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Abstract

The goal of this paper is to develop an algorithm for solving optimization problems subject to bilinear matrix inequalities
(BMIs), which are widely known to be of great significance in engineering, especially in control theory and its applications.
Motivated by the convex-concave programming and path-following approaches, we propose a sequential convex optimization
algorithm subject to a linear matrix inequality (LMI) constraint which approximates the BMI constraint. The feasible region of
the LMIs is a convex inner approximation of that of the BMI constraints around the current iteration point. The approximations
depend on variables that can be adjusted through the iterative convex subproblems. Its convergence property is also provided.
In particular, it is proved that if all the feasible points satisfy the Mangasarian-Fromovitz constraint qualification, then there
exists a subsequence of the subproblem solutions that converges to a stationary point of the BMI problem. Finally, an example
of the static output-feedback controller design problem is provided for comparative analysis.
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1 Introduction

This paper is devoted to a class of optimization prob-
lems minimizing a convex objective function subject to
bilinear matrix inequality (BMI) constraints, called the
BMI problem (BMIP) throughout the paper. This prob-
lem arises inmany engineering applications, for example,
the linear consensus protocol design [1], the resource al-
location problem in wireless networks [2], the structured
control design [3], and the switched controller design [4].

In particular, the BMIP arises frequently in the study of
control systems. For example, the structured controller
design problem (SCDP), which includes the reduced-
order controller [5], static output-feedback controller
(zero-order controller) [3], decentralized controller [6],
and distributed controller design problems, is one of the
most well-known problems in the systems and control
theory that can be reduced to BMIPs. In [5], the SCDP
was formulated as a concave programming, minimizing
a concave objective function with linear matrix inequal-
ity (LMI) constraints, and solved by means of the the
Frank and Wolfe feasible direction algorithm. In [7],
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the SCDP was converted into an equality constrained
optimization, and then solved by using the augmented
Lagrange multiplier method [8]. The freely available
package, HIFOO [9], applied the Broyden-Fletcher-
Goldfarb-Shanno algorithm [10] with penalty terms to
the SCDP. In [11], a simple path-following method was
suggested. It solves iteratively linearized semidefinite
programming (SDP) subproblems, and can be easily
applied to various BMIPs related to control design
problems, for instance, the switched control design [4].
In [12], approaches based on the branch and bound
method, interior-point method, and block coordinate
descent method were considered.

In addition, it is of interest to note that some BMIPs
can be converted to and solved as rank constrained opti-
mization problems. For example, the SCDP was formu-
lated as rank constrained LMI feasibility problems, and
solved by using a Newton-like method [13], an alternat-
ing projection algorithm [14], and the cone complemen-
tarity linearization method [15]. Especially, the Newton-
like method [13] was used for the LMIRank package.

Recently, the idea of the DC (difference of convex func-
tions) programming [16–18] for the general non-convex
programming has been extended to the optimizations
with BMI constraints in [19]. The DC programming
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method is known as an effective technique for solving a
class of non-convex optimizations, where the non-convex
objective function or the non-convex functions in the in-
equality constraints are expressed as a difference of con-
vex functions (or convex-concave decomposition). Then,
the concave function is linearized to obtain a convex
constraint whose feasible set is an inner convex approx-
imation of the non-convex feasible set of the original in-
equality constraint.

On the other hand, there have been several researches
on the more general nonlinear SDP (NLSDP) problems.
Theoretical foundations on the first- and second-order
necessary and sufficient conditions for the NLSDPs were
investigated in [20]. In [21], the NLSDP was formulated
as a maximum eigenvalue minimization problem, and
the subgradient method was suggested. As a generaliza-
tion of the sequential quadratic programmingmethod for
nonlinear programs, the sequential SDP was considered
in [22] and [23], where the local quadratic convergence of
the sequential SDP was proved under the second-order
sufficient condition. In addition, a globally convergent
sequential SDP algorithm was proposed in [24] based
on improved merit functions. In [25], a modified aug-
mented Lagrangian method was developed and proved
to be suitable for the large-scale SDP and NLSDP. The
algorithm was applied for the BMIPs in [26] as well.

The goal of this paper is to develop an algorithm to
solve the BMIPs. The main contributions of this pa-
per consist of the proposition of a sequential convex op-
timization algorithm and the proof of its convergence.
In particular, it is proved that if all the feasible points
satisfy the Mangasarian-Fromovitz constraint qualifica-
tion [20], then there exists a subsequence of the sequen-
tial solutions of the convex subproblems that converges
to a stationary point of the BMIPs.

The main idea of the paper was motivated by several
approaches, such as the path-following method [11], the
DC programming [19], the inner approximation algo-
rithm [27], and the sequential parametric convex approx-
imation (SPCA) method in [28]. Although these pre-
vious approaches have demonstrated their effectiveness
through many applications, we found that depending on
the BMIPs, alternative methods may have better perfor-
mance. Even though it is a difficult task to provide theo-
retical comparisons, we present numerical examples that
illustrate advantages of the proposed algorithm over the
existing ones. In the proposed approach, instead of ex-
ploiting the DC decomposition in [19], an algebraic ma-
trix inequality is used to obtain convex over approxima-
tions of the bilinear terms on the cone of positive semidef-
inite matrices. A significant difference of the proposed
method compared to the DC programming is that aux-
iliary matrix variables are introduced in the approxima-
tions and sequentially adjusted by solving the subprob-
lems so as to accelerate the convergence. Through nu-
merical experiments on the SCDP, especially the static

output-feedback control design problem [3], it is demon-
strated that, in some cases, the proposed method out-
performs the DC programming approach at the expense
of higher computational efforts. On the other hand, the
proposed method preserves some favorable properties
of the DC programming approach. First, it is relatively
easy to implement by using standard SDP solvers and
to be modified to solve different BMIPs. In addition, at
every iteration, a solution to the subproblem is guaran-
teed to be feasible, and no step size rule is required to
ensure the feasibility and the convergence.

The proposed method can be categorized into the
broader classes of nonlinear programming, such as the
inner approximation algorithm [27] and the SPCA
method [28]. In the sense that the bilinear terms are
preserved as over approximations instead of ignoring
them, it can be interpreted as an extension of the path-
following algorithm [11] as well.

2 Preliminaries

In this paper, we follow the notation used in [19]. Let Sp

be the set of symmetric matrices of size p×p, Sp+ and S
p
++

be the set of symmetric positive semidefinite and positive
definite matrices, respectively. For given matricesX and
Y in S

p, the relation X º Y (respectively, X ¹ Y )
means X−Y ∈ S

p
+ (respectively, Y −X ∈ S

p
+) and X ≻

Y (respectively, X ≺ Y ) is X − Y ∈ S
p
++ (respectively,

Y − X ∈ S
p
++). The quantity X ◦ Y := trace(XTY ) is

an inner product of two matrices X and Y defined on
S
p, where trace(Z) is the trace of matrix Z. In addition,

the following standard notation will be used: He{A} :=
AT + A; In and I: n × n identity matrix and identity
matrix of appropriate dimensions; || · ||: Euclidean norm
of a vector or spectral norm of amatrix; s.t.: abbreviation
of “subject to.”

A function f : Rn → R is said to be strongly convex [29,

chapter 9.1.2] with parameter ρ > 0 if f(·)− (1/2)ρ ‖·‖2

is convex. We define the derivative of a matrix-valued
mapping F at z0 ∈ R

n as a linear mapping from R
n to

R
p×p defined by

DzF [z]|z=z0
[d] :=

n
∑

i=1

di
∂F [z]

∂zi

∣

∣

∣

∣

z=z0

, ∀d ∈ R
n.

LetA : Rn → S
p be a linear mapping defined asA[x] :=

∑n
i= xiAi, whereAi ∈ S

p for i ∈ {1, . . . , n}. The adjoint
operator of A, A∗, is defined as A∗Z := [A1 ◦ Z, A2 ◦
Z, . . . , An ◦ Z]T for any Z ∈ S

p. The concept of the
convexity for the matrix-valued mapping is defined as
follows.

Definition 1 ( [20]) The matrix-valued mapping A :
R

n → S
p is said to be positive semidefinite convex (psd-
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convex) on a convex subset C ⊆ R
n if for all t ∈ [0, 1],

and x, y ∈ C, one has A[tx + (1 − t)y] ¹ tA[x] + (1 −
t)A[y]. The matrix-valued mapping A is said to be pos-
itive semidefinite concave (psd-concave) on C ⊆ R

n if
−A is psd-convex.

Consider the matrix-valued mapping F : Rn → S
p

F(z) = C + L[z] + He{A[x]B[y]}, (1)

where z = [xT , yT ]T ∈ R
n, x ∈ R

nx , y ∈ R
ny are vari-

ables, L : R
n → S

p, A : R
nx → R

p×q, and B : R
ny →

R
q×p are linear mappings. In this paper, we consider a

class of optimization problems with a BMI constraint
(BMIP) of the form

min
z

f(z) s.t. F [z] ¹ 0, z ∈ Ω, (2)

where f : Rn → R is convex, and Ω ⊂ R
n is a nonempty,

closed, and convex set. The algorithm proposed in this
paper can be directly extended to the optimization prob-
lems with multiple BMI constraints. Thus, the general
case will not be considered here for notational simplicity
and to save space.

To proceed, denote by D := {z ∈ Ω : F [z] ¹ 0} the
feasible set of (2), and define D0 := {z ∈ ri(Ω) : F [z] ≺
0}, where ri(Ω) is the set of relative interior points of the
convex set Ω [29, chapter 2.1.3]. Throughout the paper,
the following assumptions apply.

Assumption 1 D0 is nonempty.

Assumption 2 f is bounded from below on D, and is
differentiable.

If we define the Lagrange function L(z, Λ) = f(x) +
Λ ◦ F [z], where Λ ∈ S

n is the Lagrange multiplier, the
generalized KKT condition [30,31, Theorem 12.1] of (2),
which includes an abstract set constraint z ∈ Ω, can be
written as

{

0 ∈ ∇f(z) +DzF [z]∗Λ +NΩ(z)

F [z] ¹ 0, Λ º 0, F [z] ◦ Λ = 0
(3)

where NΩ(z) is the normal cone of Ω at z [30, Definition
12.7] defined by

NΩ(z) :=

{

{w ∈ R
n : wT (z − y) ≥ 0, ∀y ∈ Ω}, if z ∈ Ω

∅, otherwise

Note that the KKT condition in (3) is based on the KKT
condition in [29, cahpter 11.6] for optimizations subject
to generalized inequality constraints. The definitions of
the KKT point and the stationary point are introduced
below.

Definition 2 ( [19,30]) A pair (z, Λ) = (z∗, Λ∗) sat-
isfying (3) is called a KKT point, z∗ is called a station-
ary point, and Λ∗ is called the corresponding multiplier
of (2).

The existence of the Lagrange multipliers is not always
guaranteed. However, under certain conditions, called
the constraint qualifications (CQs), the Lagrange multi-
pliers exist. One of the useful CQs is the Mangasarian-
Fromovitz constraint qualification (MFCQ) [30,32]. An
MFCQ for optimizations subject to nonlinear SDPs was
given in [20]. The MFCQ for the optimizations involving
abstract convex set constraints is provided in [32, Propo-
sition 3.3.12]. Combining the two results, we can obtain
the following MFCQ for optimizations with abstract set
and nonlinear SDP constraints.

Definition 3 (MFCQ [20,32]) We say that the
MFCQ holds at a feasible point z0 ∈ Ω of (2) if there
exists a vector z ∈ Ω such that

F [z0] + DzF [z]|z=z0
[z − z0] ≺ 0.

Under the MFCQ, the first-order necessary condition for
the optimality can be obtained.

Lemma 1 (First-order necessary condition [20])
Let z0 ∈ R

n be a locally optimal solution of the prob-
lem (2), and suppose that the MFCQ holds at z0. Then,
the set of the Lagrange multiplier Λ ∈ S

n satisfying the
KKT condition (3) is nonempty and bounded.

3 A sequential parametric convex approxima-
tion method

In this section, we propose an algorithm for solving the
BMIP (2). The proposed method can be also viewed as
an extension of the sequential parametric convex approx-
imation method [28] to the BMIP (2).

To explain the proposed approach, we reformulate the
matrix F [z] in (2) by

F [z]

= C + L[z] + He{A[x]B[y]}

= C + L[z − zk + zk]

+ He{A[x− xk + xk]B[y − yk + yk]}

= F [zk] + DzF [z]|z=zk
[z − zk]

+ He{A[x− xk]B[y − yk]}, (4)

where zk := [xT
k , y

T
k ]

T , and

DzF [z]|z=zk
[z − zk]

= L[z − zk] + He{A[xk]B[y − yk]}

+He{A[x− xk]B[yk]}.
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If the last term in (4) is ignored, then the lineariza-
tion F [zk] + DzF [z]|z=zk

[z − zk] of F [z] around zk is

obtained. The path-following algorithm in [11] for the
BMIP (2) is to solve (2) with the BMI constraint re-
placed with the linearized constraint. Instead of drop-
ping the bilinear term He{A[x−xk]B[y−yk]} in (4), we
can obtain an over estimation of F [z] over the cone of
positive semidefinite matrices by using a matrix inequal-
ity, which is often used in the control theory literature,
e.g., [33, Proposition 2.1 and Proposition 2.2], and [34].

Lemma 2 Let A and E be real matrices of appropriate
dimensions. Then, for any S ∈ S

n
++,

He{DE} ¹ DSDT + ETS−1E.

PROOF. For any S ∈ S
n
++, the inequality is obtained

by expanding (DT − S−1E)TS(DT − S−1E) º 0. 2

Using Lemma 2, an upper bound on He{A[x−xk]B[y−
yk]} in (4) is obtained as

He{A[x− xk]B[y − yk]}

¹ A[x− xk]SA[x− xk]
T

+ B[y − yk]
TS−1B[y − yk],

where S ∈ S
n
++. Thus, for any given zk ∈ Ω, an over

estimation of F [z] is given by

F [z] ¹ F [zk] + DzF [z]|z=zk
[z − zk]

+A[x− xk]SA[x− xk]
T

+ B[y − yk]
TS−1B[y − yk]

=: K[z; zk, S]. (5)

The mapping K[z; zk, S] in (5) has the following prop-
erties.

Proposition 1 For any given zk ∈ Ω, S ∈ S
n
++, the

matrix-valued mapping K[·; zk, S] in (5) satisfies the fol-
lowing properties:

(1) F [z] ¹ K[z; zk, S], ∀z ∈ R
n;

(2) F [zk] = K[zk; zk, S];
(3) DzK[z; zk, S]|z=zk

[u] = DzF [z]|z=zk
[u], ∀u ∈

R
n.

PROOF. The statement 1) was proved in (5), and the
statement 2) can be proved by setting z = zk in (5). To
prove 3), note that DzF [z]|z=zk

[u] is given by

DzF [z]|z=zk
[u] = L[u] + He{A[xk]B[w]}

+He{A[v]B[yk]}.

where v ∈ R
nx , w ∈ R

ny are appropriately parti-
tioned vectors such that u = [v, w]T . In addition,
DξK(ξ; zk, S)|ξ=z

[u] is obtained as

DξK(ξ; zk, S)|ξ=z
[u]

= DξF(z)|
ξ=z

[u]

+A[x− xk]SA[v]T +A[v]SA[x− xk]
T

+ B[w]TS−1B[y − yk] + B[y − yk]
TS−1B[w].

Plugging z = zk = [xT
k , y

T
k ]

T into the above equal-
ity yieldsDξK(ξ; zk, S)|ξ=zk

[u] = DξF (z)|
ξ=zk

[u], con-

cluding the proof. 2

It is worth mentioning that the above properties of the
approximation K[z; zk, S] are equivalent to that given
in [27, page 682]. Therefore, the set of z ∈ Ω such that
K[z; zk, S] ¹ 0 is an inner approximation of the feasible
set of (2) around zk. Instead of solving (2), we can solve
the following approximate problem for a fixed S ∈ S

n
++:







min
z

f(z) s.t.

K[z; zk, S] ¹ 0, z ∈ Ω
(6)

It is easy to prove that K[z; zk, S] is psd-convex in z ∈
R

n. Therefore, the problem (6) is a convex optimiza-
tion. The path-following approach in [11] replaces the
whole BMI constraints with their linearizations, and the
DC programming approach in [19] replaces only the con-
cave terms in the BMIs with their linearizations while
preserving the affine and convex terms. In the proposed
approach, we replace the bilinear terms with their con-
vex quadratic over approximations while preserving the
affine terms. If an optimal solution x∗ to the above prob-
lem is close to xk, then the constraint (6) approximates
the constraint of (2) because of the statement (2) of
Proposition 1. Using the Schur complement, (6) is con-
verted to the equivalent form

min
z∈Ω

f(z) s.t.








F [zk] + DzF [z]|z=zk
[z − zk] ∗ ∗

A[z − zk]
T −S−1 ∗

B[z − zk] 0 −S









¹ 0. (7)

The inequality (7) is an LMI constraint, and the above
convex optimization can be solved using standard con-
vex optimization techniques [29]. If the set Ω consists
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of LMI constraints, then it can be solved by using SDP
solvers. By repeatedly solving the problem and using
the current optimal value x∗ for the next point xk+1, we
can obtain an iterative convex optimization algorithm
for the BMIP.

Although it is difficult to compare the tightness of the
proposed approximation with that of the DC program-
ming, then the quality of the approximation can be im-
proved since the gap between the over approximation
and the original bilinear term in Lemma 2 can be reduced
by an appropriate choice of S. However, the determina-
tion of S in (7) is a non-convex problem due to the inverse
of S in (7). One possible way to determine S ≻ 0 through
the convex program is to linearize the inverse −S−1. A
key observation is that f(S) = S−1 is psd-convex on S

n
++

by [19, Lemma 3.1], and hence, g(S) = −S−1 is psd-
concave. By linearizing −S−1 around Sk, we have the
over approximation −S−1 ¹ −2S−1

k +S−1
k SS−1

k around
Sk. For completeness and easy reference, it is formally
stated in the following lemma.

Lemma 3 Suppose that S : R
n → S

p is a linear map-
ping defined as S[x] =

∑n

i=1 xiSi, where Si ∈ S
p for

i ∈ {1, . . . , n}. If S[x] ≻ 0 and S[y] ≻ 0, then−S[y]−1 ¹
−2S[x]−1 + S[x]−1S[y]S[x]−1 holds.

PROOF. From the formulation of the derivative of the
matrix inverse [35], we have

Dz(−S[z]−1
)
∣

∣

∣

z=x
[d] = −

n
∑

i=1

di
∂(S[z]−1

)

∂zi

∣

∣

∣

∣

∣

z=x

= −
n
∑

i=1

di

{

−S[z]−1 ∂S[z]

∂zi
S[z]−1

}

∣

∣

∣

∣

∣

z=x

= S[x]−1(DzS[z]|z=x[d])S[x]
−1.

Using this result, if S[x] and S[y] are invertible, then the
linearization of −S[y]−1 around x is

− S[x]−1 + S[x]−1(DzS[z]|z=x[y − x])S[x]−1.

Since the mapping g(S) = −S−1 is psd-concave on S
n
++,

for S[x] ≻ 0 and S[y] ≻ 0, we have

−S[y]−1 ¹ −S[x]−1 + S[x]−1(DzS[z]|z=x[y − x])S[x]−1

= −2S[x]−1 + S[x]−1S[y]S[x]−1.

This completes the proof. 2

Algorithm 1 A sequential parametric convex approxi-
mation algorithm for BMIP

1: Initialize z0 ∈ D0 and set k ← 0, Sk = In;
2: repeat
3: Solve

(zk+1, Sk+1) = argmin
z∈Rn, S∈Sn

fρ(z; zk) s.t. (9)









F [zk] + DzF [z]|z=zk
[z − zk] ∗ ∗

SkA[z − zk]
T −2Sk + S ∗

B[z − zk] 0 −S









¹ 0,

c1I ¹ S ¹ c2I, −2Sk + S ¹ −c3I z ∈ Ω, (10)

where ρ > 0, c2 > c1 > 0, c3 > 0, fρ(z; zk) :=

f(z) + ρ
2‖z − zk‖

2
.

4: k ← k + 1;
5: until a certain stopping criterion is satisfied.

By replacing −S−1 in (7) with −2S−1
k + S−1

k SS−1
k and

multiplying (7) from the left and right by the block diag-
onal matrix diag(I, Sk, I), we obtain the following con-
vex optimization:

min
z∈Ω, S∈Sn

f(z) s.t. (8)









F [zk] + DzF [z]|z=zk
[z − zk] ∗ ∗

SkA[z − zk]
T −2Sk + S ∗

B[z − zk] 0 −S









¹ 0,

S ≻ 0, 2Sk − S ≻ 0.

By sequentially solving the above convex program and
using the current optimal point for the next point xk+1

and Sk+1, Algorithm 1 shown at the top of the next page
is obtained.

Remark 1 Due to some technical reasons, the optimiza-
tion (8) is modified in the subproblem of Algorithm 1. In
particular, the constraint c1I ¹ S ¹ c2I in (10) ensures
that each Sk is nonsingular and the sequence {Sk}k≥0 is
bounded. Moreover, −2Sk + S ¹ −c3I is included in the
algorithm to guarantee that −2Sk + Sk+1 is nonsingular

for all k ≥ 0. The term ρ
2‖z − zk‖

2
in the objective func-

tion in (9) is a regularization term to guarantee that the
value of the function f is strictly descent at each itera-
tion, e.g., see the statement (1) of Lemma 6.

Similarly to the DC programming in [19], a favorable
feature of Algorithm 1 is that the optimal solution of the
subproblem at each iteration is a feasible point of the
original problem (2).

Proposition 2 Let {(zk, Sk)}k≥0 be a sequence of opti-
mal solutions generated by Algorithm 1. For every k ≥ 0,
zk is a feasible solution to (2), i.e., zk ∈ Ω, F [zk] ¹ 0.
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PROOF. The proof will be completed by the induction
argument. From Algorithm 1, the feasibility of the ini-
tial point is guaranteed, i.e., z0 ∈ Ω, F [z0] ¹ 0. Suppose
that zk is a feasible point of (2). Then, it is guaranteed
that the subproblem in Algorithm 1 is always feasible
for any Sk ∈ S

n
++ because of the trivial feasible point

(z, S) = (zk, Sk). Let (zk+1, Sk+1) be an optimal so-
lution to the subproblem in Algorithm 1. By plugging
(z, S) = (zk+1, Sk+1) into the constraint of (9), and ap-
plying the Schur complement, we get









(

F [zk] + DzF [z]|z=zk
[zk+1 − zk]

+B[zk+1 − zk]
TS−1

k+1B[zk+1 − zk]

)

∗

SkA[zk+1 − zk]
T −2Sk + Sk+1









¹ 0.

Multiplying the above matrix by [I, A[zk+1 − zk]] from
the left and by its transpose from the right, we have

F [zk] + DzF [z]|z=zk
[zk+1 − zk]

+A[zk+1 − zk]
TSk+1A[zk+1 − zk]

T

+ B[zk+1 − zk]
TS−1

k+1B[zk+1 − zk]

= K[zk+1; zk, Sk+1]

¹ 0.

By the statement (1) of Proposition 1, this implies that
zk+1 ∈ Ω satisfies F [zk+1] ¹ 0. Therefore, zk+1 is a
feasible point of (2). This completes the proof. 2

Remark 2 Both the DC programming approach in [19]
and Algorithm 1 use over approximations of the BMI con-
straints over the cone of positive semidefinite matrices.
Intuitively, the difference between the two approaches can
be explained using the following simple example. Con-
sider the BMI constraint Γ(X, Y ) + XTY + Y TX ¹
0, where the matrices X and Y are the decision vari-
ables, and the matrix-valued mapping Γ(X, Y ) is lin-
ear in (X, Y ). According to [19, Lemma 3.1], the bilin-
ear term XTY + Y TX can be represented as a differ-
ence of psd-convex and psd-concave terms (psd-convex-
concave mapping): XTY + Y TX = XTX + Y TY −
(X − Y )T (X − Y ). In fact, a more general psd-convex-
concave mapping can be derived by introducing the auxil-
iary matrix S ≻ 0 as follows: XTY + Y TX = XTSX +
Y TS−1Y − (X − S−1Y )TS(X − S−1Y ). Note that the
last term −(X − S−1Y )TS(X − S−1Y ) is concave in X
and Y . If we set S to be a constant, i.e. S = I, and lin-
earize the last term (X −S−1Y )TS(X −S−1Y ) with re-
spect to (X, Y ) at the point (X, Y ) = (Xk, Yk), then the
over approximation of the DC programming method is
obtained. Instead, if we drop the last term and linearize
S−1 at S = Sk, then the over approximation of the pro-
posed Algorithm 1 is obtained. From the interpretation,

it is not easy to claim which approximation is better than
the other. Since the last term is entirely dropped in Al-
gorithm 1, it can be seen as a less accurate one in gen-
eral. However, the auxiliary matrix S can be adjusted as
a decision variable of the convex subproblem, the over
approximation can be tightened at each iteration.

4 Convergence analysis

In this section, a convergence analysis of Algorithm 1
will be provided. First of all, the convex subproblem
of Algorithm 1 is converted to a simpler yet equivalent
form.

Proposition 3 Suppose that {(zk, Sk)}k≥0 is a se-
quence of the optimal solutions generated by Algorithm 1.
Then, for each k ≥ 0, zk+1 is an optimal solution to the
following optimization problem:

min
z∈D(zk, Sk, Sk+1)

fρ(z; zk) (11)

where

D(zk, Sk, Sk+1) := {z ∈ Ω : H[z; zk, Sk, Sk+1] ¹ 0},

(12)

fρ(z; zk) := f(z) +
ρ

2
‖z − zk‖

2
,

H[z; zk, Sk, Sk+1] := F [zk] + DzF [z]|z=zk
[z − zk]

+A[z − zk]Sk(2Sk − Sk+1)
−1SkA[z − zk]

T

+ B[z − zk]
TS−1

k+1B[z − zk]. (13)

PROOF. If we plug S = Sk+1 into the constraint of
(9), then zk+1 is the unique optimal solution to

min
z∈Ω

fρ(z; zk) s.t.








F [zk] + DzF [z]|z=zk
[z − zk] ∗ ∗

SkA[z − zk]
T −2Sk + Sk+1 ∗

B[z − zk] 0 −Sk+1









¹ 0, (14)

where the uniqueness follows from the fact that fρ(z; zk)
is strongly convex with the parameter ρ > 0 and the fea-
sible set is convex. Since Sk+1 ≻ 0 and Sk+1 − 2Sk ≻ 0,
we can apply the Schur complement twice to (14) to ob-
tain H[z; zk, Sk, Sk+1] ¹ 0. Note that from the stan-
dard Schur complement argument,H[z; zk, Sk, Sk+1] ¹
0 and the LMI constraint in (9) are equivalent. There-
fore, the problem (9) can be equivalently converted to
(11). 2

In the sequel, the convergence analysis of Algorithm 1
will be carried out based on the optimization (11). There-

6



fore, it is of great interest to understand the relations
among the mappings H[·; zk, Sk, Sk+1], K[·; zk, Sk],
and F [·].

Lemma 4 For any given zk ∈ Ω, Sk ∈ S
n
++, Sk+1 ∈

S
n
++, the matrix-valued mapping H[·; zk, Sk, Sk+1] sat-

isfies the following properties

(1) H[z; zk, Sk, Sk+1] = K[z; zk, Sk] if Sk+1 = Sk;
(2) F [zk] = H[zk; , zk, Sk, Sk+1];
(3) DzH[z; zk, Sk, Sk+1]|z=zk

[u] = DzF [z]|z=zk
[u]

for u ∈ R
n;

(4)

DzH[z; zk, Sk, Sk+1]|z=zk+1
[u]

= DzF [z]|z=zk
[u]

+ He{A[v]Sk(2Sk − Sk+1)
−1SkA[xk+1 − xk]

T }

+He{B[w]TS−1
k+1B[yk+1 − yk]},

where u = [vT , wT ]T and zk = [xT
k , y

T
k ]

T ;
(5) K[z, zk, Sk+1] ¹ H[z, zk, Sk, Sk+1], ∀z ∈ R

n;
(6) F [z] ¹ H[z, zk, Sk, Sk+1], ∀z ∈ R

n.

PROOF. The statements 1)-4) can be proved using di-
rect calculations, and are thus omitted for brevity. To
prove the statement (5), observe that from Lemma 3, we
obtain

− S−1
k+1 ¹ −2S−1

k + S−1
k Sk+1S

−1
k

⇔ 2S−1
k − S−1

k Sk+1S
−1
k ¹ S−1

k+1.

Pre- and post-multiplying the above inequality by Sk

results in 2Sk − Sk+1 ¹ SkS
−1
k+1Sk. Taking the inverse

of the left- and right-hand sides of the last inequality,
one gets S−1

k Sk+1S
−1
k ¹ (2Sk − Sk+1)

−1. Applying the
inequality to the definition of H[z, zk, Sk, Sk+1] proves
the statement (5). The statement (6) follows by combin-
ing the statement (5) and the relation (1) in Proposi-
tion 1. This completes the proof. 2

The above properties coincide with the properties given
in [27, page 682]. Therefore, the proposed approach can
be interpreted as a SPCA method for the BMIP. The
following lemma introduces the KKT condition for (11).

Lemma 5 Let

zk+1 = argmin
z∈D(zk, Sk, Sk+1)

fρ(z; zk),

and suppose that zk+1 ∈ D(zk, Sk, Sk+1) satisfies the
MFCQ for the problem (11), i.e., there exists ξ ∈ Ω such
that

H[zk+1, zk, Sk, Sk+1]

+ DzH[z; zk, Sk, Sk+1]|z=zk+1
(ξ − zk+1) ≺ 0.

Then, there exists a Lagrange multiplier Λk+1 satisfying
the KKT condition

0 ∈ ∇f(zk+1) + ρ(zk+1 − zk)

+
[

DzH[z; zk, Sk, Sk+1]|z=zk+1

]∗

Λk+1 +NΩ(zk+1),

(15)

H[zk+1; zk, Sk, Sk+1] ¹ 0, Λk+1 º 0, (16)

Λk+1 ◦ H[zk+1; zk, Sk, Sk+1] = 0. (17)

PROOF. By assumption, since zk+1 is an optimal so-
lution to (11), and zk+1 ∈ D(zk, Sk, Sk+1) satisfies the
MFCQ, by Lemma 1, the set of the Lagrange multi-
plier Λk+1 solving the KKT (15)-(17) is nonempty and
bounded [20, page 306]. This completes the proof. 2

The following result proves that the sequence of the
objective functions {fρ(zk+1; , zk)}k≥0 is monotonically
decreasing.

Lemma 6 Suppose that {(zk, Sk)}k≥0 is a sequence of
solutions generated by Algorithm 1. The, the following
statements are true:

(1) f(zk+1) ≤ f(zk)−
ρ
2‖zk − zk+1‖

2
;

(2) If there exists z ∈ Ω such that H[z; zk, Sk, Sk+1] ≺
0, then

f(zk+1)− f(zk)

≤ −ρ‖zk+1 − zk‖
2

− Λk+1 ◦ [A[xk+1 − xk]Sk(2Sk − Sk+1)
−1

× SkA[xk+1 − xk]
T ]

− Λk+1 ◦ [B[yk+1 − yk]
TS−1

k+1B[yk+1 − yk]],

(18)

where Λk+1 is a Lagrange multiplier satisfying the
KKT condition in (15)-(17).

PROOF. (1) First of all, from the statement 2)
of Lemma 4 and Proposition 2, we have F(zk) =
H(zk, zk, Sk, Sk+1) ¹ 0 and zk ∈ Ω. By the def-
inition of D(zk, Sk, Sk+1) in (12), one concludes
zk ∈ D(zk, Sk, Sk+1). In addition, since zk+1 is an
optimal solution of (11), we have

f(zk+1) +
ρ

2
‖zk+1 − zk‖

2

= min
z∈D(zk, Sk, Sk+1)

fρ(z; zk)

7



≤ f(zk) +
ρ

2
‖zk − zk‖

2

= f(zk),

and the desired result follows.

(2) The proof follows similar lines of the proof of [19,
Lemma 4.2]. From the assumption of the convexity of
f(z), f(zk) ≥ f(z)+∇f(z)T (zk−z), it follows from the
first inclusion in the KKT condition (15) that

f(zk)− f(zk+1) + ([DzH]∗Λk+1)
T (zk − zk+1)

≥ (∇f(zk+1)
T + [DzH]∗Λk+1)(zk − zk+1)

≥ ρ(zk+1 − zk)
T (zk+1 − zk), (19)

where the superscript ∗ is the adjoint operator, we use
the shorthand notation

DzH := DzH(z; zk, Sk, Sk+1)|z=zk+1
,

and the last inequality follows from the KKT condi-
tion (15)

−∇f(zk+1)− ρ(zk+1 − zk)− [DzH]∗Λk+1 ∈ NΩ(z).

On the other hand, by plugging u = zk − zk+1 into the
statement 4) of Lemma 4, we have

DzH[zk − zk+1]

= −H[zk+1, zk, Sk, Sk+1] + F [zk]

−A[xk+1 − xk]Sk(2Sk − Sk+1)
−1SkA[xk+1 − xk]

T

− B[yk+1 − yk]
TS−1

k+1B[yk+1 − yk].

Thus,

([DzH]∗Λk+1)
T (zk − zk+1)

= Λk+1 ◦ {DzH[zk − zk+1]}

= Λk+1 ◦ {−H[zk+1; zk, Sk, Sk+1] + F [zk]

−A[xk+1 − zk]Sk(2Sk − Sk+1)
−1SkA(xk+1 − xk)

T

− B[yk+1 − yk]
TS−1

k+1B[yk+1 − yk]}

≤ −Λk+1 ◦ {A[xk+1 − xk]Sk(2Sk − Sk+1)
−1Sk

×A[xk+1 − xk]
T }

− Λk+1 ◦ {B[yk+1 − yk]
TS−1

k+1B[yk+1 − yk]},

where the last inequality follows from the KKT condi-
tion (17), i.e., Λk+1 ◦ H[zk+1; zk, Sk, Sk+1] = 0, and
from the fact that Λk+1 º 0 and F [zk] ¹ 0. Thus, (19)
can be represented by

f(zk)− f(zk+1) + ([DzH]∗Λk+1)
T (zk − zk+1)

= f(zk)− f(zk+1)

+ Λk+1 ◦DzH(zk − zk+1)

≤ f(zk)− f(zk+1)

− Λk+1 ◦ {A[xk+1 − xk]Sk

× (2Sk − Sk+1)
−1SkA[xk+1 − xk]

T }

− Λk+1 ◦ {B[yk+1 − yk]
TS−1

k+1B[yk+1 − yk]}.

Combining the last inequality with (19), the proof is
completed. 2

Based on Lemma 6, it can be proved that the sequence
of the the optimal objective function value of the sub-
problem of Algorithm 1 is nonincreasing, and thus, con-
verges.

Proposition 4 If {zk}k≥0 is the sequence generated by
(9), then {f(zk)}k≥0 converges.

PROOF. By Lemma 6, the sequence {f(zk)}k≥0 is
nonincreasing. From Assumption 2, since f is bounded
from below on D, {f(zk)}k≥0 is bounded from below as
well, thus converges. 2

In what follows, we propose the main convergence result,
which claims that if every feasible point of the BMIP (2)
satisfies the MFCQ and the sequence of the optimal so-
lutions {zk}k≥0 of the subproblem of Algorithm 1 is
bounded, then there exists a limit point of {zk}k≥0 that
is a stationary point of (2).

Proposition 5 Let {(zk, Sk)}k≥0 be the sequence of so-
lutions generated by (9). If every feasible point of (2)
satisfies the MFCQ and {zk}k≥0 is bounded, then there
exists a limit point of {zk}k≥0 that is a stationary point
of (2).

PROOF. Lemma 6 implies

ρ

2
‖(zk+1 − zk)‖

2 ≤ f(zk)− f(zk+1), ∀k ≥ 0.

By Proposition 4, {f(zk)}k≥0 converges, and thus, the
above inequality ensures

lim
k→∞

‖zk+1 − zk‖
2
= 0. (20)

Since {zk}k≥0 is bounded by assumption, there ex-
ists a limit point z̄ ∈ Ω of {zk}k≥0, i.e., there ex-
ists a subset K of the set of nonnegative integers
such that lim

k→∞, k∈K
zk = z̄. By (20), it also follows

8



that lim
k→∞, k∈K

zk+1 = z∗. Using the definition of

H[·; zk, Sk, Sk+1] in (13) and the feasibility of zk+1 in
(11), we have

F [zk] + DzF [z]|z=zk
[zk+1 − zk]

¹ H[zk+1; zk, Sk, Sk+1]

¹ 0.

By taking the limit k → ∞, k ∈ K in the above inequal-
ity, using the continuity of F [·], H[·; ·, Sk, Sk+1], and
since the positive semidefinite cone is closed, we have
F [z̄] ¹ 0.

Therefore, every limit point z̄ of {zk}k≥0 is feasible. By
assumption, z̄ ∈ Ω satisfies the MFCQ, i.e., there exists
ξ ∈ Ω such that

F [z̄] + DzF [z]|z=z̄[ξ − z̄] ≺ 0.

Therefore, there exists k0 ≥ 0 such that

F [zk] + DzF [z]|z=zk
[ξ − zk] ≺ 0, ∀k ≥ k0, k ∈ K.

On the other hand, by using the statements (2) and (3)
of Lemma 4 and (20), we have

lim
k→∞, k∈K

(H[zk+1; zk, Sk, Sk+1]

+ DzH[z; zk, Sk, Sk+1]|z=zk+1
[ξ − zk+1])

= F [z̄] + DzF [z]|z=z̄[ξ − z̄].

Therefore, there exists k1 ≥ k0 such that

H[zk+1; zk, Sk, Sk+1]

+ DzH[z; zk, Sk, Sk+1]|z=zk+1
[ξ − zk+1] ≺ 0,

∀k ≥ k1, k ∈ K.

This implies that for all k ≥ k1, k ∈ K, the MFCQ holds
at zk+1 for the optimization problem (11). By Lemma 5,
there exists Λk+1 solving the KKT (15)-(17) for all k ≥
k1, k ∈ K.

Next, we will prove that {Λk+1}k≥k1, k∈K is bounded.
Assume by contradiction that {Λk+1}k≥k1, k∈K is not
bounded. If we define Φk+1 := Λk+1/ ‖Λk+1‖, then
{Φk+1}k≥k1, k∈K is bounded and, from the KKT condi-
tion (15), satisfies

0 ∈
∇f(zk+1) + ρ(zk+1 − zk)

‖Λk+1‖

+
[

DzH[z; zk, Sk, Sk+1]|z=zk+1

]∗

Φk+1

+NΩ(zk+1), (21)

and there exists a subset R ⊆ K such that

lim
k→∞, k∈R

Φk+1 = Φ̄, lim
k→∞, k∈R

zk = z̄,

lim
k→∞, k∈R

zk+1 = z̄.

By taking the limit k → ∞, k ∈ R in (21), we have

0 ∈ [DzF(z)|z=z̄]
∗
Φ̄ +NΩ(z̄), (22)

which, by the definition of the normal cone NΩ(z̄) at z̄,
implies

Φ̄ ◦ (DzF [z]|z=z̄(y − z̄)) ≥ 0, ∀y ∈ Ω. (23)

By assumption, every feasible point of (2) satisfies the
MFCQ, so there exists ξ ∈ Ω such that DzF [z]|z=z̄[ξ −
z̄] ≺ 0, implying that for any Φ̄ º 0, Φ̄◦(DzF [z]|z=z̄[ξ−
z̄]) < 0. However, this contradicts with (23). Therefore,
{Λk+1}k≥k1, k∈K is bounded, and there exists R ⊆ K
such that lim

k→∞, k≥k1, k∈R
Λk+1 = Λ̄. Therefore, it can be

proved that

lim
k→∞, k≥k1k∈R

Λk+1 ◦ H[zk+1; zk, Sk, Sk+1]

= Λ̄ ◦ F [z̄] = 0 (24)

and

0 ∈ ∇f(z̄) + [DzF [z]|z=z̄]
∗
Λ̄ +NΩ(z̄),

where the equality in (24) is derived from the state-
ment 2) of Lemma 4. Therefore, the limit point (z̄, Λ̄)
is a KKT point. This completes the proof. 2

Remark 3 The proofs of Proposition 4 and Proposi-
tion 5 are based on the proofs of [36, Corollary 2.3]
and [36, Proposition 3.2], where non-convex optimization
problems are solved by the SPCA of the non-convex in-
equality constraints. In particular, [36, Proposition 3.2]
uses the linear independence constraint qualification
(LICQ) [30, Definition 12.4] for the convergence, while
in Proposition 4 of this paper, the MFCQ is used for
the proof of the convergence. To prove the boundedness
of the Lagrange multipliers, we apply the idea of the
proof of [37, Theorem 11] and the proof of [32, proposi-
tion 3.3.5] to prove the Fritz John necessary condition
for the optimality of the general nonlinear programming.
In the proof of Proposition 5, we used the non-existence
of a non-zero Φ̄ º 0 such that (22) holds to prove the
boundedness of the sequence of Lagrange multipliers.
The non-existence condition is called the pseudonormal-
ity in [32], which is a generalization of the constraint
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qualifications and ensures the existence of the Lagrange
multipliers. Finally, proofs similar to the proof of Propo-
sition 5 also appear in [18, Theorem 2].

Remark 4 If Assumption 2 does not hold, i.e., f is not
bounded from below on D, then this means that in some
cases, lim

k→∞
f(xk) = −∞. In general, the solution with

a too large |f(xk)| may not be useful for practical pur-
poses. Similarly, if {xk}k≥0 is unbounded, the final so-
lution chosen from the sequence will be meaningless. In
these cases, we can modify the objective function f and
the set D to guarantee the boundedness of {xk}k≥0 and
{f(xk)}k≥0. For instance, the constraint ‖x‖∞ ≤ b with
a real number b > 0 can be included in D to ensure that
{xk}k≥0 is bounded, where ‖·‖∞ is the ∞-norm.

5 Example

All numerical examples were solved by MATLAB
R2008a running on a Windows 10 PC with Intel Core
i5-4210 2.6G Hz CPU, 4 GB RAM. The convex op-
timization problems were solved with SeDuMi [38]
and Yalmip [39]. In this section, the static output
feedback (SOF) controller design problem [3] will be
considered to illustrate the proposed method. The
spectral abscissa optimization problem for the SOF
controller design, addressed also in [19, page 1383],
is a well-known BMIP of the form (2) in the sys-
tems and control literature, e.g., [11, 15, 38]. Con-
sider the continuous-time linear time-invariant system
ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = R

nx ,
where (A, B, C) ∈ R

nx×nx × R
nx×nu × R

ny×nx , t ≥ 0,
x(t) ∈ R

nx is the state, u(t) ∈ R
nu is the control input,

and y(t) ∈ R
ny is the measured output. The goal is to

find the gain matrix F ∈ R
nu×ny so that the system

can be stabilized by the SOF controller u(t) = Fy(t).
Specifically, the design problem can be formulated as
the non-convex optimization problem

inf
F∈R

nu×ny

f(F ),

where f(F ) := max{Re{λ} : λ ∈ Λ(A+BFC)}, Re{λ}
denotes the real part of λ ∈ C, and Λ(A+BFC) is the
spectrum of A + BFC. The problem can be expressed
as the BMIP (2)

inf
P, F, α

α s. t. (25)

(A+BFC)TP + P (A+BFC)− 2αP ¹ 0,

(P, F, α) ∈ Ω,

where

Ω = {(P, F, α) ∈ R
nx×nx × R

nx×nu × R :

P = PT , P − 10−6I º 0}. (26)

To apply Algorithm 1, we replace (F, P, α) in (25) with
(Fk +∆F, Pk +∆P, αk +∆α) to have

He{(Pk +∆P )(A+B(Fk +∆F )C)}

− 2(αk +∆α)(Pk +∆P ) ¹ 0,

where∆F = F−Fk, ∆P = P−Pk, and∆α = α−αk. By
expanding and rearranging the terms in the last matrix
inequality, we obtain

He{PA+ PBFkC + PkB∆FC}

− 2(αPk + αk∆P )

+ He{∆P (B∆FC −∆αIn)} ¹ 0. (27)

Noting that the last term in the left-hand side of the
above inequality is bilinear, the LMI constraint (10) is
obtained as (28) at the top of page 12. Then, the sub-
problem (9) of Algorithm 1 is obtained as follows:

(Pk+1, Fk+1, αk+1, Sk+1)

:= arg inf
(P, F, α)∈Ω, S∈Sn

{

α+ 0.005 ‖∆P‖2F

+0.005 ‖∆F‖2F + 0.005 ‖∆α‖2F

}

s.t. LMI (28) holds, and

10−6I ¹ S ¹ 104I, −2Sk + S ¹ −10−6I,

where ‖·‖F is the Frobenius norm.

There are several remarks on the implementation of Al-
gorithm 1.

(1) We use the same method of [19] to determine an
initial feasible point of (25), i.e., F0 = 0, α0 =
−0.5f(0), and P0 is chosen as a solution to the LMIs
P0 º 10−6I, ATP0 + P0A+ 2α0P0 ¹ 0;

(2) Stopping criterion: As in [19], Algorithm 1 is termi-
nated if one of the following conditions is satisfied:
(a) ‖xk+1 − xk‖∞/(‖xk‖∞ + 1) ≤ 10−3;
(b) the maximum number of iterations, Kmax =

100, reaches;
(c) the objective function is not significantly im-

proved after two successive iterations, i.e.,
|f(Fk)− f(Fk−1)| ≤ 10−4(1 + |f(Fk−1)|) and
|f(Fk+1)− f(Fk)| ≤ 10−4(1 + |f(Fk)|).

(3) Ω is convex and closed;
(4) The MFCQ is satisfied for every feasible point

(Pk, Fk, αk) ∈ Ω of (25). To prove this, note
that the MFCQ at (Pk, Fk, αk) is the exis-
tence of (P, F, α) ∈ Ω such that (27) is satis-
fied. If (Pk, Fk, αk) ∈ Ω is feasible for (25), i.e.,
(A+BFkC)TPk + Pk(A + BFkC) − 2αkPk =
He{PkA + PkBFkC} − 2αkPk ¹ 0, then it can be
proved that P = Pk, F = Fk, and any αk < α
satisfy the condition for the MFCQ.
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







He{PA+ PBFkC + PkB∆FC} − 2(αPk + αk∆P ) ∗ ∗

Sk∆P S − 2Sk ∗

B∆FC −∆αIn 0 −S









¹ 0, (28)

In this section, Algorithm 1 is compared with the DC
programming [19], the LMIRank [13] (a MATLAB tool-
box for solving rank constrained LMI feasibility prob-
lems), and the HIFOO [9] (an open-source Matlab pack-
age for structured controller design). In addition, we use
the system data (A, B, C) extracted from the publicly
available database COMPleib library [40]. We set the
initial controller for the HIFOO, LMIRank, and DC pro-
gramming to that used by Algorithm 1. For the HIFOO
and LMIRank, the default options are used. Since LMI-
Rank can only deal with the feasibility problem of the
rank constrained LMIs, a simple bisection algorithm is
applied to solve the optimization problem.

The comparison results of the optimal objective function
value f∗ of (25) computed using different approaches
are summarized in Table 1 with corresponding compu-
tational times, where for each system data (A, B, C),
the smallest estimated optimal objective function value
is highlighted in blue.

The results suggest that the computational time of Al-
gorithm 1 is comparable with that of the DC program-
ming, whereas its performance is in general better than
that of the DC programming in terms of the estimated
optimal objective function value.

Moreover, the LMIRank outperforms Algorithm 1 in
terms of the estimated optimal objective function value.
However, the computational time of the LMIRank is
higher than that of Algorithm 1.

In addition, one can observe that the HIFOO is compu-
tationally less demanding than Algorithm 1, while Al-
gorithm 1 can be applied to more general BMIPs of the
form (2).

6 Conclusion

In this paper, we have proposed a sequential paramet-
ric convex approximation method for solving optimiza-
tion problems including BMIs as constraints. It has been
proved that under the MFCQ, the iterative solutions of
the proposed algorithm converges to a stationary point.
A numerical experiment has demonstrated the validity
and potential benefits of the proposed method.
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[25] M. Kočvara and M. Stingl, “PENNON: A code for convex
nonlinear and semidefinite programming,” Optimization

methods and software, vol. 18, no. 3, pp. 317–333, 2003.
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