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Abstract— The problem of designing continuous control input
to stabilize switched linear control systems against adversarial
switching is studied. It is assumed that the continuous controller
has access to the current switching mode and can be of the
form of an ensemble of mode-dependent state feedback con-
trollers. The fastest stabilizing rate under the given information
structure is proposed as a quantitative metric of the system’s
stabilizability, and its bounds are derived using seminorms.
Computation algorithms for the stabilizing rate are developed
and illustrated through examples.

I. INTRODUCTION

In this paper, we study the stabilization problem of
switched linear control systems (SLCS):

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), t = 0, 1, . . . , (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the control
input, σ(t) ∈ M := {1, . . . ,m} is the switching mode, and
(Ai, Bi)i∈M are the subsystem matrices in different modes.
Different from the many existing work (e.g. [1], [2], [3],
[4]) where both the control input u and the switching signal
σ are utilized to stabilize the SLCS, the problem we study
here assumes that only u can be controlled by the user to
stabilize the SLCS, while σ is controlled by an adversary
to destablize the system. Thus, the problem becomes a two-
player dynamic game between the user and the adversary.

A similar perspective is adopted in [5], where the mode-
resilient stabilization problem of SLCS is studied under the
assumption that, at any time t, the user decides u(t) first
and the adversary decides σ(t) with the knowledge of u(t)
(i.e., the user moves first in the two-player game). Due
to the disadvantageous position of the user, stabilizing the
SLCS can be very challenging: the user needs to design
the stabilizing u(t) without any knowledge of the current
mode σ(t). In contrast, this paper studies the mode-conscious
stabilization problem, where the decision of the adversary
on σ(t) is known to the user when deciding u(t) at each
time t (i.e., the adversary moves first). This new information
structure affords the user the luxury of adopting better control
strategies that are impossible in the previous setting, e.g.,
mode-dependent linear state feedback control with different
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feedback gains for different modes. As a consequence, less
stringent stabilizing conditions can be expected.

Despite this relative ease, the presence of an adversary
capable of producing destabilizing σ(t) ensures that the
mode-conscious stabilization problem remains a challenging
one. For instance, it is possible that each subsystem (Ai, Bi)
is stabilizable, say, by the linear state feedback controller
u(t) = Kix(t), but the SLCS cannot be stabilized by the
user using the mode-dependent feedback controller u(t) =
Kσ(t)x(t) or by any admissible control strategy u(t) =
ft(x(t), σ(t)) even with the full knowledge of σ(t). A simple
example is given by a two-mode SLCS:

A1 =

[
0.5 2
0 0.5

]
, B1 =

[
0
1

]
; A2 =

[
0.5 0
2 0.5

]
, B2 =

[
1
0

]
.

(2)

Suppose at each t, the adversary chooses σ(t) = 1 if
|x1(t)| ≤ |x2(t)|, and σ(t) = 2 if |x1(t)| > |x2(t)|. Regard-
less of the user’s choice on u(t), ‖x(t+ 1)‖∞ ≥ 3

2‖x(t)‖∞
for all t. This implies that the SLCS is not σ∗-stabilizable,
even though each individual subsystem is stabilizable. The
latter is a necessary but not sufficient condition for σ∗-
stabilizability.

Another distinguishing feature of this paper is that we
will adopt a quantitative perspective: instead of just deriving
conditions characterizing stabilizability, we will quantify it
by calculating the stabilizing rate ρ∗, which is defined as the
tightest upper bound on the exponential growth rate of the
state trajectories. This rate allows us to compare and measure
the robustness of the stabilizability of different SLCS. A
similar quantitative perspective has been adopted in the study
of the stability of autonomous switched linear systems (SLS),
namely, the joint spectral radius [6], which provides the
inspiration for many of the concepts proposed in this paper.

Stabilization of SLS and SLCS has been well studied [7],
[8], [9]. Many of the existing work (e.g., [10], [11], [12])
focuses on the switching stabilization problem, namely, sta-
bilizing SLS using σ. For SLCS, their stabilization using both
u and σ has been studied extensively [1], [13], [2], [3], [4].
Stabilization of SLCS using u against σ has also been studied
in the user-move-first setting in [14], [15], [16], [17], [5],
and in the adversary-move-first setting by using parameter-
dependent quadratic Lyapunov functions method [18], [19],
[20], [21], multiple Lyapunov function (norm) method [22],
Lyapunov-like function method for discrete-time SLCSs
with average dwell time constraints [23], and time-varying
quadratic Lyapunov function method for continuous-time
SLCSs with dwell time constraints [24].



Compared to these previous work, the main contributions
of this paper consist of the following: (i) conditions for
marginal stabilizability using the notions of defectiveness and
reducibility (Section III); (ii) analytical bounds on the stabi-
lizing rate using (semi)norms and conditions on when such
bounds are tight (Section IV); (iv) numerical algorithms for
computing the stabilizing rate (Section V). To illustrate the
results, some numerical examples are provided in Section VI.
Section VII contains some concluding remarks.

II. σ∗-STABILIZATING RATE OF SLCS

For the SLCS (1), assume that at each time t, the user’s
decision on the continuous input u(t) is made with the full
knowledge of the current mode σ(t) chosen by the adversary,
specifically, u(t) = ut(σ(t), x(t)) for some feedback law
ut. A sequence of such laws, u = (u0,u1, . . .), is called
a (feasible user) control policy. Denoted by U the set of
all feasible user control policies, and by S := M∞ the
set of all switchings sequences σ = (σ(0), σ(1), . . .). Let
x(·;σ,u, x(0)) be the solution of the SLCS starting from
the initial state x(0) under the control policy u ∈ U and the
switching sequence σ ∈ S.

Definition 1: The σ∗-stabilizing rate of the SLCS, de-
noted by ρ∗ ∈ [0,∞), is defined to be the infimum of all ρ for
which the following holds for some u ∈ U and K ∈ [0,∞):

‖x(t;σ,u, x(0))‖ ≤ Kρt‖x(0)‖, ∀ t, ∀x(0), ∀σ. (3)

The SLCS is called σ∗-exponentially stabilizable if ρ∗ < 1,
i.e., (3) holds for some u ∈ U , K ∈ [0,∞), and ρ ∈ [0, 1).

The SLCS is called σ∗-asymptotically stabilizable if there
exists u ∈ U such that x(t;σ,u, x(0)) → 0 as t → ∞,
∀x(0), ∀σ ∈ S . The following theorem shows that the two
notions of stabilizability are equivalent. Thus, we will refer
to either of them as σ∗-stabilizability in the rest of this paper.

Theorem 1 ([25]): A SLCS is σ∗-exponential stabilizable
if and only if it is σ∗-asymptotically stabilizable.

A related but different notion of stabilizability is defined
in [17]. The SLCS is called σ∗-stabilizable if a user control
policy without the knowledge of the current mode σ(t),
u(t) = ut(x(t)), can stabilize the system against arbitrary
switching sequence σ ∈ S. The σ∗-stabilizing rate ρ∗ can be
defined accordingly. As shown in the following example, σ∗-
stabilizability is a stronger notion than σ∗-stabilizability and
ρ∗ ≥ ρ∗ in general, with the gap representing the information
premium of the knowledge of the current mode.

Example 1: Consider a SLCS with two modes and a one-
dimensional state space: A1 = 1, B1 = 1; A2 = −1, B2 = 1.
Given the state x(t) 6= 0 at any time t, without knowing
σ(t), any user decision u(t) 6= 0 will be countered by an
adversarial decision σ(t) = 1 if x(t)u(t) > 0 and σ(t) = 2
if x(t)u(t) < 0. The resulting x(t+ 1) satisfies |x(t+ 1)| >
|x(t)|. Thus, the best control strategy without knowing σ(t)
is u(t) = 0, which results in |x(t+1)| = |x(t)|. This implies
that the SLCS is not σ∗-stabilizable and its σ∗-stabilizing
rate is ρ∗ = 1. In comparison, if the user knows σ(t), then
u(t) can be chosen to be u(t) = −x(t) if σ(t) = 1 and
u(t) = x(t) if σ(t) = 2, which results in x(t + 1) = 0.

Hence, the SLCS is σ∗-stabilizable and its σ∗-stabilizing rate
is ρ∗ = 0 (since x(t) is brought to the origin in one step).

An obvious necessary condition for the SLCS to be σ∗-
stabilizable is that each subsystem (Ai, Bi) is a stabilizable
LTI system, for otherwise the adversary will keep choosing
the unstabilizable mode. This condition, however, is not
sufficient as demonstrated by the example in (2). When all
Bi = 0, the SLCS becomes an autonomous SLS, its σ∗-
stabilizability is equivalent to its absolute stability [26], and
its σ∗-stabilizing rate ρ∗ is exactly the joint spectral radius
(JSR) of the matrix set {Ai}i∈M ([6]).

The following result states that ρ∗ is positively homoge-
neous of degree one w.r.t the collective scale of {Ai}i∈M
but is independent of the scale of any individual Bi. The
latter is not surprising due to the lack of penalty on control
input in our problem formulation.

Lemma 1: Let ρ∗ be the σ∗-stabilizing rate of the SLCS
{(Ai, Bi)}i∈M. Given constants α and βi, i ∈ M, in R
with βi 6= 0, the scaled SLCS {(αAi, βiBi)}i∈M has the
σ∗-stabilizing rate |α| ρ∗.

Proof: The conclusion is trivial if α = 0. Sup-
pose α 6= 0. If the SLCS {(Ai, Bi)}i∈M has the solu-
tion x(t;σ,u, x(0)) under a control policy u ∈ U , then
under the control policy û ∈ U such that ût(i, x) =
αt+1(βi)

−1ut(i, x), ∀ i ∈ M, x ∈ Rn, the solu-
tion to the SLCS {(αAi, βiBi)}i∈M is x̂(t;σ, û, x̂(0)) =
αtx(t;σ,u, x(0)). This proves the desired conclusion.

III. DEFECTIVENESS AND REDUCIBILITY

Definition 2: The SLCS is called nondefective if there
exist u ∈ U and constants K ∈ [0,∞) such that
‖x(t;σ,u, x(0))‖ ≤ K(ρ∗)

t‖x(0)‖, ∀ t, for all x(0) and
σ ∈ S. Otherwise, it is called defective.

In other words, the SLCS is nondefective if the infimum of
ρ in (3) can be exactly achieved by the stabilizing rate ρ∗.
A simple example of defective SLCS is given by a (non-
switched) LTI system (A1, B1) with A1 and B1 defined
in (2). Its σ∗-stabilizing rate ρ∗ = 0.5 is the spectral radius of
A1; however, starting from x(0) =

[
0 1

]T
, the exponential

growth rate of ‖x(t)‖ cannot be exactly 0.5.
If ρ∗ = 0, then the SLCS is nondefective if and only if

each subsystem (Ai, Bi) is controllable to the origin in one
time step, i.e., Ai = BiKi for some matrix Ki. Hence, the

LTI system (A,B), A =

[
0 1
0 0

]
and B =

[
0
1

]
, is defective.

For general SLCS, nondefectiveness is very difficult to ver-
ify. A useful sufficient condition is given below. A subspace
V of Rn is called control σ∗-invariant if for each z ∈ V and
each i ∈M, there exists vi ∈ Rp such that Aiz+Bivi ∈ V .
Two trivial control σ∗-invariant subspaces are {0} and Rn.

Definition 3: The SLCS is called irreducible if it has no
nontrivial control σ∗-invariant subspaces. Otherwise, it is
called reducible.

The following result which shows that, to check if a SLCS
is nondefective, a sufficient condition is to check if it is
irreducible (an easier task in general).



Theorem 2 ([25]): If the SLCS with ρ∗ > 0 is irreducible,
then it is nondefective.

IV. BOUNDS VIA SEMINORMS

In this section, we will derive various bounds on the
σ∗-stabilizing rate ρ∗. Recall that a seminorm on Rn is a
nonnegative function ξ : Rn → R+ that is convex and
positively homogeneous of degree one [27]. A seminorm
that is further positive definite, i.e., ξ(x) = 0 only if x = 0,
becomes a norm on Rn.

For any seminorm ξ on Rn, define the operator

F [ξ](z) := max
i∈M

inf
v∈Rp

ξ(Aiz +Biv), ∀z ∈ Rn. (4)

The operator F is similar to the operator T in [5] with the
crucial difference that the order of max and min are switched
due to the different information structure in this paper. In
general, F(ξ) ≤ T (ξ) with strict inequality possible.

It is easily verified that F maps the seminorm ξ to another
seminorm F(ξ), which we denote by ξ]. In particular, if
ξ = ‖ · ‖ is a norm, then ξ], which we denoted by ‖ · ‖], is
a seminorm but not necessarily a norm on Rn.

Proposition 1: Let α, β ≥ 0 be constants.
(i) If a nonzero seminorm ξ satisfies ξ] ≥ αξ, then ρ∗ ≥ α.

(ii) If a norm ‖ · ‖ satisfies α‖ · ‖ ≤ ‖ · ‖] ≤ β‖ · ‖, then
α ≤ ρ∗ ≤ β.
Proof: Let ξ be a nonzero seminorm satisfying ξ] ≥ αξ.

Assume that the adversary adopts the switching policy

σ(t) = arg max
i∈M

inf
v
ξ(Aix(t) +Biv).

Then, for any choice of u(t) = ut(σ(t), x(t)),

ξ(x(t+ 1)) = ξ(Aσ(t)x(t) +Bσ(t)u(t))

≥ inf
v
ξ(Aσ(t)x(t) +Bσ(t)v) = ξ](x(t)) ≥ α ξ(x(t)), ∀t.

Thus, starting from x(0) such that ξ(x(0)) > 0, we have
ξ(x(t)) ≥ αtξ(x(0)) for any u ∈ U . This proves statement
(i) as well as the first inequality of the statement (ii). For the
second inequality of statement (ii), assume ‖ · ‖ is a norm
satisfying ‖ · ‖] ≤ β‖ · ‖. The user can then adopt the policy

u(t) = ut(σ(t), x(t)) := arg min
v

ξ(Aσ(t)x(t) +Bσ(t)v).

Note that the minimizer v exists and is finite due to ξ being
a seminorm [5], although it may not be unique. Under this
control policy, for any x(0) and any σ ∈ S, we have

ξ(x(t+ 1)) = ξ(Aσ(t)x(t) +Bσ(t)u(t))

= inf
v
ξ(Aσ(t)x(t) +Bσ(t)v)

≤ ξ](x(t)) ≤ βξ(x(t)), ∀ t.

Hence, ξ(x(t)) ≤ βtξ(x(0)), which implies that ρ∗ ≤ β.
Definition 4: A seminorm ξ on Rn is called a lower

extremal seminorm of the SLCS if ξ] ≥ ρ∗ξ. A norm ‖ · ‖
on Rn is called an (upper) extremal norm if ‖ · ‖] ≤ ρ∗‖ · ‖,
and a Barabanov norm if ‖ · ‖] = ρ∗‖ · ‖.

Proposition 1 shows that the task of finding tight lower
and upper bounds of ρ∗ can be reduced to finding lower

Fig. 1. Barabanov norm of the SLCS in Example 2.

and upper extremal (semi)norms of the SLCS. Based on
this observation, we will develop a number of algorithms
in Section V for the computation of ρ∗. In particular, if
the SLCS has a Barabanov norm, then ρ∗ can be precisely
characterized. An example of such SLCS is given below.

Example 2: Consider the following SLCS:

A1 =

[
1 1
1 −1

]
, B1 =

[
0
1

]
; A2 =

[
0 1
−1 0

]
, B2 =

[
1
0

]
.

Let γ = (
√

5+1)/2 ≈ 1.6180, which satisfies γ(γ−1) = 1.
Define a norm on R2 as

‖z‖ = max{|z1|, γ|z1 + z2|}, ∀z = (z1, z2) ∈ R2. (5)

The unit ball of ‖ · ‖ is shown in Fig. 1. We claim that ‖ · ‖
is a Barabanov norm of the SLCS: ‖ · ‖] = γ−1‖ · ‖. This
would imply that ρ∗ = γ−1. Due to homogeneity, we only
need to check the condition ‖z‖] = γ−1‖z‖ for z = (1, 0)
and z = (z1, 1) where z1 ∈ R.

Suppose z = (1, 0). Then ‖z‖ = max{1, γ} = γ, and

‖z‖]
= max

{
min
v

max{1, γ|v + 2|},min
v

max{|v|, γ|v − 1|}
}

= max {1, γ/(γ + 1)} = 1 = γ−1‖z‖,

which satisfies the desired condition.
Suppose z = (z1, 1). Then ‖z‖ = max{|z1|, γ|z1 + 1|},

‖z‖] = max
{

min
v

max{|z1 + 1|, γ|2z1 + v|},

min
v

max{|v + 1|, γ|v − z1 + 1|}
}

(6)

= max
{
|z1 + 1|, γ−1|z1|

}
= γ−1‖z‖,

which also satisfies the desired condition. As a result, the
norm ‖ · ‖ constructed in (5) is indeed a Barabanov norm of
the SLCS and the σ∗-stabilizing rate is ρ∗ = γ−1 ≈ 0.6180.
In contrast, the σ∗-stabilizing rate ρ∗ of the SLCS is shown
to lie in the interval [1.2183, 1.2239] (see [5]). This means
that, although it is possible to design a user control policy to
stabilize the SLCS against adversarial switchings if the user
knows the current mode, the same task becomes impossible
if the user has no knowledge of the current mode.



The optimal controls policy can also be constructed
from (6). Suppose x(t) = z = (z1, 1). If σ(t) = 1, then
u∗(t) = arg minv max{|z1 + 1|, γ|2z1 + v|}, which can take
any value between the two values −2z1 ± (z1 + 1)/γ. If
σ(t) = 2, then u∗(t) = arg minv max{|v + 1|, γ|v − z1 +
1|} = (γ − 1)z1 − 1. On the other hand, if z = (1, 0),
then u∗(t) can be of arbitrary value between −2 ± γ−1 if
σ(t) = 1; and u∗(t) = γ− 1 if σ∗(t) = 2. Via homogeneity,
the above control policy can be extended to arbitrary z ∈ R2.
In particular, it is noted that the following static mode-
dependent linear controller is optimal in that it achieves the
σ∗-stabilizing rate: u∗(t) = K∗σ(t)x(t), where

K∗1 =
[
−2 0

]
, K∗2 =

[
(γ − 1) 1

]
.

By replacing A1 with 1
2A1 and keep B1, A2, and B2

unchanged, it can be verified that the new SLCS has the
Barabanov norm ‖z‖ = max{|z1|, |z1 + z2|} and the σ∗-
stabilizing rate ρ∗ = 1

2 . In [5], it is founded that ρ∗ ∈
[0.8660, 0.8732], which is again strictly larger than ρ∗.

For general SLCS, Barabanov norms may not exist. A
simple example is given by the (nonswitched) LTI system
(A1, B1) with A1 and B1 given in (2). As B1 = 0, the σ∗-
stabilizing rate ρ∗ = ρ(A1) = 0.5. However, since A1 is
defective, there exists no norm ‖ ·‖ on Rn satisfying ‖ ·‖] =
0.5‖ · ‖, i.e., (A1, B1) has no Barabanov norm.

The following theorem desribes a family of SLCS whose
Barabanov norms exist.

Theorem 3: An irreducible SLCS has a Barabanov norm.
By the discussion in Section III, a generic SLCS (e.g., with

the matrices Ai and Bi randomly generated) is irreducible.
Thus, generic SLCS have Barabanov norms.

A. Lifting Method

Let h be a positive integer. For a seminorm ξ on Rn, define

F (h)[ξ](z) := max
i0∈M

inf
v0∈Rp

· · · max
ih−1∈M

inf
vh−1∈Rp

ξ

Aih−1
· · ·Ai0z +

h−1∑
j=0

Aih−1
· · ·Aij+1

Bijvj


for z ∈ Rn. Then, it is easily verified that F (h)(ξ) is also a
seminorm. In other words, F (h) is self mapping of the set
of seminorms on Rn. In particular, when h = 1, F (h) is
reduced to the operator F defined in (4).

By using a proof similar to that of Proposition 1, we can
establish the following bounds of ρ∗.

Proposition 2: Let h be a positive integer and let α, β ≥ 0
be constants.
(i) If a seminorm ξ satisfies F (h)(ξ) ≥ αξ, then ρ∗ ≥ h

√
α.

(ii) If a norm ‖ · ‖ satisfies α‖ · ‖ ≤ F (h)(‖ · ‖) ≤ β‖ · ‖,
then h

√
α ≤ ρ∗ ≤ h

√
β.

V. COMPUTATION ALGORITHMS

We now use the results in Section IV to develop algorithms
for computing the σ∗-stabilizing rate ρ∗ of SLCS.

A. Ellipsoidal Norms

Denote P�0 = {P ∈ Rn×n |P = PT � 0} the set of
positive definite matrices. Similarly P�0 is the set of positive
semidefinite matrices. Each P ∈ P�0 defines a seminorm
‖z‖P := (zTPz)1/2. When P ∈ P�0, ‖ · ‖P is a norm,
called the ellipsoidal norm.

Given an ellipsoidal norm ‖ · ‖P where P � 0, we have

‖z‖P] = max
i∈M

zT
(
ATi PAi −ATi PBi(BTi PBi)†BTi PAi

)
z,

where † stands for matrix pseudo-inverse. The condition that
‖ · ‖P] ≤ β‖ · ‖P is equivalent to

ATi PAi −ATi PBi(BTi PBi)†BTi PAi � β2P, ∀i ∈M.

The smallest β∗ for the above to hold can be obtained by
solving the above (nonconvex) problem in β2 and P . For an
easier but more conservative upper bound, we can focus on
linear controllers u(i, x) = Kix and write

‖z‖P] = max
i

inf
v

(Aiz +Biv)TP (Aiz +Biv)

≤ max
i

inf
Ki

zT (Ai +BiKi)
TP (Ai +BiKi)z.

Thus, a sufficient condition for ‖ · ‖P] ≤ β‖ · ‖P is given by

(Ai +BiKi)
TP (Ai +BiKi) � β2P, ∀i ∈M.

By letting Q = P−1, Fi = KiP
−1, and using Schur

complement, we can rewrite the above as:[
βQ AiQ+BiFi

QATi + FTi B
T
i βQ

]
� 0, ∀i ∈M, (7)

for some Q � 0 and Fi, i ∈ M. An upper bound of ρ∗ is
obtained by solving the LMI (7) with decreasing β until it
becomes infeasible.

For lower bounds of ρ∗, a sufficient condition for ‖·‖P] ≥
α‖ · ‖P is given by∑
i∈M

θi
(
ATi PAi −ATi PBi(BTi PBi)†BTi PAi

)
� α2P,

for some θ ∈ ∆m, where ∆m := {θ ∈ Rm | θi ≥
0, ∀ i,

∑
i∈M θi = 1} is the m-simplex. Let Qi = QTi ∈

Rn×n. Then the above condition is equivalent to{ ∑
i∈M θi

(
ATi PAi −Qi

)
� α2P

Qi � ATi PBi(BTi PBi)†BTi PAi, ∀i ∈M

⇔


∑
i∈M θi

(
ATi PAi −Qi

)
� α2P[

Qi ATi PBi

BTi PAi BTi PBi

]
� 0, ∀i ∈M.

The last condition is a BMI problem in (P,Qi, θi, α
2)

and can be solved by using, e.g., the path following algo-
rithm [28].



B. Polytopic Norm

Let C ∈ Rn×` be such that its columns span Rn. Then

‖z‖C = max
j=1,...,`

|cjz|, ∀z ∈ Rn,

defines a norm on Rn. Applying the operator (4), we have

‖z‖C] = max
i

inf
v

max
j

∣∣cTj (Aiz +Biv)
∣∣ .

For each i ∈ M, infv maxj
∣∣cTj (Aiz +Biv)

∣∣ is the optimal
value of the following linear programs:

min
v,y

y (8)

s.t. ± cTj (Aiz +Biv) ≤ y, j = 1, . . . , `.

By introducing the multipliers θ+
ij ≥ 0 and θ−ij ≥ 0, j =

1, . . . , `, the dual problem of problem (8) is

max
θ+ij ,θ

−
ij

r∑
j=1

(θ+
ij − θ

−
ij)c

T
j Aiz (9)

s.t.
r∑
j=1

(θ+
ij + θ−ij) = 1,

r∑
j=1

(θ+
ij − θ

−
ij)c

T
j Bi = 0,

θ+
ij ≥ 0, θ−ij ≥ 0,

whose optimal value is of the form maxc∈Ωi
cT z, where

Ωi =


r∑
j=1

(θ+
ij − θ

−
ij)A

T
i cj

∣∣∣∣∣
r∑
j=1

(θ+
ij + θ−ij) = 1,

r∑
j=1

(θ+
ij − θ

−
ij)c

T
j Bi = 0, θ+

ij ≥ 0, θ−ij ≥ 0


is a bounded, centrally symmetric polytope in Rn. Since the
primal and dual problems have the same optimal value for
each i ∈ M, and ‖z‖C] is the maximum of these optimal
values for i ∈M, we have

‖z‖C] = max
c∈Ω

cT z, where Ω := Co (∪i∈MΩi) .

Here, Co denotes the convex hull operation. We note that Ω
is characterized by

Ω =

∑
i,j

(θ+
ij − θ

−
ij)A

T
i cj

∣∣∣∣∣∑
i,j

(θ+
ij + θ−ij) = 1,

∑
j

(θ+
ij − θ

−
ij)c

T
j Bi = 0, ∀ i, θ+

ij ≥ 0, θ−ij ≥ 0

 ,

(10)

where the ranges of the indices are i ∈M and j = 1, . . . , `.
The condition that ‖ · ‖C] ≥ α‖ · ‖C is equivalent to

Co (αc1, . . . , αc`) ⊂ Ω, i.e., αck ∈ Ω for all k = 1, . . . , `.
The largest α for this to hold, α∗ = sup{α ≥ 0 | ‖ · ‖C] ≥
α‖ · ‖C}, is equal to α∗ = mink=1,...,` α

∗
k, where

α∗k := sup{α ≥ 0 |αck ∈ Ω}

Fig. 2. Potytopic norm of the 2D SLCS computed by Algorithm 1. Solid
line: unit sphere of ‖ · ‖C ; dashed line: unit sphere of ‖ · ‖C].

is the solution of the following linear program in view
of (10):

max
θ+ij ,θ

−
ij ,α

α (11)

subject to α ≥ 0, θ+
ij ≥ 0, θ−ij ≥ 0, ∀i ∈M, j = 1, . . . , `

αck =
∑
i,j

(θ+
ij − θ

−
ij)A

T
i cj ,

∑
i,j

(θ+
ij + θ−ij) = 1,∑

j

(θ+
ij − θ

−
ij)c

T
j Bi = 0, ∀ i ∈M.

An algorithm to compute the best lower bound of ρ∗ using
the polytopic norm ‖ · ‖C is given in Algorithm 1.

Algorithm 1
1: Initialize C ∈ Rn×` with columns cj , j = 1, . . . , `
2: repeat
3: for k = 1, . . . , ` do
4: Solve the linear program (11) to obtain α∗k
5: end for
6: k1 ← arg maxk α

∗
k, k2 ← arg mink α

∗
k

7: ck1 ←
√
α∗k1/α

∗
k2
· ck1 , ck2 ←

√
α∗k2/α

∗
k1
· ck2

8: until (maxk α
∗
k)/(mink α

∗
k) ≤ 1 + ε or maximum

number of iterations is reached
9: return α∗ = mink α

∗
k

Using the polytopic norm ‖ · ‖C obtained by Algorithm 1,
one can solve a set of linear programs similar to (11) to find
the smallest β such that ‖ · ‖C] ≤ β‖ · ‖ holds. The results
β∗ will then yield an upper bound of ρ∗.

VI. NUMERICAL EXAMPLES

Consider first the following SLCS on R2:

A1 =

[
−1.68 −1.58
−0.22 1.84

]
, B1 =

[
−0.07
0.41

]
,

A2 =

[
−1.98 1.26
1.10 1.48

]
, B2 =

[
−0.32
−0.24

]
A3 =

[
−1.66 −0.96
−0.40 1.20

]
, B3 =

[
−0.35
−0.36

]
.



Fig. 3. Unit ball of the potytopic norm of the 3D SLCS computed by
Algorithm 1.

By using Algorithm 1, a lower bound of ρ∗ is computed as
ρ∗ > 0.7862. The unit spheres of the computed polytopic
norm ‖ · ‖C and the corresponding sharp norm ‖ · ‖C] are
plotted in Fig. 2 in solid and dashed lines, respectively. Using
this polytopic norm in Proposition 1, we conclude that the
value of ρ∗ lies in the interval [0.7862, 0.8253].

Next consider the 3D SLCS given by

A1 = exp

0 0 0
0 0 − π√

2

0 π√
2

0

 , B1 =

1
0
0

 ,
A2 = exp

 0 − π√
2

0
π√
2

0 0

0 0 0

 , B2 =

0
0
1

 ,
A3 = exp

 0 0 −0.5
0 1 0

0.5 0 0

 , B3 =

0
1
0

 .
The polytopic norm computed by Algorithm 1 is plotted in
Figure 3. Using this norm and Proposition 1, it is found that
the value of ρ∗ lies in the interval [0.9965, 1.0845].

VII. CONCLUSIONS

The stabilizability of switched linear control systems using
continuous input against adversarial (but known) switchings
is studied. Theoretical and practical techniques based on
seminorms are proposed to derive bounds of the stabilizing
rate, which provides a quantitative metric of the systems’
stabilizability.
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