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ABSTRACT

Model predictive control (MPC) has been a well-studied advanced supervisory control approach for optimizing the
operations of building heating, ventilation and air-conditioning (HVAC) systems, with the objectives of reducing en-
ergy consumption and delivering better comfort. However, centralized MPC designs are often 1) not scalable to the
increasing sizes of the building systems, 2) not adaptive to subsystem addition/attrition, i.e., ‘Plug-and-Play’ imple-
mentation. Agent-based approaches, such as distributed model predictive control (DMPC), are attractive alternatives.
In this paper, taking a multiple rooftop units (RTU) coordination problem as case study, we experimentally investigate
the energy saving potential by implementing an agent-based DMPC strategy to coordinate the operations of multiple
“virtual” RTUs with diverse unit efficiencies (COP) in an open space with multiple thermal zones. The operations
of three RTUs are emulated by two groups of variable air volume (VAV) diffusers and a separate VAV box, that can
be individually controlled to provide continuously changing sensible cooling rates into respective zones. Three lap-
top computers are dispatched into the three thermal zones as local agents. A server computer connected to both the
Building Automation System (BAS) and the outside internet is responsible for predicting various exogenous inputs
and exchanging information with the local agents. Experimental results show that the proposed agent-based DMPC
design and implementation is able to achieve over 20% cost savings, in terms of electricity consumption charge with
Time-of-Use pricing schedules, while at the same time maintaining local occupancy comfort.

1. INTRODUCTION

Office and commercial buildings often consist of multiple thermal zones, with either coupled or decoupled dynamics.
Many of these small to medium sized buildings are conditioned by multiple packaged units, such as RTUs. However,
traditional control strategies are neither capable of recognizing imbalanced loads across zones or efficiency differences
between units, nor able to provide flexibility of customized conditioning based on occupancy preferences.

Many different advanced control or optimization methods have been utilized for building control and energy manage-
ment problems. Among them, the model predictive control (MPC) approach (Ma et al., 2012) (Oldewurtel et al., 2012)
has become increasingly studied due to its ability of incorporating weather and disturbance information into the opti-
mization of the operation of HVAC systems. In addition, distributed model predictive control (DMPC) (Ma, Anderson,
& Borrelli, 2011) (Hou, Xiao, Cai, Hu, & Braun, 2017) or agent-based control approaches (Cai, Kim, Jaramillo, Braun,
& Hu, 2016) are more effective in dealing with buildings with many thermal zones compared to centralized MPC, due
to the improved scalability.

This study takes the Purdue Living Lab 3 (LL3) as a testbed, which is representative of buildings with large open
space and multiple thermal zones, and investigates the cost savings potential (in terms of electricity bill reduction) by
coordination between different HVAC equipment and utilizing building thermal mass for load shifting. In particular, we
experimentally study a virtual optimal RTU coordination problem. The RTU coordination problem has received a lot of
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attention recently (Kim, Braun, Cai, & Fugate, 2015) (Putta, Kim, Cai, Hu, & Braun, 2015). To be discussed in detail
later, “virtual” refers to the fact that there is no real RTUs in the testbed, instead, multiple groups of VAV diffusers and
VAV box are utilized to emulate the functionality of RTUs in an open plan building: providing continuously adjustable
cooling/heating to different zones with certain capacities and efficiencies. The coordinations between different RTUs
and load shifting are achieved by implementing an agent-based DMPC algorithm.

In order to implement the proposed agent-based optimal coordination algorithm, the first step is to obtain a control-
oriented multi-zone model that is able to capture the thermal behavior of LL3 and accommodate an efficient controller
design. We propose a new resistance-capacitance (RC) network multi-zone model that is suitable for not only LL3,
but also other large open spaces with multiple air nodes and asymmetric airflow exchange rates.

This study is a continuation of the work in (Hou, Xiao, Cai, Hu, & Braun, 2016), where the building model was not
data-driven, and only simulation results were presented. The rest of the paper is organized as follows. In Section 2,
we introduce the case study testbed, the building thermal model, and the virtual RTU model. Section 3 outlines the
formulation of the agent-based distributed model predictive control approach using a parallel distributed optimization
algorithm. Experiment setup and implementation results of proposed algorithm are presented in Section 4 in compar-
ison with a baseline strategy. Finally, some concluding remarks are given in Section 5.

2. CASE STUDY AND MODEL DESCRIPTION

2.1 Case Study Description

LL3 (Figure 1 left) is a large open-space student office, located on the top floor of the Center for High Performance
Buildings at West Lafayette, IN, USA. The room was originally conditioned by a centralized air handing unit through
three VAV boxes with terminal units of one large rectangular diffuser and eight standard square ceiling diffusers.

Double facade @ vav Diffusers Double facade
XX X X 1 [ }
Zone 1 @ Zon:I . — RTUI.\
X — X8 pX——1X®
of——x0 — ) | 5.
Zone 2 Zone 2 \.\
ol Xo vav B:x.ﬁ ox—Xo RTU2
L ox— X0 ~
Zone 3 Return Duct VAV Box € Zone 3 Return Duct RTU3

=
Door Door

Figure 1: LL3 Layout

The typical static ceiling or wall diffuser setup does not offer the flexibility of personalized local control and com-
fort delivery. In the case of LL3, there is a significant load imbalance in summer as the south-facing double facade
accumulates much more solar radiation than the part of the room near the door. With this in mind, we retrofitted the
HVAC system by replacing the eight traditional ceiling diffusers with eight VAV diffusers, which can be individually
controlled to allow continuous and localized comfort control through the Building Automation System (BAS). The
eight VAV diffusers are grouped into two clusters, serving Zone 2 (diffusers 1, 2, 3, 4) and Zone 3 (diffusers 5, 6, 7, 8),
respectively; the zone served by the VAV box A through traditional rectangular diffuser is denoted as Zone 1.

Two RTD sensors are installed into each zone, one in the east column and the other in the west column. The average of
two readings are treated as the sensing temperature for the corresponding zone. Local zone level PID control strategies
are implemented in the BAS to adjust the openings of the two groups of VAV diffusers as well as the VAV Box A such
that each zone sensing temperature is maintained at its setpoint. We can think of the installed thermal sensors and the
PID logic behind as three virtual thermostats that are controlling the operations of the VAV diffusers and box.

By adjusting the openings of the VAV diffusers and VAV box, we are essentially emulating three RTUs cycling on and
off, such that different amounts of cooling/heating are provided to individual zones. Therefore, the retrofitted LL3 setup
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can be used as a virtual testbed for the coordination problem of multiple RTUs (Figure 1 right) with various efficiencies
and capacities as long as different virtual RTU models are provided. This open-space multi-zone configuration is
commonly encountered in many small to medium-sized commercial buildings such as open plan restaurants, banks,
stores, etc.

2.2 Building Model

In LL3, the double facade is separated from the three zones by glass windows while there are dynamic couplings
between adjacent zones. Another feature of the room is that the return air duct is located on the back wall (bottom in
Figure 2) in Zone 3 near the door and thus there is significant air flow from Zone 1 to 3 but the airflow in the opposite
direction is relatively small. Therefore, the coupling resistances connecting two adjacent zones have different values
in different directions, as indicated by the two directional resistors in Figure 2 (R; j+1 # Ris1,i).

Double facade

Qfac

Zone 1

Qi Qupacet ; Quat
Zone 2

Q3 Qupace

Figure 2: Model Structure of LL3

A continuous time state-space representation of the above model is formulated in (1),

X =Ax+ Bu+ Fw,
y=0Cx, @)

where the state variable x € R!? consists of 10 temperatures, one for the double facade air and three for each zone
(T3, Troof,i> Twarl,i»i = 1,2, 3); the output y € R* represents the three measurable zone temperatures (7;,i = 1,2, 3) and
double facade temperature; the control input « € R? is a vector of the controllable sensible cooling/heating rates (Q;, i =
1,2,3) into three zones provided by RTUs while the disturbance w € R!? consists of all uncontrollable disturbances,
namely, ambient temperature, solar radiation, internal heat gains from lighting, plug load and occupants; 4, B, F, C are
matrices with proper dimensions. For model training and validation, all disturbances come from sensor measurements
except the heat gain of occupants, which is estimated based on the occupancy schedule of the room.

Since Zone 2 is affected by Zone 1 through the resistance R; , and by Zone 3 through R; ,, we can estimate the RC
values of Zone 2 separately by treating the measured adjacent zones’ temperatures, 77 and 73, as boundary conditions.
The same is also true for Zone 1 and Zone 3. Therefore, the RC values for the three zones can be estimated individually
by treating adjacent zones’ measured temperatures as boundary conditions. The identification results of the three zones
are then integrated together to form the overall system model in (1).

Here we use Zone 2 as an example to demonstrate the identification of individual zones, of which the dynamics are
represented by

x'z = AzXz + B2u2 + Fsz,
2 = Coxa, (2)
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where A4;, B,, F>, C, are constructed from the corresponding entries in 4, B, F' and C, respectively. For w,, besides the
afore-mentioned uncontrollable disturbances in w, it also includes the air temperatures 77 and 73. Correspondingly,
F, depends on the portion of F relevant to Zone 2 and the coupling resistances R; » and R3 ». By discretization with a
sampling time of 0.5 hour and concatenating all vectors over time N, we have

Xy = Qox(0) + O, U, + o W,
Y, =X,

where X2 = ()Cz(l), e ,xz(N)), U2 = (uz(l), ey ug(N)), W2 = (Wz(l), RN 7W2(~N)) and Y2 = (yz(l), RN ,yz(N)) is
the estimated Zone 2 temperature, which should be close to its real measurement Y,, while Q,, ®,, ¥,, ', are constant
matrices built up from 45, By, F2, C;. Then the objective is to minimize || ¥> - Y>3 by optimizing the values of internal
resistances/capacitances of Zone 2 as well as Ry » and Rz . This problem is solved with the function 1sgnonlin in
MATLAB, with initial guesses of parameters derived from building construction parameters.

The data collected from July 17, 2017 to August 8, 2017 is used for warm-up (8 days), model training (7 days) and
validation (7 days). The validation result is shown in Fig. 3 and the root mean square deviation(RMSD) for each zone
temperature is 0.46°C, 0.41°C, 0.39°C and 2.12°C respectively.

G 24— . . . . . ‘
s P“—Www
g 20 1 1 1 1 Il

~ 02/08 0308  04/0 Est |06/08  07/08  08/08

Meas

g 24 T T T T T T T

S 22 WW@:
5 20 1 1 h 1 1 !

~N 02/08 008  04/08  05/08  06/08  07/08  08/08
[EpY — ; ; ; ; | ;

@ 22 _WF‘WW
g 20 1 1 1 1 Il

~ 02/08 008  04/08  05/08  06/08  07/08  08/08
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Figure 3: Model Validation (Blue Lines: Estimated Temperatures, Green Lines: Measured Temperatures)

2.3 Virtual RTU Model

It has been discussed that the two groups of VAV diffusers in Zone 2 & 3, and the VAV Box A for Zone 1, can be thought
as three independent RTUs controlled by three virtual thermostats. We call the RTU in Zone i as RTU i. In addition, we
assume RTU 1 is the largest and most efficient unit, while RTU 2 and 3 are relatively smaller in size, and less efficient.
The plot of total sensible capacity (latent capacity or dehumidification is not considered in this study) and COP of all
three RTUs under different 7, is given in Figure 4 to demonstrate their efficiency and capacity differences.

The virtual RTU models are correlation-based (Cai, 2015) and developed from manufacturer catalogue data with ca-
pacities scaled accordingly. The model has the following structure

[Power, PLR] = RTU(Qsen, Tamp, Tt Tap), G

where Q;., is the sensible cooling rate provided by RTU into the zone during the current sampling time; 7, is the
ambient temperature; 7,/ are the nominal wet/dry bulb temperatures entering the RTU evaporator coils and are
assumed to be constants 15.3/28.9°C; Power is the power consumption and PLR is the part-load ratio based on the
total sensible capacity. The units are more efficient (higher COP) in general when operating under lower ambient
temperatures. At part load conditions, RTUs cycle on and off to match Qy,,. Degradation curves are used to capture
the efficiency decrease caused by cycling. For fixed Ty, Ty and Ty, Power and PLR are convex functions in Qg,,.
Since T,/ Ty are assumed to be constants, they will be dropped from the model for notational simplicity.
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Figure 4: RTU Characteristics Left: Capacity vs. T,,» (RTU 2 & 3 have the save curve) Right: COP vs. T,

3. AGENT-BASED OPTIMAL RTU COORDINATION

Traditionally, multiple RTUs in a large open space are controlled by multiple thermostats with fixed setpoint schedules
that are pre-configured by users, without considering: 1) efficiency differences in RTUs; 2) load variations across
different zones; 3) thermal interactions between adjacent zones. However, the efficiency differences in units and
thermal interactions between zones give us opportunities for electricity bill reduction through coordination if certain
flexibility is allowed in terms of setpoints and occupancy comfort.

If we assume that occupancy comfort is satisfied as long as the sensing temperature is within certain upper and lower
bounds, then instead of fixed setpoint schedules, the setpoint for each thermostat can be dynamically adjusted over
time, to achieve the coordination between RTUs’ operations. Then the problem becomes how to optimally decide the
setpoint temperature trajectories for each thermostat and zone. Notice that this is a supervisory level optimal control
problem as it assumes that at the zone level, individual setpoint can be tracked by operating each local RTU via PID
control or other strategies. As discussed in (Hou et al., 2016), this problem can be formulated and solved as an agent-
based DMPC problem.

3.1 Objective Function

The objective function for the MPC problem is the total energy bill corresponding to the RTUs’ operations in certain
prediction horizon N,

N 3
Z (Pe(k) . ZRTL]i,pawer (Ql(k)7 Tamb(k))) ) (4)

k=1 i=1

where P, (k) is the Time-of-Use (TOU) electricity price, Q;(k) is the sensible cooling rate provided by RTU i into zone
i, and RTU; power (Qi(k), Tamn (k) ) denotes the current power consumption rate of RTU i. From this objective function,
we notice that another cost savings potential comes from shifting the loads to a period with lower electricity price or
higher RTU efficiency.

3.2 Thermal Dynamics Constraint

The discrete time state space model of LL3’s dynamics is obtained by discretization of (1) with a 0.5/4 sampling time.
We can further concatenate the dynamics during an N step prediction horizon as

X=Qx(0)+®Q+¥YW, Y=TX (5)

where X = (X(l), s ,X(N)), 0= (Q(0)7 . 'aQ(N_l))’ Q(k) = (Ql (k)’Q2(k)7Q3(k))’ Y= (y(l)v s 7y(N)) and W =

(w(0),...,w(N-1)). Q, ®, ¥ and T are constant matrices of proper dimensions constructed from 4, B, C, F.
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3.3 Optimization Formulation

The objective function (4) can be writtenas f{Q) = Y., £i(0;) wherefi(Q:) = Yoy (Pe(k) - RTU; power (Oi(k), Tums(K)))
and Q; = (0;(0),...,0:;(N-1)) because P, (k) and T, (k) are predictable from utility service and weather forecast,
respectively. Then, the centralized optimization problem can be represented as

3
minimize (O 6
imize 3°/1(0) ©)
subjectto X =Qx(0) + ©Q+¥W, Y=TX 7
Yi,min < Yl < Yi,maxa
RTU, prr (Qi(k), Tamp(k)) <1, k=0,...,N—1,
where ¥; = (y;(1),...,y:(N)), and RTU; prg (Q;i(k), Tump (k) ) denotes the current PLR of RTU i. [Y; yin, ¥imax] 1s the

local comfort interval for zone i’s temperature. Because X and Y are affine transformations of O, we can eliminate
them from the decision variables and obtain an equivalent formulation

3
minimize Y f/(0;) 3
i i=1
3
subjectto Y D;0; < d, )
i=1
RT(Ji,PLR(Qi(k)vTamb(k))Sla k:07"'7N_17 (10)

where D; and d are proper matrices and vector, respectively. Constraint (10) is convex because RTU; prr (Oi, Tamp) 18
a convex function with respect to Q;, which can be equivalently written as O; € Q,. Each f; is a convex function in
O; since RTU; poyer (Oi(k), Tamp (k)) is convex in Q;(k). Notice that constraint (9) couples local variables O; together
thus the above problem is not readily separable. We call (9) the coupling constraint and (10) local constraints.

3.4 Agent-based Distributed Optimization Solution

Dual decomposition (Farokhi, Shames, & Johansson, 2014) and Gauss-Seidel Alternating Directions Method of Mul-
tipliers (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011) are two existing distributed optimization methods designed for
problems in the form (8). However, they have certain disadvantages as discussed in (Hou et al., 2017). In this study,
we employ the so called Proximal Jacobian ADMM (parallel ADMM) method. First we introduce slack variables O
to convert the coupling inequality constraint in (9) to an equality constraint

3
miniQmize > (00 (11)
i i=0
3
subjectto > D;0;=d, Q;€Q;,
i=0

where f5(Qy) = const., Dy is the identity matrix, and Q) is the positive orthant. The agent-based distributed optimiza-
tion algorithm for solving (11) is summarized in Algorithm 1.

In Algorithm 1, £;(Q;, 1) = f;(Q;) + A" D;Q; is the part of the Lagrangian function of problem (11) that is dependent on
01 0(0) = 5| Y3 o D:0; — d|?*. In addition, i—(resp.+) denotes indices smaller (resp. larger) than i. In Algorithm 1,
each agent first updates their local decision variables Q; in parallel according to (12), then a central coordinator collects
the updated Q; from all of the agents and uses them to update the dual variable 4 according to (13). Parameters o; and
p need to satisfy certain conditions to ensure convergence to some optimal solution of (11). We refer the interested
readers to (Hou et al., 2017) for more details. Once Algorithm 1 is terminated, we obtain the optimal cooling rates
trajectories Q; for all the RTUs. Then, the optimal setpoint trajectories for the thermostats can be recovered via the
identified building model
X =x(0) + @O +¥W, Y =TX".

5 International High Performance Buildings Conference at Purdue, July 9-12, 2018



3672, Page 7

Algorithm 1 Agent-based Distributed Algorithm

1: Initialize (Q°, A°), set v = 0;
2: repeat
3: Update Q; (in parallel) according to

Or" = argming,cq,(£i(0r. ') + Qs - 011 + (0L 01, O1)): (12)

»

Update A according to
3
A :iv+p(ZD,»Q,Y“ —d). (13)
i=0
5: Vv<v+1;
6: until some stopping criterion is satisfied.

4. EXPERIMENT IMPLEMENTATION

4.1 Experiment Setup

The proposed agent-based DMPC algorithm for the optimal coordination of multiple virtual RTUs is implemented
in LL3. Prediction horizon is set to be 12 hours. It is assumed that the occupied hours are 10am-10pm. Different
zone temperature comfort intervals are set for the three zones (summarized in Table 1). Specifically, since there are
no permanent occupants in Zone 1, it has a higher upperbound during the occupied hours. However, Zone 2 & 3
are more heavily occupied, hence tighter comfort intervals need to be maintained during the occupied hours. During
unoccupied hours, night setback is implemented. The TOU price is assumed to have a peak value of $0.16/kWh from
12pm to 6pm, and an off-peak value of $0.067/kWh during other times. All local optimization problems are solved
in MATLAB with CVX (Grant & Boyd, 2014). During the DMPC implementation, unmeasured state variables need
to be estimated. Since the only coupling between adjacent zones are through their zone temperatures, a decentralized
Kalman Filter was developed so that each zone can estimate local unmeasured states using a standard Kalman Filter
by treating adjacent zone temperatures as exogenous inputs.

Table 1
Occupied Hours (10am-10pm) | Unoccupied Hours (10pm-10am)
Zone 1 [21°C, 24.5°C]
Zone 2 [21°C, 23°C] [20°C, 27°C]
Zone 3 [21°C, 23°C]

To demonstrate the cost savings potential of the proposed DMPC method, we compare its performance against a base-
line strategy, for which the thermostats’ setpoint schedules are set to be the upper-bounds of their corresponding comfort
intervals. If a zone temperature is lower than its current setpoint, no cooling will be given and zone temperature is al-
lowed to float freely inside the comfort interval. The baseline controllers were simulated using the history disturbance
information from the same days of the DMPC experiment.

4.2 Prediction of Exogenous Inputs

The DMPC implementation requires the prediction of exogenous inputs (ambient temperature, solar radiation, occu-
pants, lighting and plug load). The ambient temperature prediction is obtained from National Oceanic and Atmospheric
Administration (NOAA) website at the Purdue University Airport station (1.5 miles away from testbed, LL3). Solar
radiation (GHI & GSI) is inferred from sky cover percentage prediction (also obtained from NOAA) using the model
from (Zhang, Huang, & Lang, 2002). Occupancy, lighting and plug load are predicted by averaging the corresponding
history data for the same period in the previous three weeks. The comparison between predicted ambient temperature,
solar radiation, and plug loads with their respective measurements from September 21, 2018 to September 27, 2018
are given in Figure 5, which shows that our predictions are reasonably accurate.
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Figure 5: Exogenous Inputs Prediction

4.3 Communication Prototype and Information flow

The agent-based distributed optimization algorithm in Algorithm 1 requires three agents, representing each of the three
zones, and a central coordinator. Three laptop computers are dispatched to the three zones, acting as the agents and are
responsible for updating local decision variables as well as exchanging information with the central coordinator. The
central coordinator is a server computer that has Internet connection for weather forecasting and also communicates
with the BAS by sending command signals (setpoints for all three zones in our case) and collecting sensor data.

The MATLAB TCP/IP object and protocol was utilized for the communication between agents and coordinator, since
the optimizations at local agents are run in MATLAB with CVX. At the beginning of each iteration, the coordinator
sends to the agents: the updated Lagrange multiplier 2" from the previous iteration, the TOU electricity price P, (k)
for the current prediction horizon and the predicted trajectories of other disturbances (solar, occupants, lighting, plug
load, ambient temperature); and agents send their updated optimal local decision variables O} back to the coordinator.
After convergence, the coordinator will recover the optimal setpoints for all three zones during the next sampling step
and send them to the BAS. One limitation of the MATLAB TCP/IP object is that it does not allow broadcasting, which
means that the coordinator can only exchange information with one agent at each time. More advanced communication
protocols that allow broadcasting from the coordinator to the agents will take better advantage of the parallel updating
structure. This will be investigated in future studies.

4.4 Experiment Results

After a 3 day warm-up period, the experiment and simulation were tested for 7 days in parallel (from October 4,
2017 to October 11, 2017). The zone temperature trajectories as well as the optimal sensible cooling trajectories are
given in Figure 6 (baseline simulation) and Figure 7 (optimal coordination with agent-based DMPC). In both figures,
the gray dashed line denotes the same zone temperature comfort lowerbound for all three zones (20°C/21°C during
unoccupied/occupied hours); and the blue (red) dashed line denotes the zone temperature comfort upperbound for Zone
1 (2 & 3) during occupied hours.

From the baseline simulation results, we can observe that during unoccupied hours, when setpoint setbacks are imple-
mented, no cooling is provided by any of the three RTUs and the zone temperatures are allowed to free-float. During
occupied hours, all three zone temperatures are well maintained at their respective comfort upperbounds (24.5°C for
Zone 1 and 23° for Zone 2 & 3). Between Zone 2 & 3, even though they have the same setpoint schedule, RTU 2 is
doing more work because of the directional airflow from south to north. The load for RTU 1 is smaller than that of
RTU 2 because Zone 1 has higher setpoints.

If we look at the experiment results with the proposed agent-based DMPC algorithm, two different types of coordina-
tions can be observed.

1. “Coordination in Space”: During occupied hours, while the setpoint temperatures for Zone 2 & 3 are still their

5 International High Performance Buildings Conference at Purdue, July 9-12, 2018



kKW

Degree C

kw

3672, Page 9

comfort upperbound, the setpoint temperature for Zone 1 is set to 23°C, which is significantly lower than its
comfort upperbound, 24.5°C. The reason behind this is two fold: a) by lowering the setpoint for Zone 1, the
most efficient unit RTU 1 is more heavily utilized, which helps reduce the load for the less efficient units, RTU
2 & 3; b) the directional airflow from south to north (Zone 1 - Zone 2 — Zone 3) is being taken advantage of
by providing more cooling directly into Zone 1. From the sensible cooling load profile we can verify that RTU
1 is “helping out” RTU 2 & 3 by providing more cooling than what it would if only selfishly using the highest
setpoint temperature.

“Coordination in Time”: Similar to the baseline case, zone temperatures are free-floating during most of the
unoccupied hours and no coolings are provided from RTUs. However, every morning from around 6am to 10am,
there are significant pre-coolings provided by all three RTUs as the zone temperature setpoints decrease to their
lowerbound. The reason is that the RTUs are trying to cool down the building thermal mass when the electricity
price is low (before 10am), and units are more efficient due to lower ambient temperatures during early mornings.
By doing this, extra cooling energies are stored in the building thermal mass and will be released into the zones
during occupied hours so that the peak loads for all three RTUs are reduced.
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Figure 6: Baseline Simulation
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Figure 7: Optimal Coordination with Agent-based DMPC Experiment

The electricity bill for the baseline case and the optimal coordination with agent-based DMPC algorithm is summa-
rized in Table 2. Through coordination between different zones and RTUs and shifting loads to early mornings when
electricity price and ambient temperature are low, 28% of the total electricity bill is reduced from the baseline.

5 International High Performance Buildings Conference at Purdue, July 9-12, 2018



3672, Page 10

Table 2

Baseline | Optimal Coordination with Agent-based DMPC
Total Sensible Cooling (kWh) | 330.88 375.69
Electricity Bill ($) 25.75 18.46 (128.31%)

5. CONCLUSIONS

This study experimentally investigates the electricity bill reduction potential of coordinating between multiple virtual
RTUs in a large open space with multiple thermal zones. An agent-based DMPC algorithm is implemented in the
testbed to achieve coordinations in both space and time. Compared to the baseline strategy with which thermostats
selfishly choose setpoints as their comfort upperbounds, 28% of the total electricity bill is saved with the proposed
method. Although the coordination problem of 3 zones/RTUs could also be solved with a centralized MPC approach,
the proposed method is more suitable for extension to larger number of zones or building clusters, as it provides much
better scalability. One future direction is to add demand charges into the cost function and investigate how thermostats
and RTUs respond differently.
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