4 and a version of the Gronwall inequality, in Appendix B we

prove the following upper bound estimate of P (ρ).
Lemma 6.5 (upper bound on P (ρ)). The function P (ρ) satisfies

P (ρ) ≤ 2σ−2e−
∫

ρ
0
σ−2G(η) dη

∫ ρm

ρ

|A′(ξ)| e
∫

ξ
0
σ−2G(η) dη dξ ∀ρ ∈ [0, ρm].(6.7)

Note that by Lemma 6.3, e
∫

ρ
0
σ−2G(η) dη is bounded for ρ ∈ [0, ρm]. Hence the

integral in (6.7) is finite for all ρ ∈ [0, ρm], leading to a nontrivial upper bound for
P (ρ).

6.2. Scaling function f(·). Combining the lower bound of P (ρ) in Lemma 6.2
and its upper bound in Lemma 6.5, we have

n2ω
2/n
n A(2n−2)/n(ρ)

|A′(ρ)| ≤ 2σ−2e−
∫

ρ
0
σ−2G(η) dη

∫ ρm

ρ

|A′(ξ)| e
∫

ξ
0
σ−2G(η) dη dξ(6.8)

for ρ ∈ [0, ρm]. Define a nonnegative function h(ρ), ρ ∈ [0, ρm], as

h(ρ) :=
2σ−2|A′(ρ)|e−

∫ ρ
0
σ−2G(η) dη

n2ω
2/n
n A(2n−2)/n(ρ)

∫ ρm

ρ

|A′(ξ)|e
∫

ξ
0
σ−2G(η) dη dξ.(6.9)

Lemma 6.6. The function h(ρ) satisfies h(ρ) ≥ 1 for all ρ ∈ [0, ρm]. Moreover,
as ρ → ρm, h(ρ) will converge to a finite value. As a result, h(ρ) is integrable on
[0, ρm].

The conclusion that h(ρ) ≥ 1 is immediate from (6.8) and the definition of h(ρ)
in (6.9). The rest of the conclusions can be proved by following the same steps as in
the proof of Lemma A.1, which is omitted here.

Finally, we are able to define the scaling function f(ρ) as

f(ρ) :=

∫ ρ

0

h(ξ) dξ ∀ρ ∈ [0, ρm].(6.10)

Using Lemma 6.6, we obtain the following important properties of f(ρ).
Corollary 6.7. The function f(ρ) defined in (6.10) is a bounded, continuous,

and strictly increasing function on [0, ρm], and it satisfies f(0) = 0 and f(ρ) ≥ ρ,
ρ ∈ [0, ρm].
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7. Proof of Proposition 4.6. With the construction of the scaling function
f(·), we now prove Proposition 4.6. Assume V ∈ V(Ω̄) is a function defined on the
domain Ω̄ with range [0, ρm]. Recall that the symmetrization of V results in a radially
symmetric function V � defined on the domain Ω̄� = B̄(a), a ball with the radius a
such that

ωna
n = |B̄(a)| = |Ω̄|, i.e., a = ω−1/n

n |Ω̄|1/n.

By Lemma 5.3, V �(x) is continuous, has the range [0, ρm], and decreases monotonically
from ρm to 0 as ‖x‖ increases from 0 to a. Let f(ρ), ρ ∈ [0, ρm], be the scaling function
given in (6.10). Define the function V ∗ on Ω̄∗ := Ω̄� as V ∗ = f ◦ V �, i.e.,

V ∗(x) = f [V �(x)] ∀x ∈ Ω̄∗.(7.1)

Then by Corollary 6.7, V ∗(x) is also radially symmetric and continuous, and it takes
the maximum value f(ρm) at x = 0 and decreases strictly to 0 as ‖x‖ increases to a.

Proposition 7.1. The function V ∗ defined in (7.1) satisfies∫
Ω̄∗

w(V ∗) dx ≥
∫
Ω̄

w(V ) dx,(7.2)

with equality if and only if Ω̄ = Ω̄∗ and V = V ∗.
Proof. By Corollary 6.7, V ∗ = f(V �) ≥ V �; hence w(V ∗) ≥ w(V �) by the

monotonicity of w. Therefore,∫
Ω̄∗

w(V ∗) dx ≥
∫
Ω̄�

w(V �) dx =

∫
Ω̄

w(V ) dx.

Here the last step follows from Lemma 5.3. In order to have equality in (7.2), we
must have f(ρ) = ρ, i.e., h ≡ 1 a.e. on [0, ρm]. Thus equality holds a.e. in (6.8), and
hence in (6.4) and (6.7) as well. This is possible if and only if the ρ-level set Cρ of V
is a sphere for almost all ρ, or equivalently, V is radially symmetric on Ω̄.

Since V ∗(x) is symmetric, its representation in the polar coordinates is simply
V ∗(r), where r := ‖x‖ ∈ [0, a]. The following lemma characterizes V ∗(r) precisely.

Lemma 7.2. For each r ∈ [0, a], V ∗(r) = f(ρ), where ρ ∈ [0, ρm] is given by

ωnr
n = A(ρ).(7.3)

Proof. By the discussion at the end of section 5, for each ρ ∈ [0, ρm], the f(ρ)-
superlevel set of V ∗(x), which is a ball B̄(r) of a certain radius r, is the symmetrization
of the ρ-superlevel set Dρ of V (x). Thus, B̄(r) and Dρ should have the same volume,
ωnr

n = |B̄(r)| = |Dρ| = A(ρ), which is exactly (7.3).
Note that (7.3) can be thought of as a coordinate transform whose differential is

nωnr
n−1dr = A′(ρ)dρ ⇒ dρ

dr
=

nωnr
n−1

A′(ρ)
.(7.4)

We next compute the integral
∫
Ω̄∗

(1+σ2

2 ΔV ∗)2

‖∇V ∗‖2 dx. The computation can be greatly

simplified by noting the radial symmetry of V ∗(x). We first derive ∇V ∗ in polar
coordinates. It is always of the inward radial direction (see Figure 6.1(a)), with a
magnitude

‖∇V ∗‖ =

∣∣∣∣dV ∗(r)

dr

∣∣∣∣ =
∣∣∣∣df(ρ)dr

∣∣∣∣ =
∣∣∣∣df(ρ)dρ

dρ

dr

∣∣∣∣ =
∣∣∣∣h(ρ)nωnr

n−1

A′(ρ)

∣∣∣∣ .
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Note that (7.4) is used in deriving the last step. Furthermore, since by (7.3), rn−1 =
(rn)(n−1)/n = [ω−1

n A(ρ)](n−1)/n, and h(ρ) is given in (6.9), we have

‖∇V ∗‖ =
nω

1/n
n A(n−1)/n(ρ)h(ρ)

|A′(ρ)| =
2σ−2e−

∫
ρ
0
σ−2G(η) dη

nω
1/n
n A(n−1)/n(ρ)

∫ ρm

ρ

|A′(ξ)|e
∫

ξ
0
σ−2G(η) dη dξ.

(7.5)

Taking the square of (7.5) and plugging in G(ρ) and Q(ρ) as in (6.5), we get

‖∇V ∗‖2 =
σ−4G2(ρ)

Q(ρ)|A′(ρ)|e
−2

∫
ρ
0

σ−2G(η) dη

[∫ ρm

ρ

|A′(ξ)|e
∫

ξ
0
σ−2G(η) dη dξ

]2
.(7.6)

An important implication of (7.5) is that ‖∇V ∗‖, and hence ∇V ∗, is continuous
and nonzero everywhere on Ω̄ except possibly at x = 0. Thus, it is meaningful to
further compute higher derivatives, such as ΔV ∗. In polar coordinates, we have

ΔV ∗ =
1

rn−1

d

dr

[
rn−1 dV

∗(r)

dr

]
=

1

rn−1

dρ

dr

d

dρ

[
rn−1h(ρ)

dρ

dr

]

=
nωn

A′(ρ)

d

dρ

[
nω(2−n)/n

n

A(2n−2)/n(ρ)

A′(ρ)
h(ρ)

]

=
2σ−2

|A′(ρ)|
d

dρ

[
e−

∫
ρ
0
σ−2G(η) dη

∫ ρm

ρ

|A′(ξ)|e
∫

ξ
0
σ−2G(η) dη dξ

]

= −2σ−2 − 2σ−4G(ρ)

|A′(ρ)| e−
∫ ρ
0
σ−2G(η) dη

∫ ρm

ρ

|A′(ξ)|e
∫ ξ
0
σ−2G(η) dη dξ.(7.7)

Therefore,

1 +
σ2

2
ΔV ∗ = −σ−2G(ρ)

|A′(ρ)| e−
∫ ρ
0
σ−2G(η) dη

∫ ρm

ρ

|A′(ξ)|e
∫ ξ
0
σ−2G(η) dη dξ ≤ 0.(7.8)

Combining (7.6) and (7.8) yields

(1 + σ2

2 ΔV ∗)2

‖∇V ∗‖2 =
Q(ρ)

|A′(ρ)| .(7.9)

Integrating (7.9) over Ω̄∗ and using its radial symmetry, we have

∫
Ω̄∗

(1 + σ2

2 ΔV ∗)2

‖∇V ∗‖2 dx =

∫ a

0

(1 + σ2

2 ΔV ∗)2

‖∇V ∗‖2 nωnr
n−1 dr

=

∫ ρm

0

Q(ρ)

|A′(ρ)| · |A
′(ρ)| dρ

=

∫ ρm

0

Q(ρ) dρ < ∞.(7.10)

A comparison of the above equation with (A.1) leads to the following result.
Proposition 7.3. The function V ∗ defined in (7.1) satisfies

∫
Ω̄∗

(1 + σ2

2 ΔV ∗)2

‖∇V ∗‖2 dx =

∫
Ω̄

(1 + σ2

2 ΔV )2

‖∇V ‖2 dx.
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We now complete the proof of Proposition 4.6. The function V ∗ constructed
in (7.1) is a radially symmetric function defined on the ball Ω̄∗, and Ω̄∗ = Ω̄� has
the same volume as Ω̄. In view of Propositions 7.1 and 7.3, V ∗ also satisfies both
the conditions (4.5) and (4.6). It remains to show that V ∗ ∈ V(Ω̄∗). Obviously,
V ∗ satisfies the first property of Definition 4.3. From (7.5) and (7.7), it can be
seen that V ∗ ∈ C1(Ω̄∗) and is second order differentiable a.e. on Ω̄∗. Let u∗ be the
control on Ω̄∗ corresponding to V ∗. Then u∗ must be radially symmetric and satisfy

−u∗ · ∇V ∗ = 1+ σ2

2 ΔV ∗. From the radial symmetry of both u∗ and ∇V ∗, we obtain

‖u∗‖2 =
(1 + σ2

2 ΔV ∗)2

‖∇V ∗‖2 .

Hence u∗ ∈ L2(Ω̄∗;Rn) by (7.10). Furthermore, by (7.9),

‖u∗‖2 =
Q(ρ)

|A′(ρ)| =
∫
Cρ

‖u‖2‖∇V ‖−1 dσ∫
Cρ

‖∇V ‖−1 dσ
≤ sup

x∈Ω̄

‖u(x)‖2 < ∞.(7.11)

This implies that supΩ̄ ‖u∗‖ ≤ supΩ̄ ‖u‖ and thus that u∗ is admissible. Finally,

the fact that 1 + σ2

2 ΔV ∗ ≤ 0 is established in (7.8). This completes the proof of
Proposition 4.6.

Remark 7.4. From the above derivation, V ∗ and u∗ satisfy ‖u∗‖L∞ ≤ ‖u‖L∞,
‖u∗‖L2 = ‖u‖L2, ‖V ∗‖L∞ ≥ ‖V ‖L∞ , and ‖V ∗‖L2 ≥ ‖V ‖L2.

8. Generalized W (u). The definition of W (u) in (2.7) can be generalized to

Wμ(u) :=

∫
Ω̄

μw(V ) dx,

where μ : Ω̄ → R+ is an integrable weight function on Ω̄. W (u) reduces to Wμ(u) if
μ ≡ 1. With this new definition, Problems 1 and 2 can be generalized accordingly.

Corollary 8.1. Suppose that Ω̄ is a ball and μ : Ω̄ → R+ is radially symmetric.
Consider Problems 1 and 2 on Ω̄ with the generalized Wμ(u) replacing W (u). Then
the conclusions in Theorem 3.1 still hold.

Proof. For any V ∈ V(Ω̄) that is not radially symmetric, let V ∗ and u∗ be as
constructed in section 7. Then J(u∗) = J(u) by Proposition 7.3, and

Wμ(u
∗) =

∫
Ω̄

μw(V ∗) dx >

∫
Ω̄

μw(V �) dx =

∫
Ω̄

μ�[w(V )]� dx ≥
∫
Ω̄

μw(V ) dx = Wμ(u)

by the Hardy–Littlewood inequality in Lemma 5.3. Thus, u∗ is a better solution.

9. Numerical solutions on radially symmetric domains. Suppose Ω̄ =
B̄(a), a > 0, is a ball in R

n. By Theorem 3.1, the optimal solutions u and V to
Problem 1, if they exist, are symmetric. We can thus focus on such u and V ,

u(x) = −ũ(r)
x

r
, V (x) = Ṽ (r),

for some functions ũ, Ṽ : [0, a] → R, where r = ‖x‖. By Lemma 4.1, ũ ≥ 0. Due to
the symmetry of u and V , the costs J(u) and W (u) can be written as

J(u) =

∫ a

0

nωnr
n−1ũ2 dr, W (u) =

∫ a

0

nωnr
n−1Ṽ dr.
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Here we assume w(·) is the identity function and σ = 1. Then, the PDE (2.3) becomes

Ṽ ′′ +

(
n− 1

r
− 2ũ

)
Ṽ ′ + 2 = 0 ∀r ∈ (0, a], Ṽ ′(0) = 0, V (a) = 0.(9.1)

Note that Ṽ ′(0) = 0 as V achieves its maximum at x = 0 and is differentiable in Ω,
and hence at x = 0, by Lemma 2.1. Thus, Problem 1 is equivalent to

maximize

∫ a

0

nωnr
n−1Ṽ dr subject to (9.1),

∫ a

0

nωnr
n−1ũ2 dr ≤ J0, ũ ∈ [0,M ].

(9.2)

Let M be finite. We first obtain an upper bound on the optimal Ṽ . Let uM =
−M x

r (i.e., ũM ≡ M) be the most aggressive symmetric feasible control (which may

have a cost larger than J0), and let ṼM be the corresponding solution to (9.1),

Ṽ ′′
M +

(
n− 1

r
− 2M

)
Ṽ ′
M + 2 = 0 ∀r ∈ (0, a], Ṽ ′

M (0) = 0, VM (a) = 0.(9.3)

Lemma 9.1. ṼM is bounded with ṼM (0) ≤ a
nM e2Ma < ∞.

Proof. Fix a small ε > 0. Multiplying (9.3) by εn−1e
∫ r
ε
(n−1

r −2M) dr = rn−1e−2M(r−ε)

and integrating from ε to r, we have [rn−1e−2M(r−ε)Ṽ ′
M ]rε+2

∫ r

ε sn−1e−2M(s−ε) ds = 0.

Let ε → 0 and note that Ṽ ′
M (0) = 0. Then the above implies

Ṽ ′
M (r) = −2r1−ne2Mr

∫ r

0

sn−1e−2Ms ds.

Since ṼM (a) = 0, we can integrate the above equation from r to a to obtain

ṼM (r) =

∫ a

r

2r1−ne2Mr

∫ r

0

sn−1e−2Ms ds dr.(9.4)

Thus, ṼM (r) ≤ ṼM (0) ≤
∫ a

0
2r1−ne2Mr

∫ r

0
sn−1 ds dr ≤ 2

n

∫ a

0
re2Mr dr ≤ a

nM e2Ma.
Remark 9.2. Another implication of (9.4) is that

ṼM (r) ≥
∫ a

r

2r1−ne2Mr

∫ r/2

0

sn−1e−Mr ds dr =
21−n

n

∫ a

r

reMr dr

=
1−Mr

n2n−1M2
eMr +

Ma− 1

n2n−1M2
eMa.

As M → ∞, the last term as a function of r will diverge to +∞ for any r ∈ [0, a),
implying that W (uM ) → ∞. This shows that, in Problem 1, if M and J0 are large
enough, the aggregated expected exit time W (u) can be made arbitrarily large.

By Lemma 4.2, ṼM in (9.4) is an upper bound for the optimal Ṽ in problem (9.2).
Corollary 9.3. The solution Ṽ to problem (9.2) satisfies Ṽ (r) ≤ ṼM (r), r ∈

[0, a], where ṼM is defined as in (9.4). In particular, Ṽ (r) ≤ a
nM e2Ma for all r ∈

[0, a].
We now show that solutions to the problem (9.2) exist for finite M .
Corollary 9.4. Suppose M is finite. Then bounded solutions to the variational

problem (9.2) exist.
Proof. Let ũn be a sequence satisfying 0 ≤ ũn ≤ M ,

∫ a

0
nωnr

n−1ũ2
n dr ≤ J0,

and that
∫ a

0 nωnr
n−1Ṽn dr converges to the maximum value achieved by the solution
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to (9.2) as n → ∞. By the weak compactness of L2-balls [25], a subsequence ũnk

converges weakly to some ũ∗ in the same L2-ball, i.e.,
∫ a

0 nωnr
n−1(ũ∗)2 dr ≤ J0, and,

as a result of weak convergence, we have 0 ≤ ũ∗ ≤ M a.e. Let Ṽnk
be the solutions

to (9.1) for ũnk
, which are continuous nonincreasing functions bounded from above by

Corollary 9.3. Then, by finding a subsequence if necessary, we can assume Ṽnk
con-

verges pointwise a.e. (hence in L2 as well) to a continuous nonincreasing function Ṽ ∗.
Thus,

∫ a

0
nωnr

n−1Ṽ ∗ dr = limn→∞
∫ a

0
nωnr

n−1Ṽ ∗
n dr achieves the maximum value in

the problem (9.2). Since the homogeneous version of (9.1) does not admit nonzero
solutions, by [5, Theorem 6.4], Ṽ ∗ must be the unique solution to (9.1) for ũ∗. Hence,
the pair ũ∗ and Ṽ ∗ is indeed a solution to the problem (9.2).

To solve (9.2), define z1 := Ṽ , z2 := Ṽ ′, and z3 :=
∫ r

0 rn−1ũ2 dr. Then⎧⎪⎨
⎪⎩
z′1 = z2, z1(a) = 0,

z′2 = −
(
n−1
r − 2ũ

)
z2 − 2, z2(0) = 0,

z′3 = rn−1ũ2, z3(0) = 0, z3(a) =
J0

nωn
.

(9.5)

Problem (9.2) is reformulated as an optimal control problem for the one-dimensional
dynamical system (9.5) with control ũ and the cost function

∫ a

0
rn−1z1 dr. This is a

two-point boundary value problem on r ∈ [0, a], with singularity at the left boundary
0.

Define the Hamiltonian H := rn−1z1+λ1z2−λ2

(
n−1
r − 2ũ

)
z2−2λ2+λ3r

n−1ũ2,

where λi, i = 1, 2, 3, are costates with dynamics λ′
i = −∂H

∂zi
. Thus λ3 is a constant,

λ′
1 = −rn−1 with λ1(0) = 0 (implying λ1 = − rn

n ), and

λ′
2 = λ2

(
n− 1

r
− 2ũ

)
+

rn

n
, λ2(a) = 0.(9.6)

By the maximum principle [23], the optimal control is given by

(9.7) ũ = argminũ∈[0,M ]H = max
{
min

{
−λ2λ

−1
3 r1−nz2, M

}
, 0
}
.

Plugging (9.7) into (9.6) and the last two equations of (9.5), we obtain a system of
three ODEs with two unknown parameters λ3 and z2(a), which can be determined
by the shooting method, i.e., integrating the ODEs backward from r = a to r = 0
and iterating until z2(0) = z3(0) = 0. Due to the singularity at r = 0, numerical
integration is carried out only from r = a to r = ε for some small ε > 0. The optimal
ũ and Ṽ = z1 can be obtained from (9.7) and (9.5), respectively.

In Figure 9.1, we plot the computed optimal solutions to Problem 1 in the one-
dimensional case (n = 1) on Ω̄ = [−1, 1], with the control cost J0 = 10, for M = 2.5
(left) and a large M > 3 (right). In both cases, the optimal controls ũ, shown in
the upper figures, are roughly symmetric around r = 0.5 and vanish at the center
(r = 0) and the boundary (r = 1) of Ω̄. Moreover, the control magnitude is capped
at M if M < 3 and at 3 for any large M > 3. This indicates that even for M = ∞,
with J0 = 10, Problem 1 still admits a bounded control, shown in the upper right of
Figure 9.1, as its solution.

Figure 9.2 plots the solutions on the unit ball in the two-dimensional space (n = 2)
with J0 = 15 and M = 2.5 (left) and a large M (right). The optimal controls u vanish
at the center and boundary as in the one-dimensional case, but is no longer symmetric
around r = 0.5. Moreover, for very largeM , the optimal u is capped at approximately
4.4, indicating a bounded optimal u even for the M = ∞ case.

For the three-dimensional unit ball (n = 3), the solutions for Problem 1 with
J0 = 11 are plotted in Figure 9.3 for M = 10 and M = 100, respectively. The
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Fig. 9.1. Solutions ũ and Ṽ for dimension n = 1 with control cost J0 = 10 and different M .
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Fig. 9.2. Solutions ũ and Ṽ for dimension n = 2 with control cost J0 = 15 and different M .
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Fig. 9.3. Solutions ũ and Ṽ for dimension n = 3 with control cost J0 = 11 and different M .
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observation that the optimal control vanishes at the center and boundary still holds
true in both cases (which is hard to see in the upper right figure but will become clear if
plotted in semilog axis). However, asM increases, unlike the one- and two-dimensional
cases, the maximal magnitude of the optimal control u will grow unboundedly, and the
corresponding W (u) will also grow to infinity. As a result, Problem 1 with J0 = 11
and M = ∞ does not admit a bounded solution u, and the optimal W (u) can be
made arbitrarily large. In this case, the limiting optimal control u as M → ∞ has
an impulse at r = 0, and the impulsive control method in [16, 29] may be used to
characterize it. This will be investigated in our future work.

10. Conclusions. In this paper, the method of symmetrization is applied to
study the optimal sojourn time control problem and its dual problem. It is found that
the optimal solutions to both problems are radially symmetric when the domain under
consideration is a ball. Furthermore, among all domains with the same volume, balls
are the best in generating the most efficient control for sojourn time maximization.
Several extensions of the results are given and numerical simulations are presented.

Appendix A. Proof of Lemma 6.3. We first characterize the asymptotic
speed at which G(ρ) → ∞ as ρ approaches ρm from below.

Define δ = ρm−ρ ≥ 0. Then δ → 0 as ρ → ρm. For a function p(ρ) ≥ 0 and a real
number α, the notation p(ρ) = Θ(δα) means that p(ρ) and δα are of the same asymp-
totic order, i.e., 0 < lim infρ→ρm p(ρ)/δα ≤ lim supρ→ρm

p(ρ)/δα < ∞, while the nota-
tion p(ρ) = O(δα) means that 0 ≤ lim infρ→ρm p(ρ)/δα ≤ lim supρ→ρm

p(ρ)/δα < ∞.

Lemma A.1. As ρ → ρm, G(ρ) = O(δ−1/2).
Proof of Lemma A.1. By Assumption 4.4, Cρm consists of nondegenerate critical

points only. Without loss of generality, we can assume Cρm consists of a single point
z. Then ∇V (z) = 0, and the Hessian ∇2V (z) is negative definite. Choose a suit-
able orthonormal coordinate near z so that ∇2V (z) = −Σ = diag (−σ1, . . . ,−σn) is
diagonal for some σ1, . . . , σn > 0. Note that

∑n
i=1 σi = 2 as 1 + 1

2ΔV = 0 at z.
Since V (x) can be expanded as ρm − 1

2 (x − z)TΣ(x − z)+ higher order terms
for x close to z, if δ = ρm − ρ is small, Dρ can be approximated by an ellipsoid
{x| 12 (x − z)TΣ(x − z) ≤ δ} centered at z, and Cρ by the boundary of the ellipsoid.

Thus the volume of Dρ satisfies A(ρ) = Θ(δn/2) with a derivative satisfying |A′(ρ)| =
Θ(δ(n−2)/2), and the area of Cρ is Θ(δ(n−1)/2). For x ∈ Cρ, ‖x − z‖ = Θ(δ1/2).
Hence the fact that ∇V (z) = 0 and ∇2V (z) �= 0 implies that ‖∇V (x)‖ = Θ(‖x −
z‖) = Θ(δ1/2). In addition, since 1 + 1

2ΔV = −u · ∇V and u is bounded, we have∣∣1 + 1
2ΔV

∣∣ = |u · ∇V | = O(‖∇V ‖) = O(δ1/2) for x ∈ Cρ.

To sum up, as ρ → ρm, Q(ρ) defined in (6.5) is of the order Θ(δ(n−1)/2) ·
[O(δ1/2)]2/[Θ(δ1/2)]3, i.e., O(δ(n−2)/2), while G(ρ) is of the order [Θ(δ(n−2)/2)]1/2 ·
[O(δ(n−2)/2)]1/2/[Θ(δn/2)](n−1)/n = O(δ−1/2).

We now return to the proof of Lemma 6.3. The integrability of Q(ρ) follows
immediately from the following:

∫ ρm

0

Q(ρ) dρ =

∫ ρm

0

∫
Cρ

(1 + σ2

2 ΔV )2

‖∇V ‖2 ‖∇V ‖−1dσ dρ =

∫
Ω̄

(1 + σ2

2 ΔV )2

‖∇V ‖2 dx < ∞,

(A.1)

where we have used Lemma 6.1 and (4.4). For the integrability of G(ρ), first note that,
by Lemma A.1, G(ρ) = O(δ−1/2) as ρ → ρm; hence G(ρ) is integrable on [ρm − ε, ρm]
for ε small enough. On the other hand, applying the Cauchy–Schwarz inequality and
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noting that A(ρ) is strictly decreasing, we get

∫ ρm−ε

0

G(ρ) dρ ≤ 2

nω
1/n
n A(n−1)/n(ρm − ε)

∫ ρm−ε

0

|A′(ρ)|1/2 Q1/2(ρ) dρ

≤ 2

nω
1/n
n A(n−1)/n(ρm − ε)

(∫ ρm−ε

0

|A′(ρ)| dρ
)1/2

·
(∫ ρm−ε

0

Q(ρ) dρ

)1/2

< ∞,

as both |A′(ρ)| and Q(ρ) are integrable. Therefore, G(ρ) is integrable on [0, ρm].

Appendix B. Proof of Lemma 6.5. Let ρ ∈ S be arbitrary. By Lemma 6.2,

1

4
P (ρ)G2(ρ) = P (ρ)

|A′(ρ)|
n2ω

2/n
n A(2n−2)/n(ρ)

Q(ρ) ≥ Q(ρ).

The square root of the above inequality yields

1

2
P 1/2(ρ)G(ρ) ≥ Q1/2(ρ).

Applying Lemma 6.4, we have, for almost all ρ ∈ S,

1

2
P (ρ)G(ρ) = P 1/2(ρ) · 1

2
P 1/2(ρ)G(ρ) ≥ P 1/2(ρ) ·Q1/2(ρ) ≥ A′(ρ)− σ2

2
P ′(ρ),

or equivalently,

−P ′(ρ)− σ−2P (ρ)G(ρ) ≤ 2σ−2|A′(ρ)|.

A Gronwall-like inequality about P (ρ) can be derived as follows. First note that

d

dξ

[
−P (ξ) e

∫ ξ
0
σ−2G(η) dη

]
=
[
−P ′(ξ)− σ−2P (ξ)G(ξ)

]
e
∫ ξ
0
σ−2G(η) dη

≤ 2σ−2|A′(ξ)|e
∫

ξ
0
σ−2G(η) dη

a.e. on S. Since P (ρ) e
∫

ρ
0

σ−2G(η) dη is differentiable on S and the set S is open and
dense in [0, ρm], we can integrate the above inequality from ρ to ρm to obtain, noting

that P (ρm) = 0 and e
∫ ρm
0

σ−2G(η) dη is finite,

P (ρ) e
∫

ρ
0
σ−2G(η) dη ≤ 2

∫ ρm

ρ

σ−2|A′(ξ)|e
∫

ξ
0
σ−2G(η) dη dξ.

By the continuity of both sides with respect to ρ ∈ [0, ρm], the above inequality is
valid for all ρ ∈ [0, ρm]. This completes the proof.
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