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Abstract— In this paper, we develop an efficient algorithm for
coordinating a group of mobile robotic sensors to collaboratively
construct the probabilistic map (occupancy grid) of a random
field. Each mobile sensor is responsible for exploring its online-
computed dynamic Voronoi polygon with a tendency of moving
toward the most uncertain area, thus avoiding energy and time
waste from wandering around and surplus explorations. The
performance is measured by the total entropy of the built
probabilistic map. Simulation results show that our algorithm
is both time and energy efficient.

I. I NTRODUCTION

Map building is the process of establishing a representation
of a previous unknown environment, which, for instance,
might be a room in a building, a potentially hazardous
working place, or a battle field. The task of map building is
usually undertaken by one or multiple mobile robots which
are equipped with various sensors aboard. A group of mobile
robots with sensors aboard is also called a mobile sensor
network in which a sensor node is a robot. Much of the
research effort to date to build a map has focused on the
single robot scenario, whereas in this paper we develop
an efficient scheme for multiple robots to cooperatively
construct a map.

Because of the complicated nature of the task, map
building is often coupled with other tasks. For example,
in the front end, when the problem of locating the robots
in the environment is also considered, one has the SLAM
(simultaneous localization and mapping) problem [3], [11],
[12]. Alternatively, map building can also be combined with
various applications that utilize the map to be built, for
example, the pursuer’s strategy in a pursuer-evader game in
an unknown environment.

There are two typical mapping ways to represent the
knowledge of a region of interest. The first approach [3],
[11], [12], assumes a set of possible shapes of obstacles, e.g.
polygons or rectilinear polygons, in a given region. Usually
each such shape is parameterized by a finite set of parameters
which the robots need to determine. The second approach
[4], [5], [6], [8], [9], [13], [14], [15] partitions the region into
a regular grid of cells (as shown in Fig. 1), and associates
with each cell a probability that reflects the possibility that
the cell is occupied by an obstacle. The resulting cells
together with the associated probabilities are often called
the occupancy (uncertainty) grid. An occupancy grid is
a probabilistic mapof the region (environment) based on
known knowledge and it can be updated by new knowledge.
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Each of these two approaches has its own advantages and
disadvantages, and captures one aspect of the map building
problem. In this paper, we focus on the second one.

The major keys to the map building problem are as
follows.

• Sensor Model.Depending on the type and capability
of on-board sensors, a sensor model is a function from
the environment states (in this case, the configuration
of obstacles and the positions and orientations of the
robots) to a set of measurement readings, possibly
corrupted by noises. In this paper, a sensor model
P (M |A) is the conditional probability of getting the
measurementM given that the environment is with
property A, e.g. occupied by obstacles or not. For
example, the readings from a range detector indicate the
presence of obstacles within a cone together with their
distances from the robot, and the readings are accurate
with a certain probability determined by the distance
of the obstacle, its deviation from the center of beam,
and heat noises of the sensor. The Sensor models are
normally investigated and determined by taking readings
of the sensor in known environment states.

• Map Update Model.Given a set of measurements taken
by the mobile robots, one needs to update the map in
accordance with these measurements. Also, it is often
the case in practice that the maps kept in different
robots are not identical, whether this is due to commu-
nication delays, or transmission errors. It is important
that one should have a mechanism to “reconcile” these
discrepancies. The typical methods in map update are
the Bayes’ update rule and various other inference
rules. Of these we mention particularly thegraphical
model, which is suited for inferences under complicated
relations.

• Control Strategy.At each time instance, one has to
decide the motion and temporary goal of each mobile
robot. The control strategies are classified as centralized
and decentralized. The centralized strategies assume the
presence of a central controller, and often the precise
information on the positions of the robots, while for
decentralized strategies, each robot makes decisions on
its own using information that is available to it at that
time, which could vary among different robots, and,
occasionally, the decisions could be redundant or even
contradictory at the moment. In this paper, we present a
hybrid algorithm to coordinate the motion of a group of
robots. A central controller doesn’t exist and all robots
execute the same coordinated map building algorithm



based on the same information, a shared map, updated
by direct communications with each other.

• Practical Constraints.Depending on the way of com-
munication between robots, various practical constraints
could be adopted. For example, the power limit and
channel capacity of the communication units aboard the
robots could constrain that at any time the robots should
form a team that no robot is at a distance farther than
a threshold away from the rest of the robots, or each
robot should be “visible” to at least one other robot, or
each robot can only receive the up to date maps from
other robot after a certain time of delay. The ability to
incorporate these constraints is vital for the success of
the algorithm in practical situations.

II. PROBLEM FORMULATION AND THE SOLUTION

Suppose there are multiple mobile robots trying to map
an unknown regionD in R

2. It is possible to apply the
current approach to 3D regions after certain modifications.
The regionD ⊂ R

2 is partitioned into a grid of cells,
D = {(xi, yi) ∈ Z

2 : i ∈ Γ}, whereΓ is a finite set of the
indices of the cells. Each(xi, yi) ∈ D represents a rectangle
[xi, xi+1]× [yi, yi+1] ⊂ R

2, which is either occupied by an
obstacle totally, or is empty totally. See Fig. 1 for an example
of a rectangular regionD, where those cells occupied by
obstacles are blackened.

If at some time a robot is in a cell(xi, yi) which is not
occupied, then at the next time step, it can, according to the
coordination policy, stay at cell(xi, yi), or move to one of
the un-occupied immediately neighboring cells of(xi, yi).

Fig. 1. RegionD with obstacles marked.

The knowledge of a robot about the environmentD is
represented by theprobabilistic map (occupancy grid) it
keeps, which is defined to be a collection of probabilities,
{pi ∈ [0, 1] : i ∈ Γ}, such thatpi is the probability (the
certainty) that cell(xi, yi) is occupied. The value ofpi will
be updated whenever a robot explores (measures) celli.

Usually a transformed version of the probability map
(occupancy grid) is more useful. For each probabilitypi, the
odd of the celli is defined to be

oi =
pi

1 − pi

∈ [0,∞] (1)

The logarithmic odd mapis the collection{log oi : i ∈ Γ}.

A. Sensor Model

We suppose all robots are with the same sensor model.
Each robot takes measurement of each cellindependently. A
measurement of celli = (xi, yi) is a random variable denoted
as M

(k)
i ∈ {0, 1}, wherek is the number of measurements

made at celli regardless from which robot (since their
sensor models are the same).M

(k)
i = 1 means that thek-

th measurement result suggests celli is occupied whereas
M

(k)
i = 0 represents thek-th measurement result of celli is

un-occupied. After taking measurement, all the robots then
update the shared occupancy grid, the probabilistic map of
the whole region. We assume the robots can communicate1

with each other timely to update the shared occupancy grid.
This assumption is based on the fact that the energy cost
of robots’ movements is larger than that of communication.
Thus, a coordination globally minimizing the number of
robots’ movements will benefit the energy saving although
it spends some energy on communications.

Let Ai ∈ {1, 0} be the random variable that celli is
truly occupied (Ai = 1) or not (Ai = 0) in reality. The
sensor model of each robot is hencep(Mi|Ai). We assume
the sensor modelp(Mi|Ai) is time invariant. For simplicity
we denote

p00 = P (Mi = 0|Ai = 0),

p01 = P (Mi = 0|Ai = 1),

p10 = P (Mi = 1|Ai = 0)

p11 = P (Mi = 1|Ai = 1). (2)

The largerp00, p11 are, the more accurate the sensors.
For a more realistic model, one can choose different values

of these conditional probabilities for different cells measured,
depending on the sensing pattern of the sensor and the
distance as well as the angle between the sensor and the
cell measured, provided that a robot can sense not only its
currently located cell but also the neighboring cells.

B. Map Update Model

The robots take measurements of the environment, and
update the occupancy grid based on these measurements.
Whenever a robot is at a position(xi, yi), it can measure the
cells in [(xi, yi) + Nb] ∩ D, whereNb is a cluster of points
in Z

2 containing the origin. Hence the robot can always
measure the cell it stays at, as well as a set of cells close
to it. The size ofNb reflects how powerful the sensors on
board are.

Suppose a celli has been measuredk times. LetM (1,k)
i =

{M
(1)
i , M

(2)
i . . . , M

(k)
i } be the sequence ofk measurements

on cell i. A robot now visits celli to make a new measure-
mentM (k+1)

i and then updates the probability (certainty) of
occupancy of celli,

p
(k+1)
i = P (Ai = 1|M

(1,k+1)
i ), (3)

1In the region of interest, robots may communicate with each other by
one-hop direct connections, multi-hop relays among robots, or connections
via a base station.



where the superscript(k+1) of p
(k+1)
i indicates the(k+1)-

th step. Also, the odd of celli at (k + 1)-th step, denoted
o
(k+1)
i , is

o
(k+1)
i =

p
(k+1)
i

1 − p
(k+1)
i

. (4)

By the Bayes’ rule, we have

P (Ai|M
(1,k+1)
i )

= P (Ai|M
(1,k)
i , M

(k+1)
i )

=
P (M

(k+1)
i |M

(1,k)
i , Ai) · P (Ai|M

(1,k)
i )

P (M
(k+1)
i |M

(1,k)
i )

=
P (M

(k+1)
i |Ai) · P (Ai|M

(1,k)
i )

P (M
(k+1)
i )

,

where the last equality follows from the assumption that all
measurements are independent. However, the above equation
is not useful as the probabilityP (M

(k+1)
i ) is not readily

available. To overcome this difficulty, we setAi = 0 and
Ai = 1 respectively to obtain

P (Ai = 1|M
(1,k+1)
i )

=
P (M

(k+1)
i |Ai = 1) · P (Ai = 1|M

(1,k)
i )

P (M
(k+1)
i )

,

P (Ai = 0|M
(1,k+1)
i )

=
P (M

(k+1)
i |Ai = 0) · P (Ai = 0|M

(1,k)
i )

P (M
(k+1)
i )

.

The quotient of the above two equations yields

P (Ai = 1|M
(1,k+1)
i )

P (Ai = 0|M
(1,k+1)
i )

=
P (M

(k+1)
i |Ai = 1)

P (M
(k+1)
i |Ai = 0)

·
P (Ai = 1|M

(1,k)
i )

P (Ai = 0|M
(1,k)
i )

,

which can be rewritten as

o
(k+1)
i = ρM · o

(k)
i , (5)

where

ρM =

{

ρ0 = p01

p00

if M
(k+1)
i = 0

ρ1 = p11

p10

if M
(k+1)
i = 1.

(6)

Note that the value ofρM is pre-determined by the sensor
model and does not depend on the timek since we assume
the sensor model to be time invariant. Normally, a sensor is
of the higher probability to have a correct measurement, i.e.
p00 ≥ p01 and p11 ≥ p10. Thus normally0 < ρ0 ≤ 1 and
ρ1 ≥ 1.

For practical usage, we take the logarithm of equation (5)
to obtain the map update rule for thelogarithmic odd:

log o
(k+1)
i = log ρM + log o

(k)
i , (7)

whereρM is determined by (6).
At each time step, robots measure the cells within their

measurement range, and update the logarithmic odd map as

Fig. 2. Voronoi partitions for Euclidean and street distances.

described in equation (7). Initially, all the probabilityp
(0)
i are

0.5, reflecting the fact that the robots know nothing about
the environment. Hencelog o

(0)
i = 0, ∀i ∈ Γ. As time

goes on and new measurements are taken, in generallog o
(k)
i

become random processes whose values at each step depend
on the outcome of the random measurements by robots. Note
that log o

(k+1)
i = log o

(k)
i if the cell i is outside all robots’

measurement ranges.

C. Coordination and Performance Metric

Our goal is to find a dynamic strategy to coordinate the
motions of robots such that theresidual uncertaintyof the
map is minimized in a fixed amount of time. The residual
uncertainty of a probabilistic map (occupancy grid) can be
defined by the total entropy of the occupancy grid:

H(D) =
∑

i∈Γ

H(i) =
∑

i∈Γ

(pi log pi + (1 − pi) log(1 − pi)),

(8)
where the first equality follows from the independence of
pi of each cell. W. l. o. g., we omit the superscript(k)
in the above definition. Note that the largerH(D) is, the
more uncertain the corresponding probabilistic map. Since
robots keep exploring the regionD, the total entropyH(D)
is in a decreasing tendency. Thepi of equation (8) can be
easily obtained from the updated odd or logarithmic odd by
their relationship in equation (1). In the next section, we
will present our algorithm for the coordination of multiple
robots that can reduce the residual uncertaintyH(D) of a
probabilistic map in a time and energy efficient way.

III. A LGORITHM

Suppose at some time step, the positions of the robots
are (al, bl), l = 1, . . . , m. The Voronoi partition is a
decomposition ofD into disjoint subsetsD1, . . . , Dm, such
that Dl = {(xi, yi) ∈ D : (xi, yi) is closest to(al, bl)}. In
case that there is more than one(al, bl) closest to(xi, yi),
we can attribute(xi, yi) to any one of them.Dl is called
the Voronoi polygonof robot l. Shown in Fig. 2 are the
Voronoi partitions under two different definitions of distance:
Euclidean and street.

The philosophy of our algorithm is thata robot should
be responsible for the exploration of the uncertain area
closest to it.To achieve this goal, every robot computes



the Voronoi partitionof the shared occupancy map and then
moves toward the cell of the minimal absolute odd|oi| in its
Voronoi polygon. If a cell i has been well explored, it would
be of low entropy (high certainty)H(i) and high absolute
odd, |oi|.

Assume that Euclidean distance is adopted. Our recursive
algorithm is outlined below. A regular step includes all
actions except the initialization. The effect of the register
nl is to let the robot to turn back to the original direction
after it made turns to avoid obstacles.

Algorithm: coordinated map building by multiple robots

Initialization: each robot chooses its initial position, set
its mode to be “pursue” and initialize the logarithmic odd
map{log oi = 0 : i ∈ Γ}.
A step includes the following actions:

1. All the robots take measurements and update the
occupancy map accordingly.

2. Given the positions of robots, (al, bl),
l = 1, . . . , m, construct the Voronoi partition
D1, . . . , Dm. For each robotl = 1, . . . , m,

• If the mode of robotl is “pursue”, find among
all cells (xi, yi) ∈ Dl the one minimizing

|oi| + λ‖(xi, yi) − (al, bl)‖
2, (9)

whereλ is a positive weight.
Suppose (xi∗ , yi∗) is one minimizer. Let
goall := (xi∗ , yi∗). The robotl try to move
to its neighborclosest togoall.

– If the neighboring cell is empty then move
to the cell and keep in “pursue” mode.

– If that cell is occupied, turn counterclock-
wise (left) to find a empty neighboring cell
and move to the cell unless the robot is
trapped. Set the mode of robotl to “avoid”
and initialize a register,nl = 0, which
records the number of turns.

• If the mode of robotl is “avoid”, andnl < 2
then robotl turn clockwise (right) and try to
move to that neighboring cell.

– If succeed, setnl = nl + 1,
– else if turn counterclockwise (left) to find a

empty neighboring cell and move to the cell
unless the robot is trapped.

• If the mode is “avoid” andnl = 2 , set the
mode to “pursue” and resetnl = 0.

• If the boundary ofD is reached, reverse the
direction of turning, resetnl = 0.

3. check for some stopping criteria (total entropy has
been less than a pre-decided threshold) if it should
be terminated.
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Fig. 5. The total entropy (residual uncertainty) vs. time step. of Region 3
D3

IV. SIMULATIONS

A. Simulation setup

We comprehensively simulate our algorithm on regions in
various sizes and configurations. Fig. 3 illustrates an example
of 3 mobile robots to explore a square regionD, in which
the snapshots of the constructed map (occupancy grid) at
different time steps are plotted. We indicate the probability of
occupancy of each cell in grey-scale. In the beginning, all the
cells are un-explored and in neutral grey. While the mobile
agents move around, they gradually reveal cells’ occupancy.
The darker a cell’s color becomes, the higher the probability
it is occupied. A cell become white or black as it is explored
to be empty or occupied, respectively.

We present simulation results on four different regions
shown in Fig. 4 as four 20x20 cells in different occupancy
configurations. In each case, there are four robots to explore
the region. We set the parameterλ in equation (9) to0.1.
Also, the conditional probabilities to make correct measure-
ment in condition of a cell’s occupancy, namely,p00 andp11,
are both set to 0.9. A robot can measure its currently located
and neighboring cells. Thep00 and p11 for the currently
located cell and neighboring cells are set to be the same.
We thus compare the results of robots with two different
measurement ranges: (1) current cell and one cell ahead in
the robot’s orientation, (2) current cell and four neighboring
cells – left, right, up, and down. We measure the performance
by the residual uncertainty of exploration in terms of binary
total entropy,H(D).

B. Simulation results

The four curves in Fig. 5 show the results of four different
exploration scenarios for the regionD3 shown in Fig. 4(c).
The four robots’ initial positions are (12,4), (13,4), (14,4),
and (15,4) for scenarios 1 and 2 and (4,4), (5,4), (6,4), and
(7,4) for scenarios 3 and 4. Even though robots initiate at the
same positions, the exploration scenario can vary due to the



Fig. 3. Maps at different time steps.

(a) Region 1,D1. (b) Region 2,D2. (c) Region 3,D3. (d) Region 4,D4.

Fig. 4. Regions considered in simulation.

random nature of measurements. The initial total (binary)
entropy is 400 as each cell has initial (binary) entropy
1. The total entropy decreases at a constant rate initially,
indicating that all the robots are exploring new area. The
rate of decrease slows down gradually and then abruptly after
a certain time, at which point most of the region has been
explored by at least one robot. The fluctuation in the curve is
due to the random nature of robot measurements. All curves
land on the final total entropy which is 3 forD3 since 3 cells
of D3 are surrounded by obstacles and can not be explored.
At the early stage, the deceasing rate of scenarios 3 and 4
are smaller than that of scenarios 1 and 2. This is because,
in scenarios 3 and 4, robots which initiate at the left down
corner are confined by obstacles. There are only two doors,
i.e. cell (2,7) and cell (12,3) for those robots to go through
to explore other areas ofD3. A robot may keep searching
explored cells at left down corner before it goes through one
of the doors. On the other hand, in scenarios 1 and 2, all
robots which initiate at the right down corner are free to
search un-explored cells.

The left sub-figure of Fig. 6 shows the total entropy
decreasing by time steps on four different regions shown in
Fig. 4 whereas the right sub-figure magnifies the steps from
200 to 300 to show the different final total entropies of the 4
different regions. The final total entropy of Region 2,D2, is
0 since no cell is surrounded by obstacles inD2. The Region
4, D4, with the largest number of cells being surrounded by
obstacles, hence has the largest final total entropy.

Rarely but once in a while, especially at the final stage,
the total entropy could lightly buck up and then return to the
decreasing trend as shown in the curve 4 in the right sub-

figure of Fig. 6. It is possible that two consecutive measure-
ments of a cell are opposite and hence the latter measurement
increases the entropy (the uncertainty) of the cell. Most
cells get consecutive same (and correct) measurements in
that the probability of correct measurement is0.9. Each of
them contributes to the decrement of total entropy. Only few
cells have opposite consecutive measurements, contributing
to the increment of total entropy. The effect of increment
from consecutive opposite measurements will manifest at
total entropy only when (1) most of the cells have been well
explored and the changes of their entropy become extremely
small (near 0). (2) one cell which has been explored once
(in the case of curve 4) has a measurement opposite from its
previous one, incurring a (big) entropy increment larger than
the sum of all the extremely small entropy decrements from
other cells. These two conditions will only happen (with low
possibility) at the late stage of simulation as in the curve 4
in right sub-figure of Fig6. The following measurements of
the cell will decrease the entropy back.

Fig. 7 compares the effect of different measurement ranges
of robots. We show the results of two regions,D1 andD2.
In each case, two measurement ranges are considered: (1)
one neighboring cell in the direction of robot’s orientation
and (2) four neighboring cells. Robots initiate at cells (6,6),
(15,6), (6,15) and (15,15). The wider measurement range
does help at the early stage in decreasing the total entropy
as it explores more cells at a time. After most of the cells
have been explored, the range will not help much at the late
stage of exploration.
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V. CONCLUSION AND FUTURE WORKS

In this paper, we present a coordination algorithm for a
group of mobile robots with sensors aboard to efficiently
construct the probabilistic map (occupancy grid) of a ran-
dom field. The probabilistic sensor model and the map-
updating model of the probabilistic map are also thoroughly
developed. We measure the performance of the coordinating
algorithm by the total entropy (residual uncertainty) of the
built probabilistic map. The map construction task will finish
when the total entropy is below a desired threshold.

All robots can communicate to update a shared map. By
the dynamically computed Voronoi areas (cells), the region
under exploration is separated into several areas. Through
the coordination algorithm, a robot will be responsible to
explore the area closest to it in distance, efficiently saving
the energy cost for its movements. Our simulation results

show that, via collaboration, robots who only search their
own Voronoi polygons obtain the map of the whole region
efficiently both in time and energy costs.

In the presented coordination algorithm, we assume all
robots can communicate to share a probabilistic map. This
assumption is based on the fact that the energy cost of com-
munication is less than the energy cost of robot movement.
To further reduce the energy cost, we now are lifting this
assumption and considering the situation that robots can only
communicate with nearby robots within a certain distance to
exchange and their maps. Thus, different robots will have
different maps at the early stage and then reach the consensus
after all. Each robot decides where to move and explore
solely depending on its own map. It will be interesting to
see the drawbacks and benefits of this modification.
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