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Abstract: This paper studies the exponential stability of a class of discrete-time piecewise-linear sys-

tems (DPLS). Some basic properties of the proposed DPLS are established, which enables the generat-

ing function approach to be used for the system stability analysis. By introducing the generating func-

tions of DPLS and showing their properties, a sufficient and necessary condition for the exponential 

stability of DPLS is derived. Furthermore, the maximum exponential growth rate of system trajectories 

can be obtained exactly by computing the radii of convergence of the generating functions. The algo-

rithm for computing the generating functions is developed and two examples are given to demonstrate 

the proposed approach. 
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1. INTRODUCTION 

 

Piecewise-linear systems (PLS) have been receiving 

increasing attention by control community, since many 

practical control systems can be represented by PLS, 

especially when piecewise-linear components including 

deadzone, saturation, relays, and hysteresis are 

encountered, and many highly nonlinear systems can 

also be approximated by PLS [1]. In addition, they 

provide an equivalent framework to the well-known 

linear complementary systems [2] and mixed logical 

dynamical systems [3] from the model point of view. 

Remarkable progress has been achieved on the 

stability problem of PLS. Representative approaches to 

the study of stability for PLS include the construction of 

common, multiple and surface Lyapunov functions [4-6], 

which have also been extended to the stabilization 

problem [7,8] and robust control problem [9,10]. 

For numerical computation, these approaches restrict 

the available classes of Lyapunov functions to the class 

of piecewise quadratic or higher-order functions, which 

makes the resulting stability conditions conservative. 

Therefore, a new research trend in the recent work [11-

13] is to derive a computable sufficient and necessary 

condition for the stability of PLS. For a class of planar 

PLS (PPLS), Iwatani [11] derived an explicit and exact 

stability test, which was given in terms of the coeffi-

cients of the transfer functions of subsystems and was 

computationally tractable. Arapostathis [12] studied the 

behavior of PPLS directly, and it was shown that the 

asymptotic stability of PPLS can be fully modes. On the 

other hand, by introducing the definition of integral func-

tion, Liu [13] provided a necessary and sufficient stabili-

ty test for PPLS. However, the above results only focus 

on the PPLS, there is still a few steps away from being 

effective in the stability analysis of general PLS. 

In our previous work [14], a method based on the 

notion of generating function is proposed to study the 

stability of discrete-time switched linear systems under 

three types of switching rules: arbitrary switching, op-

timal switching and random switching. In this paper, we 

will extend this method to the discrete-time piecewise 

linear systems (D-PLS), i.e., switched linear systems 

with state-dependent switching. 

This paper is organized as follows: The system model 

is described and some basic properties of DPLS are es-

tablished in Section 2. In Section 3, the generating func-

tions are defined, analyzed and used to characterize the 

exponential stability of DPLS. Their numerical computa-

tion algorithm is also developed. Section 4 shows two 

examples to demonstrate the generating functions ap-

proach and conclusions are drawn in Section 5. 

 

Notation:  

- Int(S) :  The interior of a set S;  

- CoS :  The convex hull of a set S;  

- (L) :∂
1

For a state-space partition { } ,
n

i i
R

=

 

(L) denotes the index set of the regions
i

R∂  

containing a set L,i.e. (L) { | (L) }
i

i R∂ = ∂ ⊂  

- d(x,S) : The distance from a point x to a set S  

[1,m] : {1,2, ,m-1,m}= �  
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2. PROBLEM FORMULATION 

 

2.1. Problem statement 

We consider a class of discrete-time piecewise-linear 

systems represented by 

1 1

2 2

( )

( )
( 1) ( ( )) :

( ) ,
M M

A x if x t R

A x if x t R
x t f x t

A x if x t R

∈⎧
⎪ ∈⎪

+ = = ⎨
⎪
⎪ ∈⎩

�

 (1) 

where Ai are nonsingular matrices and Ri are polyhedron 

cones with nonempty interior, of the forms 

{ }| 0
i i

R x E x= ≤  (2) 

such that, ,
i j ij

R R L=∩

1

R ,

M

n

i

i

R

=

=∪  where Lij denotes 

the common boundary of Ri and Rj. 

To express the system trajectories uniquely, we intro-

duce the following definition of the trajectories of DPLS 

(1) from the view of autonomous switched systems. 

Definition 1: Let ( ; , )x t z σ  denotes the solution of 

DPLS (1) with the initial state z and switch sequence 

σ∈Σ(z), where Σ(z) denotes the set of all possible switch 

sequences for DPLS with the initial state z.  

Definition 2: At the equilibrium origin, the DPLS (1) 

is called: 

• stable in the sense of Lyapunov if, for each 0,ε >  

there exists 0,
ε

δ >  such that ( ; , )z x t z
ε

δ σ< ⇒  

ε≤  for all .t Z
+

∈  

• asymptotically stable if it is stable and all the 

solutions ( ; , )x t z σ  converge to origin. 

• exponentially stable if there exist , 0δ κ >  and 

(0,1)r∈  such that ( ; , ) t
z x t z r zδ σ κ< ⇒ ≤  

for all t Z
+

∈  and σ∈Σ(z). 

Our objective are: (i) present a computable sufficient 

and necessary criterion of exponential stability for 

continuous-time DPLS (1); (ii) compute the exponential 

growth rate with conservatism, i.e., the exact r. 

 

2.2. Refinement for state-space partition 

This subsection proposes a procedure for recursively 

refining the state-space partition. We assume the 

procedure terminates after a finite number of steps, 

which ensures that some “nice” properties (see Lemma 1 

and 2) of DPLS can be concluded under the obtained 

state-space partition. The key idea of the procedure is to 

separate each region Ri into several subregions 
1

{ }mij jD
=

 

satisfying 

{ & }.
ij i i j

D x R A x R= ∈ ∈  (3) 

Obiviously, the new state-space partition can be com-

puted by solving 

{ | 0& 0}.
ij i i j

D x E x A E x= ≤ ≤  (4) 

Assumption 1: It is assumed that after finite steps of 

refinement algorithm, the state-space partition cannot be 

further refined, i.e., the new state-space partition is 

identical to the old one.  

The discussion about Assumption 1 can be found in 

[15], a sufficient condition for Assumption 1 to hold 

have been provided. From Assumption 1 we can learn 

that the Algorithm 1 will convergence in the finite steps, 

and we call the obtained state-space partition as the final 

state-space partition. All the properties in the following 

are presented for the DPLS with the final state-space 

partition. 

Remark 1: It is observed from the refining procedure 

that the final state-space partition satisfies that, for each 

region Ri, there exists a region Rj such that, 

, .
i j i

A x R x R∈ ∀ ∈  (5) 

We call Rj the objective transition region of Ri. 

 

2.3. Properties of DPLS 

This subsection establishes some basic properties of 

DPLS with the final state-space partition. 

Lemma 1: If Rj is the objective transition region of Ri, 

then for all ,
i

z R∈ .

i j
A z R∈  

Lemma 2: For all 
1 2
, ,

i
z z R∈  the possible switching 

sequence set of 
1 2
z z+  is contained in the possible 

switching sequence set of either z1 or z2, i.e., 

( ) ( ) ( )1 2 1 2
.z z z zΣ + ⊆ Σ Σ∩  (6) 

The proof of Lemma 1 and Lemma 2 can be found in 

[19]. Based on Lemma 1 and 2, some properties of the 

trajectories of DPLS are derived as follows: 

Proposition 1: The system trajectories of DPLS (1) 

have the following properties: 

1) (Homogeneity): For all 
i

z R∈  and ( ),zσ ∈Σ ( ;x t  

, ) ( ; , ).kz kx t zσ σ=  

2) (Piecewise-Additivity): For all 
1 2
,

i
z z R∈  and σ ∈  

1 2
( ),z zΣ +

1 2 1 2
( ; , ) ( ; , ) ( ; , ).x t z z x t z x t zσ σ σ+ = +  

Proof: 1) Assume the switch sequence ( (0),σ σ=  

(1) ( 1) ),tσ σ −� �  then we have 

( 1) (0)( ; , ) ( ; , ).
t

x t kz A A kz kx t z
σ σ

σ σ
−

= ∗ =�  

2) For all 
1 2
,

i
z z R∈  and 

1 2
( ),z zσ ∈Σ +  it can be 

implied from Lemma 2 that 
1 2

( ) ( ),z zσ ∈Σ Σ∩  then we 

have 

1 2 ( 1) (0) 1 2

1 2

( ; , ) ( )

( ; , ) ( ; , ).

t
x t z z A A z z

x t z x t z

σ σ
σ

σ σ

−

+ = ∗ ∗ +

= +

�

 

 

3. GENERATIONG FUNCTIONS OF DPLS  

 

In this section, we present the generating function 

approach to the exponential stability analysis of DPLS.  

Definition 3: We define generating function ( , )G z⋅  

of the DPLS as:  

2

( ) 0

( , ) sup ( ; , ) .t

z t

G z x t z

σ

λ λ σ

∞

∈Σ =

= ∑  (7) 
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For each fixed 0,λ ≥ ( , )G zλ  is a function of z only: 

( ) : ( , ).G z G z
λ

λ=  (8) 

 

3.1. Properties of generating function  

Based on Definition of generating function and 

Proposition 1, we obtain the following properties.  
 

Proposition 1: ( )G z
λ

 has the following properties:  

1) (Homogeneity): ( )I z
λ

 is homogeneous of degree 

two in z, i.e., 2( ) ( ), 0.G z G z
λ λ
α α α= >  

2) (Sub-Additivity): For all 
1 2
, R ,

n

z z ∈  

1 2 1 2
( ) ( ) ( ).G z z G z G z

λ λ λ
+ ≤ +  (9) 

3) (Convexity): For each 0,λ ≥
1

( )G z
λ

 is a convex 

function, i.e., for all 
1 2
, R

n

z z ∈  and 
1 2
, 0,α α ≥

1
α +  

2
1,α =  

1 1 2 2 1 1 2 2
( ) ( ) ( ).G z z G z G z

λ λ λ
α α α α+ ≤ +  (10) 

4) (Common-Bound): For each 0,λ ≥ ( )I z
λ

< ∞  for 

all R
n

z∈  implies that 
2

( ) .G z g z
λ λ

<  

 

Proof: 1) The homogeneity property is a direct 

sequence of homogeneity property of system solution.  

2) It is implied by Propostion1 and Cauchy-Schwartz 

inequality,  

1 2

1 2

1 2

1 2

1 2

2

1 2 1 2
( ) 0

2

1 2
( ) 0

2 2

1 2
( ) 0

1 2

2

1
( ) 0

( )

( ) sup ( ; , )

sup ( ; , ) ( ; , )

sup [ ( ; , ) ( ; , )

2 ( ; , ) ( ; , ) ]

sup ( ; , )

sup

t

z z t

t

z z t

t

z z t

t

z z t

t

z z

G z z x t z z

x t z x t z

x t z x t z

x t z x t z dt

x t z dt

λ

σ

σ

σ

σ

σ

λ σ

λ σ σ

λ σ σ

σ σ

λ σ

λ

∞

∈Σ + =

∞

∈Σ + =

∞

∈Σ + =

∞

∈Σ + =

∈Σ +

+ = +

= +

= +

+ ⋅

≤

+

∑

∑

∑

∑

( )

1

2

2

2

0

2

1
( ) 0

2

2
( ) 0

1 2 1 2

2

1 2

( ; , )

2 sup ( ; , )

sup ( ; , )

( ) ( ) 2 ( ) ( )

( ) ( ) .

t

t

z t

t

z t

x t z dt

x t z dt

x t z dt

G z G z G z G z

G z G z

σ

σ

λ λ λ λ

λ λ

σ

λ σ

λ σ

∞

=

∞

∈Σ =

∞

∈Σ =

+

= + + ⋅

= +

∑

∑

∑

 

This implies the result (9). 

3) With the help of Sub-Additivity and Homogeneity 

for 
1 2
, 0α α ≥  and 

1 2
1,α α+ =  we have  

1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ).

G z z G z G z

G z G z

λ λ λ

λ λ

α α α α

α α

+ ≤ +

= +

 (11) 

This proves the Convexity of ( ).G z
λ

 

4) Assume there exist 0λ ≥  such that ( ) .G z
λ

< ∞  

Let 
1

{ }n
i i
z

=

 denote a standard basis of Rn, then for any z∈  
 

1
S
n−  (unit-ball of Rn), there exist 0,jα ≥

2

1

1,
n

j

j

α

=

=∑  

such that 

1

.

n

j j

j

z zα

=

=∑  (12) 

Apply the Sub-Additivity of ( )G z
λ

 and the Cauchy-

Schwartz inequality in the summation form to get that, 

for all 1
S
n

z
−

∈  

2 2

1 1

2

1 1

( ) ( ) ( )

. ( ) ,

n n

j j j j

j j

n n

j j

j j

G z G z G z

G z g

λ λ λ

λ λ

α α

α

= =

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥= ≤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

≤ ≤

∑ ∑

∑ ∑

 (13) 

where 

{ }1, ,

: max ( ).j
j n

g n G z
λ λ

∈

= ⋅

�

 (14) 

By homogeneity, we have 
2

( ) ,G z g z
λ λ

< R .
n

z∈  
 

3.2. Exponential stability criterion of DPLS 

In this subsection, a sufficient and necessary condition 

of exponential stability is presented for DPLS via the 

proposed generating functions. 

Theorem 1: The DPLS (1) is strongly exponentially 

stable if and only if the corresponding generating func-

tions satisfy that 
1
( )G z  is finite for all R .

n

z∈  

Proof: For sufficiency, suppose for the DPLS (1), 

1
( ) , .G z z< ∞ ∀  Then by property 4 in Proposition 2, 

there exists a constant g
λ

 such that 
2

1
( ) .G z g z

λ
<  

Thus from the definition of 
1
( )G z  we have  

2 2

( ) 0

sup ( ; , ) ,

z t

x t z g z
λ

σ

σ

∞

∈Σ =

≤∑  

which implies that ( ; , ) ,x t z g z
λ

σ ≤ t Z
+

∀ ∈  and 

( ; , ) 0x t z σ →  as t →∞  due to the convergence of 

infinite positive series. Consequently, the DPLS is 

asymptotically stable, hence exponentially stable. 

For necessity, assume the DPLS is strongly exponen-

tially stable, i.e., there exists constants 1k ≥  and 

(0,1)r∈  such that ( ; , ) ,t
x t z kr zσ ≤ t Z

+

∀ ∈  and 

( ).zσ ∈Σ  Then we have, 

2

1
( ) 0

2
2 22 2

2
0

( ) sup ( ; , )

.
1

z t

t

t

G z x t z

k
k r z z

r

σ

σ

∞

∈Σ =

∞

=

=

≤ = < ∞

−

∑

∑

 

Furthermore, using the piecewise-convexity of G1(z), 

the following corollary can be concluded to show that the 

exponential stability of DPLS is fully determined by the 

generating functions on some finite points, hence compu-

tationally tractable. 
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Corollary 1: The DPLS (1) is strongly exponentially 

stable if and only if the generating functions are finite on 

all the unit-vertexes, i.e., 

2

1( ) , [1, ], [1, ].ij iG z g z i m j n
λ

< ∈ ∈  (15) 

 

3.3. Characterization of maximum exponential growth 

rate 

In the following subsection, we define the radius of 

strong convergence of the generating functions. It can be 

shown this quantity characterizes the maximum expo-

nential growth rate of DPLS exactly. 

Definition 4: The radius of convergence of the gene-

rating function, denoted by λ*, is defined as 

{ }sup 0 | ( ) , R .nG z z
λ

λ λ
∗
= ≥ < ∞ ∈  (16) 

Then, the following theorem shows the relationship of 

the radius of convergence λ* and the maximum exponen-

tial growth rate r*. 

Theorem 2: Given a DPLS with a radius of conver-

gence of generating function λ
*, for any 1/ 2( ) ,r λ

∗ −

>  

there exists a constant kr such that ( ; , ) ,t

r
x t z k r zσ ≤  

,t Z
+

∀ ∈ ( ).zσ ∈Σ  Furthermore, 1/ 2( )λ
∗ −  is also the 

smallest value for the previous statement to hold. In oth-

er words, the maximum exponential growth rate of DPLS 

is 1/ 2( ) .r λ
∗ ∗ −

=  

The proof is identical to that in [[15], Corollary 1]. 

 

3.4. Computation of generating functions 

All the analysis methods proposed in previous sub-

sections require the computation of the generating 

functions of DPLS. In this subsection, we develop an 

algorithm for computing the truncations of generating 

functions as approximations of G1(z) defined as below. 

Definition 5: For each k Z +

∈ , define 

2

( ) 0

( ) sup ( ; , ) ,
k

k t

z t

G z x t z
λ

σ

λ σ

∈Σ =

= ∑ R .nz∀ ∈  

The following proposition lists properties of ( ).k
G z
λ

 

Proposition 3: For all (0, )λ λ
∗

∈  and ,k Z
+

∈  

( )k
G z
λ

 converges exponentially fast to ( ),G z
λ ,k →∞  

i.e. 

1

21
( ) ( ) 1 ,

k

k
G z G z g z

g
λ λ λ

λ

+

⎛ ⎞
− ≤ −⎜ ⎟

⎝ ⎠
 R .nz∀ ∈  

Proof: Let ( ) : ( ; , ),x t x t z σ=  where ( )zσ ∈Σ  denotes 

the switch sequence to achieve the supremum of ( ),G z
λ

 

thus we have 

2
( ( 1)) ( ( )) ( 1) .G x k G x k x k

λ λ
λ− − = −  

From property 5 in Proposition 2, this further implies, 

( ( 1))
( ( 1)) ( ( )) ,

G x k
G x k G x k

g

λ

λ λ

λ

λ
−

− − ≥  

which is equivalent to 

1 1/
( ( )) ( ( 1)).

g
G x k G x kλ

λ λ
λ

−
≤ −  

By induction on this inequality, we have 

( ) ( )

21

0

1 1

1

1

1 12 2

( ) ( ) ( 1)

1 1/
( ( 1)) ( ( ))

1 1/
( )

1 1/ 1 1/ .

k k

t

k k

k

k

k k

G z G z x t k

g
G x k G x k

g
G z

g g z g g z

λ λ

λ

λ λ

λ

λ

λ λ λ λ

λ

λ λ
λ

λ
λ

∞

+

=

+ +

+

+

+ +

− = + +

−
= + ≤

−⎛ ⎞
≤ ≤ ⎜ ⎟

⎝ ⎠

≤ − = −

∑

�

 

This completes the proof. 
 

Next, to present the algorithm for computing the trun-

cations of generating functions, we first provide the fol-

lowing Lemma. 

Lemma 3: For any ,k Z
+

∈  the ( )k
G z
λ

 satisfies the 

Bellman Equation, i.e., 

( )

21( ) max ( ),k k
p

p z
G z z G A z
λ λ

λ
+

∈∂

= + ⋅  (17) 

where ( ) { | }.
i

z i z R∂ = ∈  
 

The proof can be directly implied by the definition of 

( ),k
G z
λ

 thus omitted. 

Lemma 3 actually provides an accurate approach to 

compute ( ),k
G z
λ

 which is summarized as Algorithm1. 

From Proposition 3 we learn that, ( )k
G z
λ

 converges 

exponentially fast to ( )G z
λ

 as ,k →∞  and the approxi-

mation error is bounded by formula (30). Therefore, 

Algorithm 2 can be applied to compute ( )G z
λ

 with any 

precision as permitted by the numerical computation 

errors. By repeatedly applying Algorithm 1 to a 

increasing sequence of λ, an underestimates of λ* can be 

obtained. 

 

4. ILLUSTRATIVE EXAMPLES 

 

In this section, we will demonstrate the proposed 

approach through two numerical examples. 
 

Example 1: Consider the following DPLS 

{ } { }

{ } { }

1 3 2 4

1 1 2 2 1 2

3 1 2 4 1 2

0.7 0.1 0.7 3
, ;

3 0.8 0.1 0.8

| 0& 0 , | 0& 0 ,

| 0& 0 , | 0& 0 .

A A A A

R x x x R x x x

R x x x R x x x

⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

= ≤ ≥ = ≥ ≥

= ≤ ≤ = ≥ ≤

 

First, we need to further refine the original state-space 

partition. The refinement process is shown in Fig. 1. At 

step (1), (1)
1R  splits into (2)

2R  and (2)
1R  such that any 

state trajectory starting from the initial state 
(2)

0 2x R∈  

will enter 
(2)
1R  in one step; While any state trajectory 

starting from the initial state (2)
0 1x R∈  will remain in 

(1)
1R  in one step. The same procedure is applied for 
(1)
2 ,R

(1)
3R  and 

(1)
4 .R  Thus, we obtain one-step state-
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space partition. At step (2), 
(1)
2R  splits into 

(3)
2R  and 

(3)
1 ,R

(3) (2)
3 2 .R R=  In the same way, we can obtain 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
5 74 6 8 9 10 11 12 10 11( , , )( , , )( , , )( , ,R R R R R R R R R R R

(3)
12 ).R  These obtained regions consist of the two-step 

state-space partition. It is noted from the obtained region 

that, every state trajectory with the initial state (3)
0 1x R∈  

transients to 
(3)
2R  in one step. For convenience, we 

write this as 
(3) (3)
1 2 .R R→  Similarly, we have 

(3)
2R →  

(3) (3) (3)
3 12 1 .R R R→�  These observations imply that if 

running the third step of partition, we have (4) (3)
.

i i
R R=  

In other words, the refining procedures terminate. 

Algorithm 1 is used to compute generating function 

for different values of : 0.2,0.4,0.6,0.8,1.0,1.1.λ  Fig. 

1(d) illustrates the plots of the computed 1/ .g
λ

 Since 

g
λ

 at 1λ =  is finite, the given DPLS is exponentially 

stable from Theorem 1. Actually, an estimated value of 

1.161λ =  can be obtained by extrapolation method, 

which shows that the maximum exponential rate 
1/ 2( ) 0.9285r λ

∗ ∗ −

= ≈  from Theorem 2. 

Furthermore, the following example shows that the 

proposed approach is also useful for the stability analysis 

of DPLS with higher dimensions. 
 

Algorithm 1: Computation of ( )K
G z
λ

 

1. Initialize 0
0, ( ) 1, ;

k
k G z z z

λ
= = =  

2. Repeat 1k k← + ; 

3. for each ,

k
z  do 

21

( )

( ) max ( )
k

k k k k
p

p z

G z z G A z
λ λ

λ
+

∈∂

= + ⋅  

end for 

4.Set ( )( )

arg max ( )
k

k k k
p

p z

p G A z
λ

∈∂

= ; 

5. Set 1k k
pz A z

+

=  

6. k K=  

7. Return ( ).K
G z
λ

 
 

Example 2: Consider the following DPLS 

{ } { }

1 2

1 3 2 3

0 0 1.5 0 1.6 0

0.5 0 0 , 0 0 0.8 ;

0 1 0 0.6 0 0

| 0 , | 0 .

A A

R x x R x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ≥ = ≤

 

Similar to Example 1, the original state-space partition 

can be further refined. Fig. 2 illustrate the refinement 

process. After two steps, the obtained eight subregions 

are exactly the eight quadrants in standard three-

dimensional space. It is easy to verify that every subre-

gion has a unique objective transition region. In other 

words, the refining process terminate. Therefore, the 

unit-vertexes of the final state-space partition are 

(1,0,0)( 1,0,0)(0,1,0)(0, 1,0)(0,0,1)(0,0, 1).− − −  

Algorithm 1 is used to compute 
1
( )

ij
G z  for different 

values of : 0.2,0.4,0.6,0.8,1.0.λ  Fig. 2(d) illustrates 

the plots of the computed 1/ .g
λ

 Since g
λ

 at 1λ =  

is finite, the given DPLS is exponentially stable from 

Theorem 1. Actually, an estimated value of 1.054λ =  

can be obtained by extrapolation method, which shows 

that the maximum exponential rate 1/ 2( )r λ
∗ ∗ −

= ≈  

0.9740 from Theorem 2. 
 

5. CONCLUSION 

 

A computational approach to analyzing the stability 

for a class of DPLS was presented via generating func-

tions together with some quantities derived from generat-

ing functions, such as radii of convergence and quadratic 

bounds. These quantities fully characterize the exponen-

tial stability of the DPLS. Our future work will focus on 

how to extend the proposed approach to the robust stabil-

ity analysis of DPLS. 
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