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Abstract— In this paper, we study the optimization problems
for a group of agents whose individual objective functions
and constraints may depend on the variables of neighboring
agents. Several algorithms are proposed based on operator
splitting techniques that can iteratively converge to an optimal
primal (or dual) solution of the optimization problems. Then,
via random coordinate updates, asynchronous implementations
of the algorithms are developed with low computation and
communication complexity and guaranteed almost sure conver-
gence to an optimal solution. Numerical results are presented
to illustrate the proposed algorithms.

I. INTRODUCTION

Distributed optimization problems have been studied ex-
tensively in the past decade due to their applications in a
wide range of fields such as multi-agent coordination [1], net-
worked systems [2], distributed model predictive control [3],
machine learning [4], to name a few. A class of distributed
optimization problems that receives the most attention is
the consensus optimization problem, where a group of m
agents with local variables x1, . . . , xm tries to minimize the
(separable) objective function f1(x1) + · · ·+ fm(xm) while
simultaneously achieving consensus x1 = · · · = xm through
local information exchanges. Representative algorithms de-
veloped for their solutions include, e.g., subgradient-based
methods [5], [6], dual-decomposition methods [7], proximal
gradient descent methods [8], and general first order algo-
rithms [9], [10], [11], to name a few.

On the other hand, practical distributed optimization prob-
lems arising in agent networks, e.g., the formation control
problem [12] and the network localization problem [13],
often have coupled objective functions and constraints for
individual agents. In theory this general problem can still
be formulated as a consensus optimization problem with
each agent maintaining copies of all other agents’ variables.
However, doing so may result in excessive memory and
communication overhead, especially when the number of
agents is large. In addition, many of the methods developed
for consensus optimization problems, e.g., subgradient-based
methods, require carefully tuned variable step sizes to ensure
convergence, which is practical in many applications.

In this paper, we study the distributed optimization prob-
lems on agent networks with coupled local convex objective
functions and constraints. The couplings are represented
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by a directed dependency graph. Our goal is to develop
distributed solution algorithms with the following proper-
ties: constant step size, general objectives and constraints,
general dependency graph, guaranteed convergence to op-
timality, and capability of dealing with asynchrony due to
network uncertainty and inhomogeneity. Towards this goal,
we will utilize the operator splitting techniques [14], [15]
to propose several general-purpose distributed synchronous
solution algorithms, as well as their randomized versions via
the random coordinate descent method [16], [17], [18]. Our
focus will be on finding algorithms with less communica-
tion/computation overhead. Specifically, at any round of our
proposed algorithms, an agent communicates only with those
neighbors whose variables affect its objective and constraints;
only a small amount of most pertinent information is being
exchanged between them; and expensive operations (e.g.,
solving local optimization problems) are carried out only
once with the rest being simple linear vector operations.

Asynchronous algorithms have been proposed for solving
the special class of consensus optimization problem [16],
[19], [20], with the algorithm in [16] requiring the activation
of at least two agents in each round and the algorithms
in [21], [18] requiring the knowledge of activation probabili-
ties. The AD-ADMM algorithm in [22] is applicable only to
the star topology (albeit with possible network delays). Our
proposed asynchronous algorithms have no such limitations.

This paper is organized as follows. The problem under
study is formulated in Section II. In Section III, some useful
facts on averaged operators are reviewed. Three synchronous
distributed solution algorithms are proposed in Section IV,
and their asynchronous implementations are presented in
Section V. Simulation results of the proposed algorithms
on a network localization problem are given in Section VI.
Finally, Section VII summarizes the paper.

II. PROBLEM FORMULATION

Consider a group of m agents indexed by i ∈ [m] :=
{1, . . . ,m}. Each agent i has a local variable xi ∈ Rni

(which could be null) as well as a local objective function1 fi
(which could also be null) that depends on not only xi but
also its neighboring agents’ variables. This dependency is
modeled by a directed graph called the dependency graph
([m], E) with the vertex set [m] and the edge set E ⊂
[m] × [m] so that an edge (j, i) ∈ E indicates that the
objective function fi of agent i depends on the variable xj

1We assume that all the local constraints of agent i have been incorporated
into fi using convex indicator functions.



of agent j. Denote by N+
i := {j ∈ [m] | (j, i) ∈ E} and

N−i := {j ∈ [m] | (i, j) ∈ E} the sets of in-neighbors and
out-neighbors, respectively, and by Ni = N+

i ∪ N
−
i the set

of neighbors, all of agent i. Then, the objective function
of agent i is fi(x̂i), where x̂i :=

(
xi, (xj)j∈N+

i

)
has the

dimension Ni = ni +
∑
j∈N+

i
nj .

Assumption 1: Each fi : RNi → R ∪ {+∞} is an
extended-real-valued closed convex proper (CCP) function,
i.e., fi is lower semi-continuous, convex, and fi 6≡ +∞.

Denote by x := (xi)i∈[m] the concatenated vector of all
xi’s. Then x ∈ Rn where n =

∑
i∈[m] ni. Our objective is

to solve the following problem:

minimize f(x) :=
∑
i∈[m]

fi(x̂i). (1)

Assumption 2: The set of minimizers of f , C :=
{x | f(x) <∞, f(x) ≤ f(x′), ∀x′}, is nonempty.

We list several examples of Problem (1) below. The first
one will later be used to illustrate the proposed algorithms.

Example 1: Consider two agents with variables x1, x2 ∈
R and local objective functions f1(x1, x2) = (x21 + x22)/2
and f2(x2) = −x2. The dependency graph has only one
edge (2, 1). Note that f = f1 + f2 has a unique minimizer
x∗1 = 0 and x∗2 = 1, even though no minimizer exists for f2.

Example 2: (L1-regularized least square problem) To
find sparse approximate solutions to the linear equa-
tion Ax = b, one can solve the optimization problem
min

(
‖Ax− b‖2 + λ‖x‖1

)
for given λ > 0. Here, ‖ · ‖

and ‖ · ‖1 denote the L2 and L1 norms, respectively. By
decomposing x into (xi)i∈[m] and A into block matrices
(Aij)i,j∈[m], this is equivalent to Problem (1) with fi =
‖
∑
j∈N+

i
Aijxj−bi‖2+λ‖xi‖1. Note that N+

i = {j |Aij 6=
0} and N−i = {j |Aji 6= 0}.

Example 3: (Convex feasibility problem) Let fi(x̂i) =
ıFi(x̂i) be the convex indicator function of some convex set
Fi ⊂ RNi , i.e., ıFi

(x̂i) = 0 if x̂i ∈ Fi and ıFi
(x̂i) = +∞ if

otherwise. Then Problem (1) is equivalent to finding a point
x in the intersection of the sets {x | x̂i ∈ Fi} for i ∈ [m].

Example 4: (Consensus optimization) Suppose for each i,
xi ∈ Rn, fi(x̂i) = gi(xi) + ı{xi=xj , ∀j∈N+

i }
, and the

dependency graph is weakly connected. Then Problem (1) is
equivalent to the problem of minimizing g1(x)+· · ·+gm(x).

Example 5: (Coordinated optimization) Suppose each
agent i ∈ {2, . . . ,m} has a local variable xi and a local
objective function fi(xi), while agent 1 is a coordina-
tor with no local variables and a non-separable objective
function f1(x2, . . . , xm). As examples, we can have f1 =
‖
∑m
i=2 xi‖2, f1 = maxi=2,...,m ‖xi‖∞ where ‖·‖∞ denotes

the L∞-norm, or f1 = ı{A2x2+···+Amxm=b}. In this case, the
dependency graph has the edges (2, 1), (3, 1), . . . , (m, 1).

Our goal is to design distributed iterative algorithms
xk+1 = T (xk) for solving Problem (1) so that, at any
iteration, each agent updates its variable by using only the
variables of its neighbors and itself, and that the iteration
result xk converges to a solution x∗ ∈ C for all initial x0.

Towards this goal, we first reformulate Problem (1). For
each neighboring agent pair (j, i) ∈ E , suppose agent i

maintains an extra variable xij ∈ Rnj representing its desired
value for the variable xj of its in-neighboring agent j (it is
possible that xij 6= xj). Denote by xi =

(
xi, (xij)j∈N+

)
∈

RNi the augmented variable of agent i, and let x :=
(xi)i∈[m] ∈ RN where N =

∑
i∈[m]Ni. Then, Problem (1)

is equivalent to the following optimization problem:

minimize F (x) :=
∑
i∈[m]

fi(xi) subject to x ∈ A. (2)

Here, A is the consensus subspace defined by

A = {x |xij = xj , ∀(j, i) ∈ E} ⊂ RN . (3)

Problem (2) is further equivalent to

minimize F (x) + ıA(x). (4)

III. AVERAGED OPERATORS

In this section, some useful facts about averaged operators
will be reviewed (see [14] for more general results). For
mappings (or operators) S, T : Rn → Rn, S is called
nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ Rn;
and T is called (α-)averaged if T = (1−α)I+αS for some
nonexpansive mapping S and α ∈ (0, 1). An α-averaged
operator T satisfies

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Tx− x)− (Ty − y)‖2,

for all x, y ∈ Rn. In particular, if α = 1
2 , T is firmly

nonexpansive: ‖Tx − Ty‖2 ≤ (x − y)>(Tx − Ty), ∀x, y.
Denote by fix(T ) := {x |Tx = x} the set of fixed points
of T (which could be empty). For an averaged operator
T , the iteration xk+1 = T (xk) always converges to some
x∗ ∈ fix(T ), provided that fix(T ) is nonempty.

The following result, a special case of [17, Thm. 3], will
be useful for asynchronous design later on.

Theorem 1: Let T : Rn → Rn be an α-averaged operator
with fix(T ) 6= ∅. Partition x into (x1, . . . , xm) and Tx into
(T1x, . . . , Tmx) where xi, Tix ∈ Rni for i ∈ [m]. Consider
the following iteration. At each step k = 0, 1, . . ., first an
index ik ∈ [m] is chosen randomly and independently with
the probabilities P

(
ik = j

)
= pj ≥ ε, j ∈ [m], for some

positive ε; then xk is updated to xk+1 where xk+1
ik

= Tikx
k

and xk+1
` = xk` for ` 6= ik. Then, xk converges almost surely

to some x∗ ∈ fix(T ) as k →∞.

IV. SYNCHRONOUS ALGORITHMS

In this section, several distributed algorithms for solving
Problem (2) are proposed. Recall that x = (xi)i∈[m] ∈ RN ,
where xi =

(
xi, (xij)j∈N+

i

)
is the local augmented variable

kept by agent i. Denote by x̄ := ΠA(x) the orthogonal
projection of x onto the consensus subspace A defined in (3).
Then, x̄ = (x̄i)i∈[m] is given by

x̄ij = x̄j = 1
|N−j |+1

(
xj +

∑
`∈N−j

x`j

)
, ∀(j, i) ∈ E . (5)

The projection of x onto the orthogonal complementary
subspace A⊥ is given by ΠA⊥(x) = x− x̄.



A. Douglas-Rachford Algorithm

We first review some basic facts about monotone opera-
tors [14]. A set-valued operator T : Rn → 2R

n

is called
monotone if (x− y)>(u− v) ≥ 0 for all x, y ∈ Rn and all
u ∈ Tx, v ∈ Ty. For a monotone operator T , its resolvent
is given by the single-valued mapping JT := (I+ρT )−1 for
some given ρ > 0. It can be shown that the reflected resolvent
2JT−I is nonexpansive; hence JT is (1/2)-averaged. If T is
further maximal monotone, i.e., its graph {(x, u) |u ∈ Tx}
is not properly contained in the graph of any other monotone
operator, then the domain of JT is Rn.

The subdifferential operators ∂g of a closed convex proper
functions g : Rn → R ∪ {+∞} is maximal monotone, with
its resolvent being the proximal operator of g:

proxρg(x) = arg min
z

(
g(z) + ‖z − x‖2/2ρ

)
, ∀x ∈ Rn.

The proximal operator proxρg is (1/2)-averaged and its fixed
points, if exist, are exactly the minimizer of g. Further, if
g = ıC for a closed convex set C, then proxρg = ΠC is
the projection onto C. If g(x) =

∑
i∈[m] gi(xi) is block

separable, so is proxρg(x) =
(
proxρgi(xi)

)
i∈[m]

(see [23]).
Let S and T be two maximal monotone operators on Rn.

A common problem is to find points in the zero set of S+T ,
namely, zer(S + T ) := {x | 0 ∈ Sx + Tx}. In particular, if
S = ∂f and T = ∂g for CCP functions f and g, then
zer(S+T ) (if nonempty) consists of the minimizers of f+g.
Suppose zer(S+T ) 6= ∅. Then one solution x ∈ zer(S+T )
can be obtained as x = JT (z) where z is a fixed point of
the nonexpansive map (2JS − I)(2JT − I). Such a fixed
point z can be found by iterating using the α-averaged map
(1−α)I+α(2JS−I)(2JT −I) for α ∈ (0, 1), which results
in the (generalized) Douglas-Rachford (D-R) algorithm [24]:

xk+1 = JT
(
zk
)
,

zk+1 = zk + 2α
[
JS(2xk+1 − zk)− xk+1

]
, (6)

for k = 0, 1, . . .. Starting from any z0, the generated
sequence xk will converge to a solution x∗ ∈ zer(S + T )
and the convergence rate can be characterized [25], [9].

We now apply the D-R algorithm to Problem (4). Choose
S = ∂F and T = ∂ıA. Then, JS = proxρF and JT = ΠA.
The Douglas-Rachford algorithm for α ∈ (0, 1) becomes

xk+1
i = z̄ki , i ∈ [m]; (7a)

zk+1
i = zki + 2α

(
proxρfi(2x

k+1
i −zki )− xk+1

i

)
, i ∈ [m].

(7b)

Note that step (7a) is carried out in two fully synchronous
stages: first each agent i gathers variables zkji from all of
its out-neighbors j and computes the average of zki and
the gathered variables as xk+1

i ; then, after the first stage is
completed for all agents, each agent i gathers the variables
xk+1
j from all of its in-neighbors j and updates xk+1

ij to
xk+1
j . Step (7b) requires no inter-agent communication. The

whole algorithm is summarized in Algorithm 1.
As the iteration from zk to zk+1 is given by an α-averaged

map in (6), the sequence zk obtained by Algorithm 1

Algorithm 1 Synchronous Douglas-Rachford Algorithm

1: Initialize z0, and let k ← 0
2: repeat
3: for i = 1, . . . ,m do
4: xk+1

i ← z̄ki
5: for i = 1, . . . ,m do
6: zk+1

i ← zki +2α
(
proxρfi(2x

k+1
i − zki )− xk+1

i

)
7: k ← k + 1
8: until |zk − zk−1| is sufficiently small
9: return xk

converges to some z∗ for which x∗ := z̄∗ yields a solution to
Problem (4). Note that in general x∗ 6= z∗, i.e., it is possible
that z∗ij 6= z∗j for some (j, i) ∈ E .

Remark 1: Another version of the Douglas-Rachford al-
gorithm is obtained by letting S = ∂ıA and T = ∂F :

xk+1
i = proxρfi(z

k
i ), i ∈ [m]; (8a)

zk+1
i = zki + 2α

(
2x̄k+1

i − z̄ki − xk+1
i

)
, i ∈ [m]. (8b)

Example 6: In Example 1, let z = (z1, z2) ∈ R3 where
z1 = (z1, z12) ∈ R2 and z2 = z2 ∈ R. Then proxρf1(z1) =
z1/(1 +ρ) and proxρf2(z2) = z2 +ρ. Algorithm 1 becomes

zk+1
1 = (1− 2αρ/(1 + ρ))zk1 ,

zk+1
12 = (1− α)zk12 + α(1− ρ)/(1 + ρ)zk2 ,

zk+1
2 = (1− α)zk2 + αzk12 + 2αρ.

It is easily verified that zk converges to z∗ = (0, 1−ρ, 1+ρ).
From this, x∗ = z̄∗ = (0, 1, 1) is a solution to Problem (4)
and thus x∗ = (0, 1) is a solution to Problem (1).

B. Douglas-Rachford Algorithm for the Dual Problem

Let Si ∈ RNi×n be the selection matrix consisting of
rows of the n-by-n identify matrix such that x̂i = Six, i ∈
[m]. In other words, Si selects from x = (xi)i∈[m] those
variables that fi depends on and arranges them as x̂i =(
xi, (xj)j∈N+

i

)
. Let S =

[
S>1 · · · S>m

]>
. Then z = Sx

satisfies z = (zi)i∈[m] where zij = zj = xj for all (j, i) ∈ E ,
i.e., z ∈ A. Thus, the range space of S is the consensus
subspace A and the null space of S> is A⊥.

Problem (2) can be reformulated as follows:

minimize
∑
i∈[m]

fi(zi) subject to z = Sx. (9)

Introduce the dual variable p ∈ RN and define the La-
grangian L(x, z,p) =

∑
i∈[m](fi(zi)−p>i (zi−Six)). Then

the dual problem of (9) is

minimize F ∗(p) :=
∑
i∈[m]

f∗i (pi) subject to p ∈ A⊥,

(10)

where f∗i (pi) := supzi

(
p>i zi − fi(zi)

)
is the convex con-

jugate of fi. We assume that the dual problem has an optimal
solution p∗ with the same optimal value as that of the
problem (2). This is the case, e.g., if L has a saddle point.



By applying the Douglas-Rachford algorithm in (6) to
problem (10) with S = ∂F ∗, T = ∂ıA⊥ , α ∈ (0, 1), and
with ρ−1 in place of ρ, we have, for k = 0, 1, . . .,

pk+1 = ΠA⊥(wk) = wk − w̄k,

wk+1
i = wk

i + 2α
(

proxf∗i /ρ(2p
k+1
i −wk

i )− pk+1
i

)
.

By the Moreau’s decomposition proxf∗i /ρ + ρ−1 proxρfi ◦
ρI = I , the above iteration can be rewritten as

wk+1
i = wk

i − 2αw̄k
i − 2αρ−1proxρfi(ρw

k
i − 2ρw̄k

i ),

which is carried out by Algorithm 2 below. Starting from any
w0, the sequence wk converges to some w∗ for which p∗ =
w∗ − w̄∗ is an optimal solution to the dual problem (10).

Algorithm 2 Synchronous Dual D-R Algorithm

1: Initialize w0, and let k ← 0
2: repeat
3: for i = 1, . . . ,m do
4: uk+1

i ← w̄k
i

5: for i = 1, . . . ,m do
6: vk+1

i ← proxρfi(ρw
k
i − 2ρuk+1

i )

7: wk+1
i ← wk

i − 2αuk+1
i − 2αρ−1vk+1

i

8: k ← k + 1
9: until |wk −wk−1| is sufficiently small

10: return wk − w̄k

Remark 2: It is a standard result that the Douglas-
Rachford algorithm on the dual problem is equivalent to the
ADMM algorithm [4]. For Problem (9) we define the aug-
mented Lagrangian Lρ(x, z,y) =

∑
i∈[m] fi(zi)+y>i (Six−

zi) + 1
2ρ‖Six− zi‖2. The ADMM algorithm first minimizes

w.r.t. x and z in a sequential fashion, and then uses the primal
residue to update the dual variable y (see [4]):

xk+1 = z̄k − ρȳk, (11a)

zk+1
i = proxρfi(x

k+1
i + ρyki ) = proxρfi

(
z̄ki + ρ(yki − ȳki )

)
,

yk+1 = yk − ȳk − (zk+1 − z̄k)/ρ. (11b)
V. ASYNCHRONOUS ALGORITHMS

The algorithms proposed in Section IV can be turned into
asynchronous ones by utilizing Theorem 1. Some algorithms
will have “better” asynchronous implementations compared
to others. Here, the criteria for comparing different asyn-
chronous implementations are in terms of the computation
and communication overheads incurred in each iteration.

A. Asynchronous Douglas-Rachford Algorithm

By applying Theorem 1 to the Douglas-Rachford algo-
rithm (8), we obtain the following asynchronous algorithm:

For k = 0, 1, . . ., pick i ∈ [m] with i.i.d. probability pi > 0

xk+1
j = proxρfj

(
zkj
)
, ∀j ∈ Ni ∪ (∪`∈N+

i
N−` );

zk+1
i = zki + 2α

(
2x̄k+1

i − z̄ki − xk+1
i

)
for the chosen i.

Even though at each round only one agent i is activiated
to carry out the update, its updated variable zk+1

i relies

on x̄k+1
i whose evaluation requires each agent in an ex-

tended (2-hop) neighborhood Ni ∪ (∪`∈N+
i
N−` ) to evaluate

its proximal operator and send out its local information.
This may result in large computation and communication
overheads. For instance, for the coordinated optimization
problem in Example 5, regardless of which agent is chosen to
do the update, all the agents need to evaluate their proximal
operators and communicate the results to their neighbors.

A better option is to apply Theorem 1 to Algorithm 1:

For k = 0, 1, . . ., pick i ∈ [m] with i.i.d. probability pi > 0

xk+1
i = z̄ki ; (13a)

zk+1
i = zki + 2α

(
proxρfi(2x

k+1
i − zki )− xk+1

i

)
. (13b)

In each round, only the activated agent i needs to evaluate its
proximal operator once. Starting from any z0, the sequence
zk generated by Algorithm (13) converges almost surely to
some z∗ for which z̄∗ is a solution to Problem (4).

Example 7: For Example 1, Algorithm (13) becomes:
zk+1
1 = (1− 2αρ/(1 + ρ))zk1 ,

zk+1
12 = (1− α)zk12 + α(1− ρ)/(1 + ρ)zk2 ,

zk+1
2 = zk2 ,

if agent 1 is activated, and

zk+1
1 = zk1 , z

k+1
12 = zk12, z

k+1
2 = (1− α)zk2 + αzk12 + 2αρ

if agent 2 is activated. With probability one, zk → z∗ =
(0, 1− ρ, 1 + ρ) and xk → z̄∗ = (0, 1, 1).

In Algorithm (13), to compute z̄ki in step (13a), agent i
needs to collect zk`i from its out-neighbors ` and z̄kj from its
in-neighbors j. The latter requires agents j to gather data
from their respective out-neighbors. To avoid this, we can
let each agent i ∈ [m] maintain an extra variable z̄i ∈ Rni

that always has the latest averaged value of zi and z`i for
` ∈ N−i (z̄i is null if agent i does not have a local variable).
Then Algorithm (13) is equivalent to Algorithm 3 below.

Algorithm 3 Asynchronous Douglas-Rachford Algorithm

1: Choose any z0, and let k ← 0
2: for i = 1, . . . ,m do
3: z̄0i ← (z0i +

∑
`∈N−i

z0`i)/(|N
−
i |+ 1)

4: repeat
5: Pick i ∈ [m] with i.i.d. probability pi > 0
6: xk+1

i ← z̄ki
7: for j ∈ N+

i do
8: xk+1

ij ← z̄kj

9: zk+1
i ← zki + 2α

(
proxρfi(2x

k+1
i − zki )− xk+1

i

)
10: z̄k+1

i ← z̄ki + (zk+1
i − zki )/(|N−i |+ 1)

11: for j ∈ N+
i do

12: z̄k+1
j ← z̄kj + (zk+1

ij − zkij)/(|N
−
j |+ 1)

13: k ← k + 1
14: until k is sufficiently large
15: return xk



Algorithm 3 has low communication and computation
complexity. In each round, the activated agent i only needs to
communicate with its in-neighbors by collecting information
in step 8 and sending information in step 12; its in-neighbors
perform simple updates (step 12); while all other agents
(even if they are out-neighbors of agent i) can remain idle.
For the coordinated optimization problem in Example 5,
if the activated agent i ∈ {2, . . . ,m}, then only agent i
needs to carry out steps 9 and 10, while all other agents
including agent 1 remain idle. On average, in each round of
Algorithm 3, there are

∑
i 2pi|N+

i | ≤ maxi 2|N+
i | one-way

transmissions,
∑
i 2pi(Ni − ni) ≤ maxi 2(Ni − ni) scalar

variables transmitted, and one proximal operator evaluation.
The following result is immediate from Theorem 1.
Corollary 1: Suppose α ∈ (0, 1), ρ > 0, and pi > 0

for i ∈ [m]. Starting from any z0, with probability one
the sequence xk generated by Algorithm 3 converges to a
solution to Problem (2).

B. Asynchronous Dual Douglas-Rachford Algorithm

Let each agent i maintain the variables wi,ui,vi ∈ RNi

and w̄i ∈ Rni . The asynchronous version of Algorithm 2
obtained using Theorem 1 is given by Algorithm 4 below. In
each round, with the agent i activated, the proximal operator
is evaluated only once (step 9). Agent i communicates only
with its out-neighbors (collect in step 8 and send in step
13). The expected numbers of one-way communications and
the expected number of scalar variables transmitted in each
round are the same as those of Algorithm 3.

Algorithm 4 Asynchronous Dual D-R Algorithm

1: Choose any w0, and let k ← 0
2: for i = 1, . . . ,m do
3: w̄0

i ← (w0
i +

∑
`∈N−i

w0
`i)/(|N

−
i |+ 1)

4: repeat
5: Pick i ∈ [m] with i.i.d. probability pi > 0
6: uk+1

i ← w̄ki
7: for j ∈ N+

i do
8: uk+1

ij ← w̄kj

9: vk+1
i ← proxηfi(ηw

k
i − 2ηuk+1

i )

10: wk+1
i ← wk

i − 2αuk+1
i − 2αη−1vk+1

i

11: w̄k+1
i ← w̄ki + (wk+1

i − wki )/(|N−i |+ 1)
12: for j ∈ N+

i do
13: w̄k+1

j ← w̄kj + (wk+1
ij − wkij)/(|N

−
j |+ 1)

14: k ← k + 1
15: until k is sufficiently large
16: return wk − w̄k

Similar to Corollary 1, the following result can be proved.
Corollary 2: Suppose α ∈ (0, 1), ρ > 0, and pi > 0 for

i ∈ [m]. Starting from any initial w0, the sequence wk−w̄k

obtained by Algorithm 4 converges with probability one to
a solution to the dual problem (10).

(a) Ground truth (b) Initial guess

Fig. 1: A network localization problem with 2 anchors and
28 free agents.

VI. NETWORK LOCALIZATION APPLICATION

In this section the network localization problem is used to
demonstrate the effectiveness of the proposed algorithms. A
number of agents are randomly placed inside a planar region.
Among them, some are anchors indexed by Ia who know
their exact locations (x∗i )i∈Ia , while the other are free agents
indexed by If who need to estimate their positions (x∗i )i∈If
based on the relative orientation measurements between pairs
of agents within a certain measurement range. This is an
instance of the convex feasibility problem in Example 3
where the local feasibility constraint for agent i ∈ If is of the
form ∠(x∗i−x∗j ) = θij for all neighboring agents j ∈ Ia∪If .
If there are at least two anchors and the whole network has an
infinitesimally rigid graph, then the network is localizable,
i.e., there is a unique solution (x∗i )i∈If satisfying all the
relative orientation constraints [13, Thm. 15]. Fig. 1 (a)
shows the true locations of agents in a network with two
anchors (solid circles) and 28 free agents (hollow circles),
with each edge representing a relative orientation constraint
between two agents. All tested algorithms start from the same
random initial guess depicted in Fig. 1 (b).

0 10 20 30 40 50

10
0

10
1

10
2

Iterations

∑
i∈

I
f
‖
x
k i
−
x
∗ i
‖
2

 

 
α = 0.5
α = 0.7
α = 0.9
α = 0.98
ADMM
PCon

Fig. 2: Comparison of convergence rates of tested algorithms.

In Fig. 2, we compare the convergence rates of three
synchronous algorithms, Algorithms 1, the ADMM algo-



rithm (11), and the PCon Algorithm [26] based on para-
contractions. For Algorithm 1, the parameter α is set to 0.5,
0.7, 0.9, 0.98, respectively, while the parameter ρ has no
effect on the algorithm as each fi is an indicator function.
For the ADMM algorithm (11), ρ = 0.01, 0.1, 1, 10, 1000
are tested and the best result (ρ = 0.1) is plotted in Fig. 2.
For the PCon Algorithm, the result with the best parameter
value αi ≡ 1.9 based on experiments is included here. For
this example, the Algorithm 1 converges at a similar rate
as the ADMM algorithm (11) (and with less performance
oscillations), and faster than the PCon algorithm.
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Fig. 3: Random outcomes of Algorithm 3 with α = 0.5 and
two different sets of probabilities pi’s.

Fig. 3 shows representative random outcomes of applying
Algorithm 3 to the same localization problem with α = 0.5
and two different sets of probabilities: pi = 1/30, and
pi = Di/

∑
Di where Di is the degree of node i in the

dependency graph. It is observed that the iterative results
indeed tend to the optimal solution. Further, updating highly
connected nodes more frequently does not seem to speed
up convergence in this example. Note that, compared to
Algorithm 1, the number of iterations needed for achieving
the same convergence performance is much larger due to
the fact that at each round only one agent is performing
computation as opposed to 28 agents in Algorithm 1.

VII. CONCLUSIONS AND FUTURE WORKS
Several synchronous algorithms are proposed for solving

the optimization problems on agent networks with locally
coupled objective functions and constraints. Asynchronous
implementations of the proposed algorithms are presented.
Convergence of the proposed algorithms to optimal solutions
are demonstrated via examples.
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