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Abstract— Coordinated control of a cluster of buildings
can lead to reduced energy usage and demand charge.
However, it requires individual buildings to share local
data, e.g., their energy demands. The leak of such data
could potentially be used by third parties to infer sensitive
information such as occupancy that could be used to
the detriment of building occupants. In this paper, using
the notion of differential privacy, a distributed algorithm
based on the Alternating Direction Method of Multiplier
(ADMM) algorithm is proposed for the coordinated control
of building clusters that can provide guaranteed levels of
privacy for individual buildings by adding noises to the
data being exchanged. Theoretical bounds on the strength
of noises needed to achieve given privacy levels are derived,
and the performance suboptimality caused by the added
noise is demonstrated through simulations.

I. INTRODUCTION
According to the 2016 report from the U.S. Energy

Information Administration [1], [2], buildings account
for about 40% of the primary energy consumption and
75% of the electricity use within U.S. To reduce building
energy consumption, a popular approach is the model
predictive control (MPC) method [3], [4] as it can
incorporate weather forecast, occupancy, lighting, etc.,
into controller design. For building systems with a large
number of subsystems (buildings in the building clus-
ters, thermal zones in individual buildings, and shared
heating, ventilation and air-conditioning (HVAC) sub-
systems), the coordinated control of building subsystems
could lead to significant energy saving while, however,
the optimization problems that need to be solved on-line
by MPC methods can become intractable.

Agent-based distributed algorithms provide a viable
strategy for building clusters’ coordination control as
they are scalable and require lower engineering and
implementation costs. Examples include the token-
based scheduling [5], Nash-optimization enhanced al-
gorithm [6], dual decomposition [7], ADMM-based
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algorithms [8], [9] and dynamic programming based
approaches [10], to name a few. A common feature of
these algorithms is that each agent (building, thermal
zone, HVAC equipment, etc.) needs to share its data with
other agents or the central coordinator to achieve collec-
tive control (sub)optimality. However, in many cases,
the shared data contain (at least implicitly) sensitive
information that, if leaked, could violate the privacy of
or even bring harms to the agent. For example, to reduce
peak demand, an individual building may be asked to
release its energy usage data, which can be potentially
exploited by a third party or an adversary to infer this
building’s occupancy profile.

The notion of differential privacy was originally pro-
posed in the static database field [11], [12], [13]. Differ-
ent from cryptography, differential privacy has a contin-
uous rather than binary characterization of privacy, and
differential privacy mechanisms that randomize private
information by adding noises can guarantee privacy even
when the adversary has all the side information [14],
[15]. Recently, differential privacy has also been applied
to control problems, e.g., filtering problem [16], electric
vehicle charging schedule problem [17], distributed op-
timization problem [18], [19], consensus problem [20],
[21], and distributed control [22].

In this paper, we study the differential privacy mech-
anisms for the agent-based MPC of building clusters
with the objective to reduce the energy consumption
and demand charge as well as maintain the privacy
of individual building. The proposed solutions can also
be applied to a single building with multiple thermal
zones. Although the thermal dynamics are decoupled
across different buildings, the objective function rep-
resenting the total electricity bill depends on the de-
cisions of all buildings. In the proposed agent-based
solution framework, each building is represented by
an agent responsible for maintaining local comfort; a
central coordinating agent (coordinator) is responsible
for information aggregation and for reducing the overall
energy usage and demand charge. The solution algorithm
is adapted from the ADMM algorithm, which requires
constant information exchanges between building agents
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and the coordinator. For each building, its desired level
of privacy can be ensured by adding noises of proper
strength to its shared information. The required noise
strength is determined via a sensitivity analysis of the
shared information w.r.t. the private information.

The remainder of this paper is organized as follows.
The MPC problem formulation and a distributed solution
algorithm are described in Section II. Section III presents
the differential privacy mechanism and the associated
distributed algorithm. The results of a case study are
given in Section IV. Section V concludes the paper.

Notation: For any integer m ≥ 1, Im denotes the
index set {1, . . . ,m} and (xi)i∈Im is the column stack
of all xi’s, i ∈ Im. We use 1 to denote the vector
of proper size with all entries equal to 1, I for the
identity matrix, ‖ · ‖2 and ‖ · ‖∞ for the L2 and L∞
norm, respectively. Given a finite set S, its cardinality is
represented as |S|. And [A]ij denotes matrix A’s entry
on the i-th row and j-th column. The “≤” and “≥”
always represent entry-wise comparison.

II. MPC PROBLEM FORMULATION

In this section, the problem of building cluster control
is formulated, and a distributed solution strategy without
considering privacy is proposed. These results can also
be applied to the problem of multi-zone building control.

A. Building cluster control as an optimization problem

Consider a building cluster consisting of multiple
buildings indexed by Im that are thermally decoupled
but served by the same chiller. We consider cooling
seasons only, as heating efficiency is relatively constant
w.r.t. control strategies. For each building i ∈ Im, its
thermal dynamics is given by

xi(t+ 1) = Aixi(t)−Biui(t) + Fiwi(t),

yi(t) = Cixi(t), t = 0, 1, . . . ,

where the state xi ∈ Rni includes the temperatures of
all thermal nodes, the output yi ∈ R is the indoor air
temperature, the controllable input ui ∈ R represents
the local sensible cooling supplied to building i, and the
uncontrollable input wi contains the (predicted) pertur-
bations such as weather conditions. Note that different
buildings are assumed to be thermally decoupled.

Given the prediction time horizon N , the problem
is to minimize the building cluster’s utility bill of
electricity usage and demand charge during the predicted
period while satisfying comfort and capacity constraints,

formulated as follows:

minimize
ui, i∈Im

relec

∥∥∥∑
i

ui

∥∥∥2

2
+ rdem

∥∥∥∑
i

ui

∥∥∥2

∞
(1a)

subject to yi = Aixi(0)−Biui + F iwi, (1b)
|yi − yi,set| ≤ τ i (1c)

ui ≥ 0, i ∈ Im, (1d)∑
i

ui ≤ ucap1. (1e)

Here, ui (resp. wi) is the stacked vector of ui(t)
(resp. wi(t)) for t = 0, . . . , N − 1; yi (resp. yi,set)
is the stacked vector of air temperature yi(t) (resp. its
setpoint yi,set(t)) for t = 1, . . . , N ; Ai, Bi and F i
are matrices of proper sizes derived from building i’s
thermal dynamics. The constraints are induced from
dynamics (1b), comfort (1c) with τ i specifying the max-
imum acceptable temperature deviation from its setpoint,
and the chiller’s cooling capacity (1e). During occupied
hours, the corresponding entries in τ i are assigned a
small value τi,in > 0 to ensure indoor comfort delivery;
in unoccupied periods, a larger value τi,out > τi,in is
used for energy saving. Thus, building i’s occupancy
determines τ i, which further affects the solution ui to
the optimization problem (1).

In formulation (1), the two terms in the objective
function correspond to bills from the electricity con-
sumption at the price relec $/kWh and the demand charge
at the rate rdem $/kW, respectively. For simplicity, the
chiller’s power consumption is assumed to be a quadratic
function of its total cooling load; however, the results
can be easily extended to the cases of general convex
functions. Typically, the demand rate rdem is tens or even
up to a hundred times of relec according to the survey in
[23]. Thus, a smaller peak value may be preferred even
at the expense of higher total electricity consumption.

Remark 1: By plugging the dynamics constraint (1b)
into the comfort constraint (1c), the optimization prob-
lem (1) becomes a convex minimization problem with
only linear inequality constraints.

B. Distributed solution using ADMM Algorithm

In problem (1), the constraints (1b)-(1d) are local,
which together specify a local feasible set Fi for agent
i’s variable ui, while the constraint (1e) couples all the
agents. By introducing copies zi of each ui, problem (1)
is equivalent to:

minimize
ui, zi, ∀i∈Im

∑
i

fi(ui) + g
(∑

i

zi

)
subject to ui = zi, ∀i ∈ Im.
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Here, fi is the convex indicator function of Fi that takes
the value 0 on Fi and the value ∞ outside of it, and

g(p) = relec ‖p‖22 + rdem ‖p‖2∞
whose domain dom g = {p |0 ≤ p ≤ ucap1} is given
by the chiller’s capacity constraint (1e).

Applying the scaled ADMM algorithm [24] to the
above problem, we obtain the iterations:

uk+1
i = ΠFi(z

k
i − νki ), ∀i ∈ Im, (2a)

zk+1 = argmin
zi, i∈Im

{
g
(∑

i

zi

)
+
ρ

2

∑
i

‖zi − uk+1
i − νki ‖22

}
, (2b)

νk+1
i = νki + uk+1

i − zk+1
i , ∀i ∈ Im, (2c)

where ρ > 0 is an algorithm parameter and ΠFi
denotes

the orthogonal projection operator onto the set Fi.
The u-update (2a) and ν-update (2c) can be efficiently

computed in parallel while the z-update (2b) requires
collecting information from every agent and solving a
high dimensional optimization problem. Next we use a
procedure from [24] to simplify this step.

With ai := uk+1
i + νki and ā :=

∑
i ai/m, the z-

update becomes

minimize
z̄, (zi)i∈Im

g(mz̄) +
ρ

2

∑
i

‖zi − ai‖22

subject to mz̄ =
∑
i

zi.

When z̄ is fixed, minimizing the second term in the
objective function will result in

zi = ai − ā+ z̄. (3)

Then the z-update is reduced to minimize g(mz̄) +
(ρm)/2‖z̄ − ā‖22 with the decision variable z̄. After
obtaining z̄k+1, we have zk+1

i =
(
uk+1
i + νki

)
−(

ūk+1 + ν̄k
)
+ z̄k+1 as a consequence of (3). Therefore

the corresponding ν-update becomes

νk+1 = ν̄k + ūk+1 − z̄k+1.

Since all νk+1
i are equal, we simply denote them by

ν̄k+1. In sum, the iterations (2) can be simplified to

uk+1
i = ΠFi

(uki − ūk + z̄k − ν̄k), ∀i ∈ Im (4a)

z̄k+1 = argmin
z̄

{
g
(
mz̄
)

+
ρm

2
‖z̄ − ūk+1 − ν̄k‖22

}
(4b)

ν̄k+1 = ν̄k + ūk+1 − z̄k+1, (4c)

where ū :=
∑
i ui/m, z̄ and ν̄ have the same dimension

as ū. Note that the u-update (4a) can be carried out
locally while the z̄- and ν̄-updates must be computed
by the coordinator agent. See Algorithm 1 for details.

Algorithm 1 Distributed ADMM Algorithm

Initialize u0, z̄0, ν̄0, and let k ← 0;
Coordinator broadcasts ū0 − z̄0 + ν̄0 to all agents;
repeat

for all i ∈ Im do
Agent i computes uk+1

i according to (4a) ;
end for
Coordinator collects uk+1 and computes ūk+1;
Coordinator updates z̄k+1 and ν̄k+1 by (4b)-(4c);
Coordinator broadcasts ūk+1 − z̄k+1 + ν̄k+1;
k ← k + 1;

until certain convergence criteria are met
Return uki for i ∈ Im.

III. DIFFERENTIALLY PRIVATE
DISTRIBUTED SOLUTION

In Algorithm 1, each building agent i needs to trans-
mit its local solution ui to the coordinator at each
iteration. By (4a), ui is obtained by projecting onto the
local feasible set Fi given by the constraints (1b)-(1d).
As the comfort constraint (1c) depends on τ i, so do Fi
and the updated ui. As a result, the transmitted ui by
agent i contains information on τ i and ultimately the
occupancy of building i. If the data ui is compromised,
e.g., due to inadvertent leaks or unauthorized access,
a third party (which could be the coordinator, another
building, or an external adversary) may be able to
infer building i’s occupancy. To prevent this, we adopt
the differential privacy (DP) mechanism, where agent i
transmits a noisy version ũi of ui with sufficient noises
such that an eavesdropper is incapable of figuring out
whether building i is occupied or not at any time instant
even with access to any side information such as ui.

A. Differentially private distributed solution algorithm

For our problem, the differential privacy mechanism
randomizes the local information ui as follows,

Mi : ui 7→ ũi = ui + ηi, (5)

where ũi is the noisy information sent from agent i
to the coordinator, and the random variable ηi ∼
N (0, σ2

i IN ) is the Gaussian noise added by agent i.
The variance σ2

i will be determined later on. As ui
depends on τ i, we can write Mi(ui) as Mi(τ i).
With differential privacy mechanism (5), the following
Algorithm 2 can be obtained from Algorithm 1, which
in general does not converge to any single point because
of the random noises added.
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Algorithm 2 Differentially Private Distributed ADMM
Algorithm

Input K, σi;
Initialize u0, z̄0, ν̄0, let k ← 0;
Coordinator broadcasts ū0 − z̄0 + ν̄0;
repeat

for all i ∈ Im do
Agent i computes uk+1

i according to (4a);
Agent i obtains ũk+1

i according to (5);
end for
Coordinator collects ũk+1;
Coordinator computes ūk+1 =

∑
i ũ

k+1
i /m;

Coordinator updates z̄k+1 and ν̄k+1 by (4b)-(4c);
Coordinator broadcasts ūk+1 − z̄k+1 + ν̄k+1;
k ← k + 1;

until k = K + 1
Return uki .

The rest of this section will focus on finding the
proper noise variance to achieve a given privacy level.
First we present several standard definitions on differ-
ential privacy tailored to our problem.

Definition 1 (Adjacency): Two datasets τ i, τ ′i ∈ RN
are called adjacent, denoted by Adj(τ i, τ ′i), if and only
if there exists t ∈ IN such that |[τ i]t − [τ ′i]t| ≥ βi and
[τ i]s = [τ ′i]s for all s 6= t.

The difference βi determines the privacy granular-
ity of the datasets that need to be protected. For the
occupancy schedule τ i in the building cluster control
problem, we can choose 0 < βi < τi,out − τi,in. Thus,
two occupancy schedules are adjacent if and only if they
have different occupancy at exactly one time instant.
The objective is to make adjacent τ i and τ ′i statistically
almost indistinguishable based on the information ũi.

Definition 2 (Differential Privacy): Given εi, δi > 0,
a mechanism Mi is (εi, δi)-differentially private if and
only if for any Adj(τ i, τ ′i) and any subset R of RN ,

P(Mi(τ i) ∈ R) ≤ eεiP(Mi(τ
′
i) ∈ R) + δi,

where P is the probability in the given probability space.
Definition 3: (l2-sensitivity) For a query qi : τ i 7→

ui, its l2-sensitivity under the adjacency relation
Adj(τ i, τ ′i) is defined as

∆i := max
Adj(τ i,τ ′i)

‖qi(τ i)− qi(τ ′i)‖2.

Define Q(x) := (1/
√

2π)
∫∞
x
e
−u2

2 du. We cite the
following key result without proof.

Theorem 1 ([16]): Given εi > 0, 0 < δi <
1
2 , the

Gaussian mechanism Mi in (5) is (εi, δi)-differentially

private if ηi ∼ N (0, σ2
i IN ) with

σi ≥
∆i

2εi

(
M +

√
M2 + 2εi

)
, (6)

where ∆i is the l2-sensitivity of ui w.r.t. τ i and M =
Q−1(δi).

Theorem 1 provides a lower bound on the variance of
the added noises to guarantee the (εi, δi)-privacy of τ i.

B. l2-sensitivity of local solution to occupancy schedule

With bki := uki − ūk + z̄k−νk, the local update (4a)
by agent i is obtained by solving the following problem:

minimize
ui

‖ui − bki ‖22
s.t. ci − τ i ≤ Biui ≤ ci + τ i,

ui ≥ 0,

(7)

where ci = Aixi(0) + F iwi − yi,set and

Bi =


CiBi 0 · · · 0
CiAiBi CiBi · · · 0

...
...

. . .
...

CiA
N−1
i Bi CiA

N−2
i Bi · · · CiBi

 ,
or equivalently,

minimize
ui

1
2‖ui − b

k
i ‖22

s.t.

 Bi

−Bi

−I


︸ ︷︷ ︸

Φi

ui ≤

 ci−ci
0


︸ ︷︷ ︸

Ci

+

 τ i−τ i
0


︸ ︷︷ ︸

Ti

, (8)

where Φi ∈ R3N×N , Ci ∈ R3N and Ti ∈ R3N .
The following result provides an upper bound on the

sensitivity of ui w.r.t. τ i.
Proposition 1: Suppose the local optimization prob-

lem (4a) or (8) for agent i is always feasible. Then

∆i ≤
τi,out − τi,in

σi
.

Here, σi := minA⊂I3N {σi,A} where σi,A denotes the
smallest (nonzero) singular value of the matrix Φi,A
consisting of those rows of Φi indexed by the subset
A ⊂ I3N .

Proof: Let τ i and τ ′i be arbitrary such that
Adj(τ i, τ ′i). Denote by ui and u′i the corresponding
solutions of problem (8), respectively. Define ∆ui :=
u′i − ui and

∆Ti := T′i −Ti =

 τ ′i − τ i
−(τ ′i − τ i)

0

 .
We next find an upper bound of ‖∆ui‖2.
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Since Problem (8) is assumed to be feasible, its solu-
tion ui under the given τ i satisfies the KKT condition

∂L
∂ui

= ui − bki + Φ>i λi = 0, (9a)

∀l ∈ I3N , [λi]l [Φiui −Ci −Ti]l = 0, (9b)
Φiui −Ci −Ti ≤ 0, (9c)

λi ≥ 0, (9d)

where L is the Lagrange function defined by

L(ui, λi) =
1

2
‖ui − bki ‖22 + λ>i (Φiui −Ci −Ti) .

The equation (9a) implies that

ui = bki −Φ>i λi = bki −Φ>i,Aλi,A. (10)

Here, A ⊂ I3N is the active pattern consisting of
those indices at which λi has positive entries, and λi,A
(resp. Φi,A) consists of those entries of λi (resp. Φi)
corresponding to A. By the complementary slackness
condition (9b), we must have

Φi,Aui = Ci,A + Ti,A. (11)

Without loss of generality, we assume that the active
pattern A remains unchanged as Ti is gradually per-
turbed to become T′i, for otherwise we can break up
the perturbation process into a finite number of stages
each of which has a constant A. As the upper bound we
are about to develop applies for arbitrary A, it provides
a uniform bound over the whole perturbation process.

By the above assumption, we also have

u′i = bki −Φ>i,Aλ
′
i,A,

Φi,Au
′
i = Ci,A + T′i,A.

Substracting (10) and (11), we obtain

∆ui = −Φ>i,A∆λi,A, (12a)

Φi,A∆ui = ∆Ti,A, (12b)

where ∆λi,A := λ′i,A − λi,A. Suppose Φi,A has rank
ri,A and the singular value decomposition Φi,A =
Ui,AΣi,AV

>
i,A, where Ui,A ∈ R|A|×ri,A and Vi,A ∈

R3N×ri,A have orthonormal columns, and Σi,A ∈
Rri,A×ri,A is diagonal with diagonal entries being
the nonzero singular values of Φi,A. Let Φ†i,A =

Vi,AΣ−1
i,AU

>
i,A be the Moore-Penrose inverse of Φi,A.

Then Φ†i,AΦi,A = Vi,AV
>
i,A is the orthogonal projection

matrix onto the column space of Vi,A, or equivalently,
the column space V of Φ>i,A. From (12a) we know that
∆ui ∈ V . Thus, by left multiplying (12b) with Φ†i,A,
we have

∆ui = Φ†i,AΦi,A∆ui = Φ†i,A∆Ti,A.

As a result,

‖∆ui‖2 ≤ ‖Φ†i,A‖2 · ‖∆Ti,A‖2 =
‖∆Ti,A‖2
σi,A

, (13)

where σi,A is the smallest singular value of Φi,A.
As τ i and τ ′i are adjacent, ∆Ti has only two nonzero

entries corresponding to respectively the lower and upper
bounds of the comfort constraint of building i at some
time t. As they cannot be active at the same time, we
have ‖∆Ti,A‖2 ≤ τi,out − τi,in. Plugging this into (13),
we obtain the desired conclusion.

C. Privacy loss under multiple queries

In Section III-A, the noise strength in (6) can guaran-
tee the specified (εi, δi)-privacy if the transmitted data ũi
is intercepted once. However, Algorithm 2 requires agent
i to send ũi to the coordinator in multiple iterations,
essentially resulting in multiple queries on the same
private dataset τ i. To see how this affects the level of
privacy protection, we cite the following result.

Theorem 2 (Adaptive composition [15]): Suppose
the mechanism M1 : τ i 7→ ũki is (ε1, δ1)-differentially
private and the mechanism M2 : (τi, ũ

k
i ) 7→ ũk+1

i

is such that, for any fixed ũki , M2(·, ũki ) is (ε2, δ2)-
differentially private. Then the composite mechanism
M : τ i 7→ (ũki , ũ

k+1
i ) preserves (ε2 + ε2, δ1 + δ2)-

differential privacy.
The composite mechanism M is called the adaptive

composition of mechanisms M1 and M2. The above
result states that the privacy protection degrades linearly
with the number of adaptive compositions. The follow-
ing result sharpens this rather conservative estimate.

Theorem 3 (Advanced composition [15]): For any
ε, δ, δ′ ≥ 0, suppose M : τ i 7→ (ũ1

i , ũ
2
i , . . . , ũ

k
i ) is the

adaptive composition of k mechanisms preserving (ε, δ)-
differential privacy. ThenM is (ε′, kδ+δ′)-differentially
private with ε′ = ε

√
2klog(1/δ′) + kε(eε − 1).

Using Theorem 3, the differential privacy level de-
grades at the rate O(

√
k) instead of O(k) as the number

k of adaptive compositions increases, provided that ε >
0 is small. On the other hand, Theorem 3 in practice is
still conservative for our proposed Algorithm 2.

IV. CASE STUDY RESULTS

In this section, we evaluate the performance of pro-
posed algorithms on a case study consisting of three
living offices (Fig. 1) in the Herrick Lab of Purdue
University, West Lafayette. The three zones (offices)
share one chiller for cooling and have almost identical
thermal dynamics whose model was trained and vali-
dated by data collected from April 21 to May 20, 2015.
The three zones have well insulated adjacent walls so
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Fig. 1: Schematics of the three-zone case study building.
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Fig. 2: Three zone temperatures with σi ≡ 0.2.

they are thermally decoupled and can be treated as three
separate buildings. The sampling time is 30 minutes and
the prediction horizon N = 48, i.e., one day.

To test the coordination ability of the proposed al-
gorithms, we specify different temperature bounds (i.e.,
occupancy profiles) for the three zones, as indicated
by the gray dashed lines in Fig. 2. Setting ρ = 1,
relec = 0.12$/kWh, rdem = 2.4$/kW, iteration number
K = 50 and the noise standard deviation σi ≡ 0
and 0.2 respectively in Algorithm 2, the converged
cooling loads for the zones and their sum are plotted
in Fig. 3 and Fig. 4, respectively. Since the resulting
zone temperatures in both case are close to each other,
only one of them (σi ≡ 0.2) is shown in Fig. 2.

The coordinations across zones are evident. For the
example in Fig. 3, zone 3’s cooling request drops
dramatically around 8:00 a.m. to help zone 1 meet its
occupied period temperature starting at the same time;
and the three zones cooperate between 3:00 a.m. and
12:00 p.m. to maintain a flat (σi ≡ 0) or relatively
flat (σi ≡ 0.2) peak load (see Fig. 4). In both Fig. 3
and Fig. 4, compared to the result of σi ≡ 0, the
cooling loads after adding noises with standard deviation
σi ≡ 0.2 have similar shapes, although with small
oscillations.
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Fig. 3: Comparison of zone cooling loads obtained by Algo-
rithm 2 for σi ≡ 0 (top) and σi ≡ 0.2 (bottom).
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Fig. 4: Comparison of the total cooling loads obtained by
Algorithm 2 for σi ≡ 0 and σi ≡ 0.2.

In addition to the control decision oscillations ob-
served above, the performance of obtained solution also
degrades as noise level increases, as shown in Fig. 5.
For σi ≡ 0.1 and 0.2, the obtained solutions have rea-
sonable suboptimality w.r.t. to the optimal case σi ≡ 0.
However, with σi ≡ 0.4, the amplitude and oscillations
of suboptimality becomes significant to the degree that
the iterations barely result in performance improvement
from the initial values. This can be partially explained by
our choices of the prices relec and rdem. The added noises
to ui directly affect the effort of the coordinator in op-
timizing the demand charge, which (112.76$) accounts
for roughly 61% of the total bill (185.87$) when σi ≡ 0.
In addition, the average value of ui during the prediction
horizon is around 1.39kW, which is not significantly
higher than the noise standard deviation σi ≡ 0.4.

Note that the high electricity bill 185.87$ is not a
representative one-day bill for the following reason.
Since the demand charge is monthly billed, the for-
mulation (1) actually represents the MPC problem for
the first day of each month, when there is no peak
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Fig. 5: Comparison of total bill for different noise levels.

load threshold produced within this billing cycle. But
it can be easily extended for later days’ control design
by replacing the second term rdem‖

∑
i ui‖2∞ in (1a) by

rdem (‖
∑
i ui‖∞ − upeak)

2 where upeak ∈ R is the peak
load occurred in the past portion of current billing cycle,
see [8]. Here the first day is only used to evaluate the
performance of proposed algorithms.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we study the coordinated control of
building clusters with the incorporation of differential
privacy mechanisms. An (εi, δi)-differentially private
distributed solution algorithm is proposed that random-
izes the local information by adding Gaussian noises. Its
effectiveness is demonstrated by the simulation results
of a three-zone case study. A theoretical lower bound
of the noise magnitude ensuring given privacy level is
derived. Future research directions include obtaining the
theoretical performance degradation caused by the added
noises and the trade-off between privacy protection and
performance optimality.
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