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Abstract

This paper studies the quadratic optimal control problem for the discrete-time
switched linear stochastic system with nonautonomous subsystems perturbed by
Gaussian random noises. The goal is to jointly design a deterministic switch-
ing sequence and a continuous feedback law to minimize the expectation of a
finite-horizon quadratic cost function. Both the value function and the optimal
control strategy are characterized analytically. A numerical relaxation frame-
work is developed to efficiently compute a control strategy with a guaranteed
performance upper bound. It is also proved that by choosing the relaxation
parameter sufficiently small, the performance of the resulting control strategy
can be made arbitrarily close to the optimal one.
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1. Introduction

The study of switched systems has gained considerable momentum in re-
cent years, resulting in numerous methods and tools for their analysis and de-
sign [4, 7, 13, 17]. A majority of these methods are based on deterministic
models for subsystem dynamics. However, uncertainty is ubiquitous in realistic
system models. Roughly speaking, there are two ways to handle uncertainties.
The first one is to estimate a priori conservative bounds for the uncertainties
and design the control strategy with an acceptable performance even in the
worst-case scenario. Such a viewpoint is predominant in the previous studies
of switched uncertain systems. For example, in [10, 14], some convex condi-
tions are established for quadratic and asymptotic stabilizability of switched
linear systems with bounded parametric uncertainties. In [18], an L2 controller
synthesis method is proposed for switched linear systems with both parametric
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uncertainties and exogenous disturbances. A robust controller synthesis method
is proposed in [16] for a special class of switched nonlinear systems with gen-
eral norm-bounded disturbances. On the other hand, instead of considering the
worst case, one can also describe uncertainties using stochastic models, and de-
sign a control strategy to meet certain design criteria in the probabilistic sense.
In [12], the switched linear Gaussian system is studied and some convex con-
ditions are derived for the existence of a finite-path-dependent state-feedback
controller which achieves certain required expected output-regulation level.

This paper focuses on the discrete-time switched linear Gaussian systems
(SLGS) with nonautonomous subsystems perturbed by Gaussian random noises.
The goal is to jointly design a deterministic switching sequence and a continu-
ous feedback law to minimize the expectation of a finite-horizon quadratic cost
function along the closed-loop trajectory. When making the control decision,
we assume that the continuous control has access to the noisy measurements
of the continuous state, while the switching control is determined at time zero
based on the covariance of the initial continuous state. It is worth mentioning
that this problem is related to but substantially different from the quadratic
optimal control problem of the Markovian jump linear system (MJLS) that has
been extensively studied in the literature [6, 8, 9]. For the MJLS, the switching
sequence is modeled as a Markov chain that evolves according to some given
transition probability matrix, while for the SLGS, the switching sequence is a
control variable that can be chosen freely to minimize the cost function.

In [15], a pruning algorithm was proposed to compute a suboptimal switch-
ing sequence and a continuous control law for a SLGS. Our contribution be-
yond [15] is mainly twofold. Firstly, analytical characterizations are derived
for both the value function and the optimal control strategy using the switched
Riccati sets, which was originally introduced to study the switched LQR prob-
lem [19]. These analytical expressions reveal several important properties of
the underlying problem. It is shown that the optimal continuous control law at
each time step is a linear function of the continuous state, the optimal switching
control at each time step depends only on the covariance matrix of the system
state, and the value function is a piecewise affine function of the covariance ma-
trix of the initial state. Secondly, a relaxation scheme is developed to efficiently
compute a suboptimal hybrid-control strategy. It is shown that by choosing a
sufficiently small relaxation parameter, the cost associated with the resulting
control strategy can be made arbitrarily close to the optimal one.

This paper is organized as follows. The quadratic optimal control problem
to be studied is formulated in Section 2. Its value function and optimal control
strategy are derived analytically in Section 3 and some related properties are
also discussed. In Section 4, a numerical relaxation framework is proposed
and a performance upper bound of the resulting controller is derived. Several
simulation examples are given in Section 5.

Notations: Let n, d, M , p and N be some positive integers. Denote by
Z+ the set of positive integers, by A the set of positive semidefinite (p.s.d.)
matrices, by 2A the power set of A, and by Id and In the identity matrices of
dimension d and n, respectively. Let M , {1, . . . ,M} be the set of subsystem
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Figure 1: A supervisory control example.

indices, TN , {0, . . . , N −1} be the control horizon, ‖ · ‖ be the Euclidean norm
of a given vector as well as the matrix norm induced by the Euclidean norm, and
λmin(·) be the smallest eigenvalue of a p.s.d. matrix. We write P ≻ 0 (P � 0)
if P is strictly positive definite (semidefinite).

2. Problem Formulation

2.1. A Motivating Example

As a motivating example, we consider a supervisory control problem as
shown in Fig. 1. Suppose that the process dynamics and the measurement
equation are given by:

{

z(t+ 1) = Az(t) +Bu(t) + Fw1(t)

x(t) = z(t) +Gw2(t),

where A, B, F andG are constant matrices of appropriate dimensions, and w1(t)
and w2(t) are two independent standard Gaussian processes on R

d. Suppose
that M different linear controllers, characterized by the feedback gains {Ki}

M
i=1,

are given a priori. On top of the linear controllers, there is a supervisory unit
that determines which linear controller is being used at each time instant. If
controller v(t) is selected at time t, then the overall dynamics of the measured
state x(t) is given by

x(t+ 1) =
(

A+BKv(t)

)

x(t) +Gw2(t+ 1) + Fw1(t)−AGw2(t).

Let Ãi = A + BKi, i ∈ M and denote by F̃ the square root of the covariance
matrix of Gw2(t + 1) + Fw1(t) − AGw2(t). Then the above dynamical system
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is equivalent to

x(t+ 1) = Ãv(t)x(t) + F̃ w̃(t),

for some standard Gaussian process w̃(t) on R
d.

Due to the randomness of the measurement, the switching sequence should
be selected based on some statistical information of the system instead of the
particular noisy measurement of the system state. Since the closed-loop system
is a linear Gaussian process, the covariance matrix of x(t) captures all the
probabilistic behavior of the system. Therefore, an interesting problem is to
design a switching sequence based on the current state covariance matrix to
minimize the expectation of a quadratic cost function over a certain look-ahead
horizon. This is a special case of the general problem to be introduced in the
next subsection.

2.2. General Problem Statement

Suppose the state measurement of a dynamical process can be described by
the following discrete-time switched linear stochastic system:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t) + Fv(t)w(t), (1)

where at each time t ∈ TN , x(t) ∈ R
n is the continuous state, u(t) ∈ R

p is
the continuous control, v(t) ∈ M is the switching control that determines the
discrete mode of the system, and w(t) ∈ R

d is the disturbance. For each i ∈ M,
Ai, Bi and Fi are constant matrices of appropriate dimensions. Let Σi = FiF

T
i

for each i ∈ M and define

u , (u(0), . . . , u(N − 1)) and v , (v(0), . . . , v(N − 1)).

We assume that {w(t)}t∈TN
is a d-dimensional standard Gaussian process de-

fined on the probability space (Ω,F ,P), and the initial state x(0) is a zero-mean
Gaussian on (Ω,F ,P) that is independent of w(t) for any t ∈ TN , with covari-
ance matrix φ. Let {Ft}t∈TN

be the filtration associated with the measured
state sequence {x(t)}t∈TN

. Denote by E(·) the expectation with respect to the
probability measure P.

The goal is to regulate the system state with a reasonable control cost subject
to the random disturbances. When making the control decision, we assume that
the continuous control sequence {u(t)}t∈TN

is adapted to the filtration {Ft}t∈TN
,

i.e., u(t) is measurable with respect to Ft, for each t ∈ TN , while the switching
control sequence {v(t)}t∈TN

is deterministic. In other words, the continuous
control has full access to the measured continuous state x(t), while the switching
control is determined deterministically at time t = 0. These assumptions are
particularly useful when we have a group of feedback controllers and try to
jointly design both their feedback laws and their deterministic scheduling to
improve the regulation performance. Denote by UN the set of all the Rp-valued
sequences that are adapted to the filtration {Ft}t∈TN

and by M
N the set of all

the possible deterministic switching sequences of length N . The performance
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of the sequences u ∈ UN and v ∈ M
N can be measured by the following cost

function:

JN (φ;v,u)=E
[

x(N)TQfx(N) +

N−1
∑

t=0

(

x(t)TQv(t)x(t) + u(t)TRv(t)u(t)
) ]

, (2)

where {Qi}i∈M, {Ri}i∈M, and Qf are weighting matrices of appropriate di-
mensions. Denote λ−

Q = mini∈M{λmin(Qi)} and λ−
R = mini∈M{λmin(Ri)}. We

assume that the weighting matrices are chosen so that λ−
Q > 0 and λ−

R > 0. The
goal of this paper is to solve the following problem.

Problem 1. Find v ∈ M
N and u ∈ UN to minimize JN (φ;v,u) subject to the

dynamical equation (1) with initial distribution x(0) ∼ N (0, φ).

3. Analytical Solution Using Dynamic Programming

Problem 1 is a Markov decision problem that can be solved using dynamic
programming. The value function associated with this problem is determined
by the initial covariance matrix instead of some particular value of the initial
state. For a generic initial covariance φ ∈ A and a nonnegative integer k ∈ Z+,
the k-horizon value function is defined by

Vk(φ) = min
u∈Uk,v∈Mk

Jk(φ;u,v). (3)

The goal of this section is to derive analytical expressions for the N -horizon
value function VN (φ) and the corresponding optimal controls (u∗,v∗).

3.1. Analytical Value Function

Let ρi : A → A denote the Riccati mapping of subsystem i ∈ M, i.e.,

ρi(P ) =Qi +AT
i PAi −AT

i PBi(Ri +BT
i PBi)

−1BT
i PAi, ∀P ∈ A. (4)

When v ∈ M
N is fixed, system (1) reduces to a stochastic linear time-varying

system. By the standard LQG theory [1], the N -horizon value function of

Problem 1 in this special case is VN (φ) =
∑N

t=0 t r(Ptφ), where {Pt}
N
t=0 is a

sequence of p.s.d. matrices generated by the Riccati recursion:

Pt = ρ
v(t)(Pt+1), t ∈ TN , with P0 = Qf .

Following a similar idea, we can use the Riccati mapping to compute the gen-
eral value function VN by moving backward in time. Starting from the terminal
weighting matrix Qf , after one iteration, we will have M matrices {ρi(Qf )}i∈M

depending on which subsystem is used at time N − 1. Each of these M ma-
trices will again be mapped to another set of M matrices in the next iteration
depending on the subsystem used at time N − 2. Therefore, if we consider all
the possible switching sequences, instead of having a matrix-valued iteration as
in the traditional linear system case, we will have a set-valued iteration that
produces a sequence of sets.
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Definition 1 (Switched Riccati Mapping). The mapping ρM : 2A → 2A

defined by: ρM(H) = {ρi(P ) : i ∈ M and P ∈ H}, ∀H ∈ 2A, is called the
Switched Riccati Mapping (SRM) associated with system (1).

Definition 2 (Switched Riccati Set). The sequence of sets {Sk}
N
k=0 gener-

ated iteratively by Sk+1 = ρM(Sk) with S0 = {Qf} is called the Switched Riccati
Sets (SRS) associated with system (1).

The sequence of switched Riccati sets always starts from the singleton {Qf}
and evolves according to the switched Riccati mapping. It is easy to see that
each matrix in SN corresponds to a matrix generated by the Riccati mapping
along a particular N -horizon switching sequence. As proved in [20], the optimal
strategy and the value function of the discrete-time switched LQR (DSLQR)
problem are exactly characterized by the switched Riccati sets. Following a
similar idea, we can also characterize the value function of Problem 1 using
a variant of the switched Riccati set. Let HN be the set of ordered pairs of
matrices defined recursively by:

H0 = {(Qf , 0)}, and Hk+1 = h(Hk), k ∈ TN

with h(Hk) , {
(

ρi(P ),Γ + PΣi

)

: i ∈ M, (P,Γ) ∈ Hk}.
(5)

The sets {Hk}
N
k=0 defined above are called the characteristic sets associated with

Problem 1 as they completely characterize the value function and the optimal
strategy of Problem 1.

Remark 1. The characteristic set Hk differs from the SRS Sk in its additional
component Γ that captures the accumulated cost over the past k steps.

Theorem 1. The N -horizon value function of Problem 1 is

VN (φ) = min
(P,Γ)∈HN

t r(Pφ+ Γ). (6)

In addition, if u∗(0) and v∗(0) are the optimal continuous control and the opti-
mal switching control at time t = 0 of the N -horizon problem, then

u∗(0) = µ∗
N (x;φ) , −Kν∗

N
(φ)(P

∗
N (φ)) · x(0), and v∗(0) , ν∗N (φ),

where (ν∗N (φ), P ∗
N (φ),Γ∗

N (φ)) = argmin
i∈M,(P,Γ)∈HN−1

tr(ρi(P )φ+ Γ + PΣi),
(7)

and K·(·) denotes the Kalman gain function defined as

proof. The theorem can be proved using induction. When N = 1, we have

V1(φ) = min
v∈M,u∈U

E
[

x(0)TQvx(0) + uTRvu

+ (Avx(0) +Bvu+ Fvw(0))
TQf (Avx(0) +Bvu+ Fvw(0))

]

, (8)
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where U denotes the set of all the R
p-valued random variables that are mea-

surable with respect to F0. Since w(0) is independent of x(0), it can be eas-
ily derived that for each v ∈ M, the optimal continuous control should be
u∗(0) = −Kv(Qf )x(0). Substituting this into the above equation and simplify-
ing the expression yields

V1(φ) = min
v∈M

E
[

x(0)T ρv(Qf )x(0) + w(0)TFT
v QfFvw(0)

]

= min
v∈M

t r
(

ρv(Qf )φ+QfΣv

)

.

Since H0 = {(Qf , 0)} and H1 = {(ρi(Qf ), QfΣi)}i∈M, we have that V1(φ) =
min(P,Γ)∈H1

t r(Pφ+Γ) and the continuous and the discrete controls that achieve
this minimum are given by equation (7). Therefore, the results hold for N = 1.

We now suppose that the results hold for a general positive integer N . Let
v∗(0) and u∗(0) be the optimal switching control and the optimal continuous
control, respectively, at time t = 0 of an (N + 1)-horizon problem. Define

x∗(1) = Av∗(0)x(0) +Bv∗(0)u
∗(0) + Fv∗(0)w(0).

By a standard result of LQG theory, we know that for each fixed switching
control sequence, the optimal system trajectory is a zero-mean Gaussian pro-
cess. In particular, under the optimal deterministic switching sequence v∗, the
optimal state x∗(1) at time t = 1 is a zero-mean Gaussian random variable with
covariance Φ∗(1) = E

(

x∗(1) · x∗(1)T
)

. By the Bellman’s principle of optimality,
we know that

VN+1(φ) = E
[

x(0)TQv∗(0)x(0) + u∗(0)TRv∗(0)u
∗(0) + VN (Φ∗(1))]

= min
(P,Γ)∈HN

{

E
[

x(0)TQv∗(0)x(0) + u∗(0)TRv∗(0)u
∗(0)] + t r(PΦ∗(1) + Γ)

}

= min
(P,Γ)∈HN

{

t r
(

Γ +Qv∗(0)φ
)

+ E
[

u∗(0)TRv∗(0)u
∗(0) + x∗(1)Px∗(1)

]

}

= min
(P,Γ)∈HN

{

t r
(

Γ +Qv∗(0)φ+Σv∗(0)P +AT
v∗(0)PAv∗(0)φ

)

+ E
[

u∗(0)T (Rv∗(0) +BT
v∗(0)PBv∗(0))u

∗(0) + 2x(0)TAT
v∗(0)PBv∗(0)u

∗(0)
]

}

.

Clearly, u∗(0) should minimize the quadratic term inside the square bracket at
the last line, which leads to u∗(0) = −Kv∗(0)(P )x(0). Substituting this into the
above equation, we obtain

VN+1(φ) = min
(P,Γ)∈HN

t r(ρv∗(0)(P )φ+ Γ + PΣv∗(0)).

We shall choose (P,Γ) and v∗(0) to minimize the quantity inside the parentheses
of the above equation, which implies that the optimal discrete and continuous
controls at time t = 0 are as defined in (7). In addition, by the definition of
HN+1, we also have VN+1(φ) = min(P,Γ)∈HN+1

t r(Pφ+ Γ). �
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Remark 2. It is worth mentioning that the value function VN can also be
characterized through the enumeration over all the switching control sequences
v ∈ M

N . The above theorem properly transforms the enumeration over the
switching sequences in M

N to the enumeration over the pairs of matrices in
HN . It will become clear in Section 4 that the expression given by (6) is more
convenient for the analysis and the efficient computation of the suboptimal so-
lutions of Problem 1.

Remark 3. Theorem 1 reveals several important properties of Problem 1. Firstly,
as the trace operation t r(·) is a linear operator, the value function VN is a piece-
wise affine function on the semi-definite cone A. Secondly, the linearity1 of
u∗(0) = µN (x(0);φ) in x(0) implies that the optimal trajectory {x∗(t)}t∈TN

is a
zero-mean Gaussian process. Finally, the optimal switching control at any time
t ∈ TN depends only on the covariance matrix Φ∗(t) = E(x∗(t)x∗(t)T ), while
the continuous control, which has full access to the random continuous state,
depends on both the covariance Φ∗(t) and the value of x∗(t).

3.2. Feedback Policy

It is often beneficial to express the control action at a particular time step as
a feedback law that is determined by certain measurements. Such an expression
depends largely on the information available for making the control decision. For
Problem 1, as mentioned in Remark 3, the optimal switching control depends
only on the covariance of the state, while the optimal continuous control depends
on both the covariance and the value of the state. This motivates us to consider
the feedback laws defined as follows.

For each k = 1, . . . , N , let µk : Rn × A → R
p and νk : A → M be the

continuous-control law and the switching-control law, respectively, applied at
time t = N − k, i.e., with k steps to go. Denote by L the set of all the
continuous-control laws µ(x, φ) that are linear in x and by V the set of all the
switching-control laws. Define the hybrid-control law at time t = N − k as
ξk , (µk, νk) : R

n × A → R
p × M. Denote by πN = {ξN , . . . , ξ1} the N -

horizon hybrid-control policy. According to Theorem 1, to study Problem 1, it
suffices to consider only the policies whose continuous-control law µk ∈ L for
all k = 1, . . . , N . Denote by ΠN the set of all such N -horizon control policies.
A policy πN ∈ ΠN governs the evolution of the system as follows:

{

x(t+ 1) = Aνk(Φ(t))x(t) +Bνk(Φ(t))µk(x(t),Φ(t)) + Fνk(Φ(t))w(t)
Φ(t+ 1) = E(x(t+ 1)x(t+ 1)T ),

(9)

for t ∈ TN and k = N − t. The cost associated with a policy πN ∈ ΠN with

1The linearity of the optimal control is not guaranteed even for some LQG type of prob-
lems [11]. It depends largely on the information structure available for making the optimal
decision.
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initial covariance φ is

JπN
(φ) =E

[

x(N)TQfx(N) +

N−1
∑

t=0

(

x(t)TQνk(Φ(t))x(t)

+ µk(x(t),Φ(t))
TRνk(Φ(t))µk(x(t),Φ(t))

)]

,

where k = N − t and x(t) is the closed-loop trajectory of (9) driven by πN with
initial covariance φ.

Theorem 1 implies that solving Problem 1 is equivalent to finding a policy
πN ∈ ΠN that minimizes JπN

(φ) and the value function VN can also be written
as VN (φ) = minπN∈ΠN

JπN
(φ). Furthermore, the optimal policy that achieves

the minimum cost can also be directly obtained from Theorem 1.

Corollary 1. For each k = 1, . . . , N , let µ∗
k and ν∗k be defined by (7) with N

replaced by k. Then the policy π∗
N = {(µ∗

N , ν∗N ), . . . , (µ∗
1, ν

∗
1 )} is the optimal

policy that achieves the minimum cost VN (φ) for any initial covariance φ ∈ A.

The notion of feedback laws and polices introduced in this subsection allows
us to describe the future evolution of the system only based on the value and
covariance matrix of the current state, which in turn enables a recursive charac-
terization of the value function through the so-called one-stage value iteration.

Vk+1(φ) = min
µ∈L,ν∈V

{

Ex(x, µ(x, φ), ν(φ)) + Vk(Φµ,ν(1;φ))
}

, min
µ∈L,ν∈V

{

L(x, µ(x, φ), ν(φ)) + Vk(Φµ,ν(1;φ))
}

, ∀φ ∈ A, (10)

where x ∼ N (0, φ), Φµ,ν(1;φ) is the covariance of Aν(φ)x+Bν(φ)µ(x, φ), and L ,

Ex simply denotes the expectation operation with respect to the distribution of
x. Note that the operator L can also be viewed as the running cost function of
the value iteration.

4. Efficient Suboptimal Solution

According to (10), at iteration k, the value functions and the optimal feed-
back laws at all the future iterations only depend on the current value function
Vk that is completely characterized by the set Hk. As k increases, since |Hk|
grows exponentially fast, it becomes increasingly challenging to obtain an exact
representation of Vk. A natural way of simplifying the computation is to ig-
nore some less important pairs in Hk to obtain an approximate representation
of Vk. This approximation should be close enough to Vk so that its effect on
the future value iterations is negligible. The goal of this section is to develop an
efficient way to compute a performance-guaranteed approximation of Vk and to
derive an upper bound for the cost associated with the policy generated by the
approximate value functions.
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4.1. Equivalent Subsets and Suboptimal Strategy

To formalize the above idea, we introduce some definitions. Let ǫ = [ǫ1, ǫ0]
T ∈

R
2
+ be the numerical relaxation vector. Each relaxation vector corresponds to

an affine error function gǫ : A → [0,∞) defined as:

gǫ(φ) = ǫ1 t r(φ) + ǫ0. (11)

Hence, for any φ ∈ A, the error function gǫ(φ) → 0 as ‖ǫ‖ → 0. In the rest of
this section, H denotes a generic set of matrix pairs (P,Γ) ∈ A×A.

Definition 3. A pair of matrices (P̃ , Γ̃) ∈ H is called ǫ-redundant with respect
to H if

min
(P,Γ)∈H\{(P̃ ,Γ̃)}

t r(Pφ+ Γ) ≤ gǫ(φ) + min
(P,Γ)∈H

t r
(

Pφ+ Γ
)

, ∀φ ∈ A.

The following lemma provides an equivalent definition of the ǫ-redundancy.

Lemma 1. A pair (P̃ , Γ̃) ∈ H is ǫ-redundant if and only if for any φ ∈ A,
there always exists another pair (P,Γ) ∈ H \ {(P̃ , Γ̃)} such that t r(P̃ φ + Γ̃) ≥
t r(Pφ+ Γ)− gǫ(φ).

proof. Straightforward.

Definition 4 (ǫ-ES). The set Hǫ is called an ǫ-equivalent subset (ǫ-ES) of H
if Hǫ ⊆ H and

min
(P,Γ)∈Hǫ

t r(Pφ+ Γ) ≤ gǫ(φ) + min
(P,Γ)∈H

t r(Pφ+ Γ), ∀φ ∈ A.

The error introduced by removing the ǫ-redundant pairs is no larger than
gǫ(φ). To simplify the computation, at iteration step k, we shall remove as
many ǫ-redundant pairs in Hk as possible. This idea is feasible only when we
have an efficient way to test whether a pair in Hk is ǫ-redundant or not. A
well-known fact on symmetric matrices given in the following lemma is useful
for developing such a test.

Lemma 2. For any P1, P2 and φ ∈ A, if P1 � P2, then t r(P1φ) ≥ t r(P2φ).

With the above lemma, we are able to provide a sufficient condition to test
the ǫ-redundancy.

Lemma 3 (Convex Redundancy Test). A pair (P̃ , Γ̃) ∈ H is ǫ-redundant
in H if there exist nonnegative constants {αi}

l−1
i=1 such that

l−1
∑

i=1

αi = 1,

[

P̃ + ǫ1In 0

0 t r(Γ̃) + ǫ0

]

�
l−1
∑

i=1

αi

[

P (i) 0
0 t r(Γ(i))

]

, (12)

where l = |H| and {(P (i),Γ(i)}l−1
i=1 is an enumeration of H \ {(P̃ , Γ̃)}.
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proof. Let φ ∈ A be arbitrary and suppose that the condition in (12) holds.
By Lemma 2, we know that

t r(P̃ φ) + ǫ1t r(φ) ≥
l−1
∑

i=1

αi · t r(P
(i)φ), and t r(Γ̃) + ǫ0 ≥

l−1
∑

i=1

αi · t r(Γ
(i)).

Hence,

t r(P̃ φ+ Γ̃) + gǫ(φ) ≥
l−1
∑

i=1

αi · t r(P
(i)φ+ Γ(i)) ≥ t r(P (iφ)φ+ Γ(iφ)),

for some iφ ∈ {1, . . . , l− 1}. Since φ is arbitrary, the desired result follows from
Lemma 1. �

Algorithm 1
[

Algoǫ(H
ǫ
k)
]

Set Hǫ

k = ∅.
for each (P,Γ) ∈ Hk do
if (P,Γ) does NOT satisfies the condition in Lemma 3 with respect to
Hǫ

k then
Hǫ

k=Hǫ

k ∪ {(P,Γ)};
end if

end for
Return Hǫ

k.

Checking the condition in Lemma 3 is an LMI feasibility problem [3] and
can be easily solved through convex optimization [2]. Based on this lemma, an
efficient algorithm (Algorithm 1) is developed to compute an ǫ-ES of Hk for
any k ∈ TN . Denote by Algoǫ(Hk) the set returned by this algorithm. The
algorithm can be applied after each iteration in (5) to generate a sequence of
ǫ-relaxed characteristic sets:

Hǫ

0 = {(Qf , 0)} and Hǫ

k+1 = Algoǫ(h(H
ǫ

k)), k ∈ TN . (13)

The sets {Hǫ

k}
N
k=0 generated above typically contain much fewer pairs of

matrices than {Hk}
N
k=0 and are thus much easier to deal with. Intuitively, when

‖ǫ‖ is small, {Hǫ

k}
N
k=0 can also be used in place of {Hk}

N
k=0 to define a control

strategy whose performance is close to the optimal one.

Definition 5. For each positive integer k = 1, . . . , N , let V ǫ

k , µǫ

k and νǫk be
defined by equation (6) and (7) with HN replaced by Hǫ

k and let ξǫk = (µǫ

k, ν
ǫ

k).
Define πǫ

N = {ξǫN , . . . , ξǫ1}. The function ξǫk is called the hybrid-feedback law
generated by the characteristic set Hǫ

k and the policy πǫ

N is called the feedback
policy generated by the sets {Hǫ

k}
N
k=0.

11



In the next subsection, we will show that the relaxed feedback policy πǫ

N is
suboptimal in the sense that by choosing ‖ǫ‖ small enough, the cost Jπǫ

N
(φ) can

be made arbitrarily close to the optimal one VN (φ) for each φ ∈ A. Before doing
this, we use the following example to demonstrate the simplicity of iteration (13).

Example 1.

A1=

[

2 0
1 1

]

, A2=

[

0 1
2 1

]

, A3=

[

0 2
2 0

]

,

B1=

[

1.5
1.5

]

, B2=

[

1
2

]

, B3=

[

2
1

]

,

F1=

[

0.1
0.2

]

, F2=

[

0.2
0.1

]

, F3=

[

0.3
0

]

,

Qf = 0, Qi=I2, Ri=1, i=1, 2, 3, N = 30.

(14)

5 10 15 20 25 30
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4

10
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Horizon k

# 
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 P
ai

rs

 

 

|Hk|

|Hǫ

k
|

10

1013

Figure 2: Complexity growth of Hǫ

k
for Example 1 with ǫ = (10−2, 10−2).

As shown in Fig. 2, a direct computation of Hk will result in a combinatorial
complexity at the order of 1013. However, using the relaxed iteration (13) with
relaxation vector ǫ = (10−2, 10−2), the number of pairs in Hǫ

k grows much more
slowly and saturates at 10 after only a few iterations, which testifies to the
simplicity for computing πǫ

N .

4.2. Performance analysis

The goal of this subsection is to derive an upper bound for the cost Jπǫ

N
(φ)

and to assure that this upper bound can be made arbitrarily close to the optimal
cost VN (φ) by choosing ǫ sufficiently small. To achieve this goal, it is beneficial
to decompose each iteration of (13) into two steps, where in the first step, the
set Hǫ

k is mapped to a larger set H̃ǫ

k+1 , h(Hǫ

k), while in the second step, Algoǫ
is applied to remove the ǫ-redundant pairs in H̃ǫ

k which yields the set Hǫ

k+1. By

12



Definition 5, V ǫ

k and V ǫ

k+1 are the functions defined based on the sets Hǫ

k and
Hǫ

k+1, respectively. We shall also introduce a function defined based on the set

H̃ǫ

k+1 which is the key for connecting the two steps mentioned above.
For each k = 1, . . . , N , define

Ṽ ǫ

k (φ) = min
(P,Γ)∈H̃ǫ

k

t r(Pφ+ Γ), ∀φ ∈ A. (15)

Denote by {Φπ∗

N
(t;φ)}Nt=0 and {Φπǫ

N
(t;φ)}Nt=0 the covariance matrices of sys-

tem (9) driven by π∗
N and πǫ

N , respectively, with initial covariance φ, where
π∗
N and πǫ

N are the N -horizon polices defined in Corollary 1 and Definition 5,
respectively. Following the same argument as in the proof of Theorem 1, it can
be easily verified that for each k = 1, . . . N ,

Ṽ ǫ

k (φ) =L(x, µǫ

k(x, φ), ν
ǫ

k(φ)) + V ǫ

k−1(Φπǫ

k
(1;φ)), (16)

where ξǫk = (µǫ

k, ν
ǫ

k) is defined in Definition 5, πǫ

k = {ξǫk, . . . , ξ
ǫ

1} and x ∼ N (0, φ).

Since Hǫ

k = Algoǫ(H̃
ǫ

k), by Definition 4 we have

Ṽ ǫ

k (φ) ≤ V ǫ

k (φ) ≤ Ṽ ǫ

k (φ) + gǫ(φ). (17)

The reason for introducing {Ṽ ǫ

k }
N
k=0 is that the cost Jπǫ

N
(φ) is upper bounded

by Ṽ ǫ

N (φ).

Lemma 4. Jπǫ

N
(φ) ≤ Ṽ ǫ

N (φ) for any φ ∈ A.

proof. For simplicity, for each t ∈ TN , let Φ̂(t) = Φπǫ

N
(t;φ), x̂(t) ∼ N (0, Φ̂(t)),

û(t) = µǫ

N−t(x̂(t), Φ̂(t)) and v̂(t) = νǫN−t(Φ̂(t)). According to (16), we have

Jπǫ

N
(φ) =

N−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + E(x̂(N)TQf x̂(N))

=
N−1
∑

t=0

[

Ṽ ǫ

N−t(Φ̂(t))− V ǫ

N−(t+1)(Φ̂(t+ 1))
]

+ t r(Φ̂(N)Qf )

=Ṽ ǫ

N (φ) +
N−1
∑

t=1

[

Ṽ ǫ

N−t(Φ̂(t))− V ǫ

N−t(Φ̂(t))
]

− V ǫ

0 (Φ̂(N)) + t r
(

Φ̂(N)Qf

)

. (18)

Recall that H0 = Hǫ

0 = {(Qf , 0)}. Thus, V ǫ

0 (Φ̂(N)) = t r
(

Φ̂(N)Qf

)

. In addi-

tion, by (17), we know Ṽ ǫ

N−t(Φ̂(t))− V ǫ

N−t(Φ̂(t)) ≤ 0 for each t = 1, . . . , N − 1.
The desired result then follows from (18). �

Now our goal is shifted to finding an upper bound for Ṽ ǫ

N (φ).

Lemma 5. For any φ ∈ A, let {Φπ∗

N
(t;φ)}Nt=0 be the covariance matrices along

the optimal trajectory starting with initial covariance φ. Then

Ṽ ǫ
N (φ) ≤ V ǫ

N (φ) ≤ VN (φ) +
N−1
∑

t=0

gǫ(Φπ∗

N
(t;φ)). (19)

13



proof. See Appendix A.

By the above lemma, for any fixed N and φ, Ṽ ǫ

N (φ) can be made arbitrarily
close to the optimal cost VN (φ) by choosing ‖ǫ‖ sufficiently small, which together
with Lemma 4 implies the suboptimality of πǫ

N .

Theorem 2. The N -horizon policy πǫ

N is suboptimal with performance Jπǫ

N
(φ) ≤

VN +
∑N−1

t=0 gǫ(Φπ∗

N
(t;φ)).

4.3. Further Discussion for Large Horizon N

Since a nontrivial disturbance enters the system at each time step, the opti-
mal cumulative cost VN (φ) will grow unbounded for any φ ∈ A as N increases.
In other words, every N -horizon feedback policy will eventually result in an
infinite cumulative cost as N approaches infinity. A more proper cost function
for the large or infinite horizon problem is the average-per-stage cost function.
For any N -horizon policy πN ∈ ΠN , the average-per-stage cost function J̄πN

is
defined as

J̄πN
(φ) = 1

N
JπN

(φ), ∀φ ∈ A.

Accordingly, we can define V̄N (φ) = minπN∈ΠN
J̄πN

(φ), ∀φ ∈ A. Clearly, we
have V̄N (φ) = 1

N
VN (φ) for any φ ∈ A. For any finite N , the cost functions JπN

and J̄πN
will result in the same optimal strategy. However, as N increases, the

average-per-stage cost J̄πN
provides a more consistent criterion for comparing

different policies.
It follows directly from Theorem 2 that for any integer N ≥ 1 and any

performance tolerance δ > 0, there always exists a constant ǫ̂N > 0 such that
J̄πǫ

N
(φ) − V̄N (φ) < δ for all ‖ǫ‖ ≤ ǫ̂N . The limitation of such a result is that

ǫ̂N may decay to zero rapidly as N increases, which in turn indicates a fast
growth of the complexity to retain the same tolerance δ. The goal of this
subsection is to further show that under some mild conditions, there exists a
constant ǫ̂, independent of N , that can guarantee the δ suboptimality of πǫ

N

under the average-per-stage cost criterion. To achieve this goal, the following
stabilizability assumption is introduced.

(A1) ∃i ∈ M, such that(Ai, Bi) is stabilizable.

Lemma 6. Under (A1), there exist finite positive constants β−
1 , β+

1 and β−
0

and β+
0 such that

β−
1 t r(φ) + β−

0 N ≤ VN (φ) ≤ β+
1 t r(φ) + β+

0 N, ∀N ∈ Z+, ∀φ ∈ A. (20)

proof. See Appendix B. �

Notice that

VN (φ) ≥
N−1
∑

t=0

t r(Φπ∗

N
(t;φ) ·Qv̂(t)) ≥ λ−

Q

N−1
∑

t=0

t r(Φπ∗

N
(t;φ)), (21)

14



where v̂(t) denotes the optimal closed-loop switching sequence corresponding to
the initial covariance φ, and the first inequality follows by ignoring the control
cost. Since λ−

Q > 0, it follows from (20) and (21) that there exist positive
constants α1 < ∞ and α2 < ∞ such that

N−1
∑

t=0

gǫ(Φπ∗

N
(t;φ)) ≤ ‖ǫ‖(α1t r(φ)+α2N), ∀φ ∈ A, ǫ ∈ R

2
+ and N ∈ Z+.

This inequality together with Theorem 2 implies a uniform performance upper
bound in terms of the average-per-stage cost.

Theorem 3. Under (A1), there exist positive constants α1 < ∞ and α2 < ∞
such that

J̄πǫ

N
(φ) ≤ V̄N (φ) + ‖ǫ‖

(α1

N
t r(φ) + α2

)

, ∀φ ∈ A and ∀N ∈ Z+. (22)

Remark 4. Theorem 3 implies that for smalle ‖ǫ‖, the policy πǫ

N performs
uniformly well for all horizon N . Furthermore, as N increases, the effect of the
initial covariance φ on the error bound also gets attenuated. Therefore, for large
N and small ‖ǫ‖, the the performance of πǫ

N will be very close to the optimal
one regardless of the initial covariance of the state.

Remark 5. It can be proved that the result in Theorem 3 still holds when none
of the subsystem is stabilizable but the whole switched linear stochastic system is
exponentially stabilizable in absence of the random perturbations. The proof of
this result is rather technical and hence omitted here. See Example 2 of Section 5
for a numerical illustration.

5. Numerical Examples

5.1. Example 1 Revisited

Consider the example given by (14) with a larger horizon N = 50. To solve
this problem, we introduce the relaxation vector ǫ = (0.01, 0.01). Iteration (13)
is then used to compute the relaxed characteristic sets {Hǫ

k}
N
k=0. This com-

putation can be done rather efficiently as shown in Fig. 2. These sets define
the feedback laws {ξǫk = (µǫ

k, ν
ǫ

k)}
N
k=1 that constitute the suboptimal policy πǫ

N .
Under this policy, the continuous feedback gain and the switching control ap-
plied at any time t ∈ TN can be easily computed based on the current state
covariance matrix. Suppose that at time t the state covariance matrix is Φ(t),
the switching control is v and the feedback gain is K, respectively, then the cost
incurred at this time step is simply

E
[

x(t)TQvx(t) + (−Kx(t))TRv(−Kx(t))
]

= t r
(

Φ(t)(Qv +KRvK
T )

)

.

In addition, the covariance matrix at time t + 1 will be Φ(t + 1) = (Av −
BvK)Φ(t)(Av − BvK)T + Σv. Using these equations, the average per stage
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cost associated with the policy πǫ

N for the initial covariance φ = [4, 5; 5, 8] is
computed. This cost is compared in Table 1 with the average-per-stage costs of
three standard LQG controllers associated with the 3 subsystems. The result
clearly indicates that the cost can be dramatically reduced by properly switching
among different subsystems. In addition, 100 realizations of the noisy closed-
loop state trajectory are shown in Fig. 3. It can be seen that the proposed
policy can properly regulate the state to a small neighborhood around the origin
despite the persistent disturbance of the system. Furthermore, to show how the
relaxation parameter ǫ affects our algorithm, the cost and the complexity of the
policy πǫ

N under 5 different values of ǫ are listed in Table 2. We observe that
increasing the relaxation parameter significantly reduces the complexity of our
algorithm, but only slightly degrades the performance of the obtained policy.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

t

||x
(t

)|
|

Figure 3: 100 realizations of the random state trajectory driven by πǫ

N
starting with initial

covariance φ = [4, 5; 5, 8] for Example 1.

Table 1: Average-per-stage Cost of Different Controllers for Example 1

πǫ

N LQG1 LQG2 LQG3

0.2687 1.4224 1.6454 1.8114

Table 2: Performance of πǫ

N
under different ǫ, where ǫ1 = [1, 1] and φ = [4, 5; 5, 8]

ǫ 0.005ǫ1 0.01ǫ1 0.05ǫ1 0.1ǫ1 0.2ǫ1
J̄πǫ

N
(φ) 0.2687 0.2687 0.2738 0.2928 0.2928

|Hǫ

N | 14 10 4 2 2
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5.2. Example 2 with Unstabilizable Subsystems

We now consider a more challenging example with the following system
matrices:

A1=

[

2 0
1 1.5

]

, A2=

[

1.5 1
0 2

]

, A3=

[

2 0
0 2

]

,

B1=

[

0
1

]

, B2=

[

1
0

]

, B3=

[

1
1

]

,

F1=

[

0.1
0.2

]

, F2=

[

0.2
0.1

]

, F3=

[

0.3
0

]

,

Qf = 0, Qi=I2, Ri=1, i=1, 2, 3, N = 50.

(23)

Clearly, (Ai, Bi) is not stabilizable for any i = 1, 2, 3. Nevertheless, as pointed
out in Remark 5, πǫ

N is also suboptimal and will produce a finite average-per-
stage cost for any horizon N as long as the overall switched system is exponen-
tially stabilizable in absence of the random disturbances.

Following a similar procedure as described in the last example, the policy
πǫ

N with ǫ = (0.01, 0.01) is computed. The number of pairs in Hǫ

k saturates
around 20 after 10 iterations. The average-per-stage cost of πǫ

N for initial co-
variance φ = [4, 5; 5, 8] is computed to be J̄πǫ

N
(φ) = 1.1121, while the average-

per-stage cost of the classical LQG controller for any subsystem is exponen-
tially large at the order of 1010 for this particular horizon N = 50. Further-
more, as the horizon N increases, J̄πǫ

N
(φ) remains almost the same, while the

cost of the classical LQG controller for any subsystem keeps increasing expo-
nentially fast. In Fig. 4, the random realizations of the state trajectory with
initial distribution N (0, φ) controlled by πǫ

N are plotted. As observed in the
figure, the closed-loop trajectory has a small overshoot at the beginning but
then quickly decays to a small neighborhood around the origin. The switching
sequence generated by the policy πǫ

N for this particular initial covariance φ is
v = {1, 2, 3, 2, 2, 3, 2, 2, 3, . . . , 2, 2, 3, 2, 3}, which is almost periodic except at the
beginning and the end of the control horizon. This switching sequence together
with the properly designed feedback gains achieves the regulation performance
as shown in Fig. 4, which is not possible to obtain using the classical LQG
controller associated with any individual subsystem.

6. Conclusion

The finite-horizon quadratic optimal control problem for the discrete-time
switched linear Gaussian system has been studied. Both the value function and
the optimal control strategy have been characterized analytically. The value
function is proved to be a piecewise affine function of the covariance matrix of
the initial state and the optimal control law at each time step depends jointly
on the random continuous state and its covariance matrix. A numerical relax-
ation framework is developed to simplify the computation of the suboptimal
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Figure 4: 100 realizations of the random state trajectory driven by πǫ

N
starting with initial

covariance φ = [4, 5; 5, 8] for Example 2.

control strategy. It has also been proved that the performance of the subopti-
mal strategy can be made arbitrarily close to the optimal one by choosing the
relaxation parameter small enough. The results of this paper can be used to
solve many important problems of switched linear Gaussian systems, such as the
stabilization problem, regulation problem and the supervisory control problem.

Appendix A. Proof of Lemma 5

When N = 1, since Hǫ

1 = Algoǫ(H1), the second inequality in (19) follows
directly from the definitions of V ǫ

N and the ǫ-ES. Suppose the result holds for
N = k for some k ∈ Z+. By (10) and (16), we have

Ṽ ǫ

k+1(φ) = min
µ∈L,ν∈V

{

L(x(0), µ(x(0), φ), ν(φ)) + V ǫ

k (Φµ,ν(1;φ))
}

≤ min
µ∈L,ν∈V

{

L(x(0), µ(x(0), φ), ν(φ))+Vk(Φµ,ν(1;φ))+

k−1
∑

t=0

gǫ(Φπ∗

k
(t; Φµ,ν(1;φ)))

}

If (µ, ν) = (µ∗
k+1, ν

∗
k+1), then the first two terms in the bracket of the last

line becomes exactly Vk+1(φ), and in this case, by the Bellman’s principle of
optimality, for each t = 0, . . . , k − 1,

gǫ(Φπ∗

k
(t; Φµ,ν(1;φ))) = gǫ(Φπ∗

k+1
(t+ 1;φ)).

Since (µ∗
k+1, ν

∗
k+1) is just one choice for (µ, ν), we have

Ṽ ǫ

k+1(φ) ≤ Vk+1(φ) +
k−1
∑

t=0

gǫ(Φπ∗

k+1
(t+ 1;φ)) ≤ Vk+1(φ) +

k
∑

t=1

gǫ(Φπ∗

k+1
(t;φ)).

Then, the desired result follows from (17). �
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Appendix B. Proof of Lemma 6

Define J∗
N (φ;v) , min

u∈UN JN (φ;u,v). Suppose that (Ai, Bi) is stabiliz-
able. Let v(t) = i, for all t ∈ TN . Let Pv

N be the matrix generated by the Riccati
mapping of subsystem i, i.e., Pv

k+1 = ρi(P
v

k ) for k ∈ TN . By the standard LQR
theory [5], there exists a p.s.d. matrix P ∗ such that ‖P v

N‖ → ‖P ∗‖ as N → ∞.
Therefore, there must exist a finite constant β+ such that P v

N ≺ β+In, for any
N ∈ Z+. Thus, by the definitions of VN (φ) and J∗

N (φ;v), we have

VN (φ) ≤ J∗
N (φ;v) ≤ β+

t r(φ) +Nβ+ max
i∈M

t r(Σi),

which implies the second inequality in (20). Furthermore, since Qi ≻ 0 for each
i ∈ M, there must exist a constant β− > 0 such that Qi ≻ β−In for all i ∈ M.
Then, it follows from (4) that P v

N ≻ β−In for any N ≥ 1 and v ∈ M
N . This

together with Lemma 2 yields the first inequality in (20).
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