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Abstract— This paper investigates semistability of discrete-
time, switched linear systems under both deterministic and
random switching policies. The notion of semistability pertains
to a continuum of initial state dependent equilibria and has
found wide applications such as consensus problems in multi-
agent systems. The main contributions of the paper are three
folds. First, we show that exponential semistability on a common
equilibrium space is equivalent to output exponential stability
of the switched linear system with a suitably defined output,
under both arbitrary and random switchings. Further, their
convergence rates are shown to be identical. Second, it is
shown that output stability and its convergence rates can be
efficiently characterized via the recently developed generating
function approach. Third, we consider algorithm development
and analysis of resource allocation schemes for topologically
changing, distributed sensor networks. We formulate an it-
eration process of such an algorithm as a switched linear
system, and characterize its convergence using the obtained
semistability results.

I. I NTRODUCTION

Semistability extends the regular notion of stability per-
taining to a single, isolated equilibrium. Roughly speaking,
for a dynamical system with a continuum of equilibria,
semistability implies that any trajectory converges to a (pos-
sibly different) stable equilibrium that is dependent on its
initial state. Semistable dynamics have been found in various
fields, e.g., mechanical systems [1], [2], network systems
[15], [3], biomedical systems [4], [5], chemical kinetics [6],
[7], etc, to cite but a few examples.

Motivated by algorithm design and analysis of distributed,
multi-agent sensor networks, we perform semistability anal-
ysis for a class of switched linear systems under different
switching policies. A resource allocation algorithm for a
distributed sensor network is an iteration process that can be
treated as a discrete-time linear system. A notable feature of
this dynamical process is that it may possess a continuum of
initial state dependent equilibria. For example, a consensus
reached in a distributed, multi-agent network is an equi-
librium relying on initial conditions [15]. Further, a sensor
network often has a switching topology because of possible
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communcation link failures/creations. Hence, the iteration
process of an algorithm is subject to switching dynamics
and thus can be formulated as a discrete-time, switched
linear system. To evaluate the performance of an iterative
algorithm, e.g., convergence and its convergence rate, it
is essential to develop efficient techniques to characterize
semistability and (exponential) growth rate of the related
switched linear system. This sparks our study in this paper.

Related semistability results in the literature include [16],
[17], [18], [19]. In particular, the references [18], [19] study
semistability of continuous-time, switched linear systems in
the Lyapunov framework. Distinct from this perspective, we
investigate semistability and characterize growth rates using
the generating function approach recently introduced in [9],
[11], [12], [13]. Informally speaking, generating functions
are certain power series with coefficients determined from
systems trajectories under switching policies. Their conver-
gence radii characterize system growth rates which can be
computed via effective algorithms developed in [11]. In this
paper, we convert the semistability problem into an equiva-
lent, projection based, output stability problem, under both
deterministic and random switchings. The latter problem can
be efficiently handled via the generating function approach.

The rest of the paper is organized as follows. In Section II,
we introduce semistability and output stability notions. Sec-
tion III focuses on semistability analysis and generating func-
tion characterization under arbitrary switching. Randomly
switched linear systems and their generating functions are ad-
dressed in Section IV. Finally, the application to distributed
sensor networks is treated in Section V.

II. SEMISTABILITY OF SWITCHED L INEAR SYSTEMS

A discrete-time, (autonomous) switched linear system
(SLS) onRn is:

x(t + 1) = Aσ(t)x(t), t = 0, 1, . . . , (1)

where its statex(t) ∈ Rn evolves by switching among a
finitely family of linear dynamics indexed by the finite index
setM := {1, . . . , M}, σ(t) ∈ M for all t, or simply σ, is
the switching sequence, andAi ∈ Rn×n, i ∈ M, are the
subsystem dynamics matrices. Denoted byx(t; z, σ) the state
trajectory of the SLS from the initial statex(0) = z under
the switching sequenceσ. In this paper, unless otherwise
stated, the vector norm‖ · ‖ is the Euclidean norm onRn

and the matrix norm is induced from the Euclidean norm.
Let In be then× n identity matrix andN (·) denote the

null space of a matrix. Define the (common) equilibrium



subspaceEe :=
⋂

i∈MN (Ai − In), and letE⊥e be the or-
thogonal complement ofEe in Rn. Obviously,Ee is invariant
under {Ai}i∈M. Hence eachxe ∈ Ee is an equilibrium
of the SLS (1) under an arbitrary switching sequence. The
following standing assumption asserts that bothEe and E⊥e
are nontrivial subspaces ofRn.

Assumption 2.1:The dimension and codimension ofEe

are both at least one.
Hence, there exists at least onei ∈M such thatAi 6= In.
Definition 2.1: The SLS (1) isexponentially semistable

under arbitrary switching if there exist constantsρ ≥ 0 and
r ∈ [0, 1) such that for anyz ∈ Rn and under any switching
sequenceσ, there exists a (unique)xe(z, σ) ∈ Ee (dependent
on z and σ) such that‖x(t; z, σ) − xe(z, σ)‖ ≤ ρ rt‖z −
xe(z, σ)‖, ∀ t ∈ Z+. Here,r is called theexponential growth
rate of semistability(under arbitrary switching).

It is known that the asymptotic stability and exponential
stability of switched linear systems under arbitrary switching
are equivalent [8], [9]. Next, we show that the same holds for
semistability and exponential semistability of switched linear
systems. Before we state this result, the following definition
of semistability for switched linear systems is needed.

Definition 2.2: The SLS (1) issemistableunder arbitrary
switching if there exists a classKL functionα(·, ·) such that
anyz ∈ Rn and under anyσ, there existsxe(z, σ) ∈ Ee such
that‖x(t; z, σ)−xe(z, σ)‖ ≤ α(‖z−xe(z, σ)‖, t), ∀ t ∈ Z+.

The following lemma, whose proof is omitted, states the
semistability equivalence under arbitrary switching.

Lemma 2.1:The SLS (1) isexponentially semistableun-
der arbitrary switching if and only if it is semistable under
arbitrary switching.

To characterize the exponential semistability and conver-
gence rate of (1), we project the dynamics ontoE⊥e . Let
O ∈ Rn×` be the matrix whose columns constitute an
orthonormal basis ofE⊥e (this implies thatE⊥e is of dimension
`), and letP = OOT ∈ Rn×n be the matrix representing
the orthogonal projection ontoE⊥e . Clearly,P is idempotent,
i.e., P 2 = P . For a given trajectoryx(t), let xEe(t) and
xE⊥e (t) denote the (unique) orthogonal projections ofx(t)
onto Ee andE⊥e , respectively. That is,xE⊥e (t) = Px(t) and
xEe(t) = [In − P ]x(t). Define the output of the SLS (1)
using the projection matrixO:

y(t) = OTx(t), t = 0, 1, 2, . . . (2)

Then, at anyt, regardless of the current modeσ(t), ‖y(t)‖
is the Euclidean distance ofx(t) to the equilibrium subspace
Ee. In the following, denote byy(t; z, σ) the output trajectory
of the SLS (1) starting from the initial conditionz under the
switching sequenceσ.

Definition 2.3: The SLS (1) with the output (2) isoutput
exponentially stableunder arbitrary switching if there exist
constantsκ > 0 and r̃ ∈ [0, 1) such that for anyz ∈ Rn,
‖y(t; z, σ)‖ ≤ κ r̃t‖z‖, ∀ t ∈ Z+, under any switching
sequenceσ. Here, the parameter̃r is called theexponential
growth rate of output stability(under arbitrary switching).

To simplify the subsequent development, we introduce
a coordinate transformation as follows. Recall thatE⊥e is

of dimension`. Let Ô ∈ Rn×(n−`) be the matrix whose
columns constitute an orthonormal basis ofEe, and define
the invertible matrixT := [O Ô]T ∈ Rn×n and the state
transformation̂x(t) = Tx(t). In the new coordinates,E⊥e =
R` × {0}, Ee = {0} × R(n−`), and the relevant matrices
can be written aŝO = OTT−1 =

[
I` 0

]
, P̂ = ÔÔT =[

I` 0
0 0

]
, Âi = TAiT

−1 =

[
Âi,11 0
Âi,21 In−`

]
, for all i ∈ M.

Furthermore,̂x(t) = [yT(t); x̃T(t)]T, z = [yT(0); x̃T(0)]T,
xT
E⊥e (t) = [yT(t); 0], andxT

Ee(t) = [0; x̃T(t)], wherey(t) ∈
R` and x̃(t) ∈ R(n−`) satisfy

y(t + 1) = Âσ(t),11 y(t), (3)

and

x̃(t) = x̃(0) +
t−1∑
τ=0

Âσ(τ),21 y(τ). (4)

Note that (3) yields a switched linear system defined by
subsystem matrices{Âi,11} and is decoupled from (4). See
Remark 3.1 for the geometry of the above dynamics under
exponential stability conditions. Since the state transforma-
tion does not affect the semistability and output stability as
well as their growth rates, we consider the switching dynam-
ics (3)–(4) throughout the rest of the paper by dropping the
notation ·̂ in the equations.

III. SEMISTABILITY OF SWITCHED L INEAR SYSTEMS:
DETERMINISTIC CASE

In this section, we study semistability under deterministic,
arbitrary switchings.

A. Semistability and Output Stability

We firstly show the equivalence of exponential semistabil-
ity and output exponential stability. To this end, we introduce
some notions and a technical result that is of its own interest.
This result asserts the equivalence of convergence, asymp-
totic and exponential stability for general switched linear
systems under arbitrary switching. Specifically, consider a
switched linear system defined by a finite family of matrices.
We call the switched linear systemconvergentunder arbitrary
switching if for any initial statez, x(t; z, σ) converges to the
origin ast →∞ under any switching sequenceσ.

Theorem 3.1:A switched linear system is convergent un-
der arbitrary switching if and only if it is exponentially stable
under arbitrary switching.

Proof: It suffices to prove the “only if”. Consider a
SLS with the matrices{Ai}m

i=1. The following claim holds:
Claim: If there existsT∗ ∈ N (independent ofz and

σ) such that for anyz with ‖z‖ = 1 and under any
switching sequenceσ, there existst∗ ∈ [0, T∗] such that
‖x(t∗; z, σ)‖ ≤ 0.5, then the SLS is exponentially stable
under arbitrary switching.

Let κ :=
∑T∗

j=0(maxi ‖Ai‖)j . The claim can be shown
via induction that under the given conditions,‖x(t; z, σ)‖ ≤
κ(0.5)t/T∗−1‖z‖, ∀ t ∈ Z+ for any z and under any switch-
ing sequenceσ. This thus yields the exponential stability.



Now suppose that the SLS is convergent but not expo-
nentially stable, under arbitrary switching. It follows from
the above claim that there exist an initial state sequence
{zk} with ‖zk‖ = 1, an increasing time sequence{Tk} with
limk→∞ Tk = ∞, and a sequence of switching sequences
{σk} such that for eachk, ‖x(t; zk, σk)‖ ≥ 0.5 for all
t = 0, 1, · · · , Tk. Using a similar argument as that of
[9, Theorem 3], we can construct an initial statez and a
switching sequenceσ such that‖x(t; z, σ)‖ ≥ 0.5 for all t.
This is contradictory to the convergence of the SLS.

Theorem 3.2:The SLS (1) is exponentially semistable
under arbitrary switching if and only if the SLS (1) with
the output (2) is output exponentially stable under arbitrary
switching. Further, the exponential growth rates of semista-
bility and output stability are equivalent, namely, a constant
r ∈ [0, 1) is the exponential growth rate of semistability if
and only if it is that of output stability.

Proof: “If”. Suppose κ > 0 and r̃ ∈ [0, 1) ex-
ist such that for anyz ∈ Rn and any switching se-
quenceσ, ‖y(t; z, σ)‖ ≤ κr̃t‖z‖ for all t ∈ Z+. For
a initial statez ∈ Rn and switching sequenceσ, it fol-
lows from (4) that, for anys, w ∈ Z+ with s < w,∥∥x̃(w; z, σ) − x̃(s; z, σ)

∥∥ =
∥∥ ∑w−1

τ=s Aσ(τ),21 y(τ ; z, σ)
∥∥ ≤∑w−1

τ=s ‖Aσ(τ),21‖ · ‖y(τ ; z, σ)‖ ≤ maxi(‖Ai,21‖)
(
κr̃s +

· · ·+κr̃w−1
)
‖z‖ ≤ maxi(‖Ai,21‖) κ r̃s/

(
1− r̃

)‖z‖. Hence,
for all s, w sufficiently large (no matter how far they
are apart),‖x̃(w; z, σ) − x̃(s; z, σ)‖ is sufficiently small.
This shows that{x̃(t; z, σ)} is a Cauchy sequence in
Rn−` and thus converges inRn−` (as Rn−` is com-
plete). Let x̃e(z, σ) := limt→∞ x̃(t; z, σ). Since Rn−`

is closed, x̃e(z, σ) ∈ Rn−`. Further, let xe(z, σ) :=
[0; x̃T

e (z, σ)]T ∈ Ee and z̃ := z − xe(z, σ). It fol-

lows from (3)–(4) that x(t; z̃, σ) =
[
y(t; z, σ)
x̃(t; z, σ)

]
−

[
0

x̃e(z, σ)

]
. This shows that‖y(t; z̃, σ)‖ = ‖y(t; z, σ)‖ ≤

κ r̃t‖z̃‖. Moreover,‖x̃(t; z̃, σ)‖ = ‖x̃(t; z, σ)− x̃e(z, σ)‖ =∥∥∑∞
τ=t Aσ(τ),21 y(τ ; z̃, σ)

∥∥ ≤ maxi(‖Ai,21‖)κ
(
r̃t + r̃t+1 +

· · ·
)
‖z̃‖ ≤ maxi ‖Ai,21‖ κ r̃t

1−r̃ ‖z̃‖, ∀ t. In view of the above

results and‖x(t; z̃, σ)‖ ≤ ‖y(t; z̃, σ)‖ + ‖x̃(t; z̃, σ)‖, we
obtain a constantρ > 0, independent ofz andσ, such that
‖x(t; z, σ)− xe(z, σ)‖ = ‖x(t; z̃, σ)‖ ≤ ρ r̃t‖z̃‖ = ρ r̃t‖z −
xe(z, σ)‖,∀ t ∈ Z+. This gives rise to the exponential
semistability and shows that the exponential growth rater̃
of output stability is also that of exponential semistability.

“Only if”. We prove this by contradiction. Suppose that
the SLS (1) is exponentially semistable but not output
exponentially stable, under arbitrary switching. It is seen that
the output trajectoryy(t) is equivalent to the state trajectory
of the SLS (3) defined by the subsystem matrices{Ai,11}.
Hence, if the original SLS (1) is not output exponentially
stable under arbitrary switching, neither is the SLS (3). We
deduce from Theorem 3.1 that the SLS (3) is not convergent
under arbitrary switching. Hence, there existz ∈ Rn and a
switching sequenceσ such thaty(t; z, σ) does not converge

to the origin ofR`, contradicting the exponential semistabil-
ity of the SLS (1) under arbitrary switching.

Finally, we show that a constantr ∈ [0, 1) is the expo-
nential growth rate of semistability if and only if it is that of
output stability. It suffices to consider the “only if” part as the
other part has been shown before. Suppose that the SLS (1)
is exponentially semistable with the exponential growth rate
r ∈ [0, 1), i.e., for anyz ∈ Rn and under anyσ, there exists
xe(z, σ) ∈ Ee such that‖x(t; z, σ) − xe(z, σ)‖ ≤ ρ rt‖z −
xe(z, σ)‖, ∀ t with ρ > 0. This implies, in light of the proof
for the “only if” above, that the SLS (3) is exponentially
stable with the exponential growth ratẽr ∈ [0, 1) (not
necessarily equal tor at this stage) and the parameterκ > 0,
under arbitrary switching. By slightly abusing notation, we
use y(t; y(0), σ) to denote the trajectory of the SLS (3)
starting fromy(0) underσ. Hence, we have, for anyy(0) ∈
R` and under anyσ, ‖y(t; y(0), σ)‖ ≤ κr̃t‖y(0)‖,∀ t. It thus
follows from the above proof for the “if” part that for any
initial statez = [yT(0); x̃T(0)]T and any switching sequence
σ, x̃e(z, σ) = x̃(0) + limt→∞

∑t−1
τ=0 Aσ(τ),21 y(τ ; y(0), σ)

such that the latter limit exists. Moreover,

‖z − xe(z, σ)‖

≤
∥∥y(0)

∥∥ +

∥∥∥∥∥ lim
t→∞

t−1∑
τ=0

Aσ(τ),21 y(τ ; y(0), σ)

∥∥∥∥∥

≤
∥∥y(0)

∥∥ + max
i
‖Ai,21‖

∞∑
τ=0

∥∥y(τ ; y(0), σ)
∥∥

≤ ∥∥y(0)
∥∥ + max

i
‖Ai,21‖

( ∞∑
τ=0

κ r̃τ
∥∥y(0)

∥∥
)

≤ ∥∥y(0)
∥∥ + max

i
‖Ai,21‖ κ

1− r̃

∥∥y(0)
∥∥.

Consequently, by the exponential semistability,
‖y(t; z, σ)‖ ≤ ‖x(t; z, σ)− xe(z, σ)‖ ≤ ρ rt‖z − xe(z, σ)‖
≤ ρ̃ rt‖y(0)‖ ≤ ρ̃ rt‖z‖, ∀ t ∈ Z+ for a constantρ̃ > 0.
Thus,r is the exponential growth rate of output stability.

Remark 3.1:The above theorem and the equations (3)–
(4) show that under the exponential stability assumption, the
SLS (1) can be thought of two dynamical processes: one
is the dynamics ofy(t) in the fiber direction governed by
the exponentially stable SLS (3) defined by{Ai,11}, and the
other is the dynamics of̃x(t) along the base direction that
evolves by integratingAσ(t),21 y(t). The latter dynamics will
move at worst in the pace proportional to‖y(t)‖ and thus
converge at the same exponential rate as that ofy(t) to zero.

B. Semistability Analysis via Strong Generating Functions

In view of Theorem 3.2, the maximal exponential growth
rate of the semistability of the SLS (1) is completely char-
acterized by that of the SLS (3). This growth rate, denoted
by r∗, may serve as a quantitative measure of robustness
of the semistability of the SLS (1). Indeed, the SLS (1) is
exponentially semistable if and only ifr∗ < 1.

In what follows, lety(t; v, σ) denote the trajectory of the
SLS (3) starting from the initial statev ∈ R` under the
switching sequenceσ. Certain quantities such as the joint



spectral radius and the Lyapunov exponent can determine
the maximal exponential growth rate of the SLS (3) and
therefore its exponential stability, under arbitrary switching.
We next characterize exponential stability and the maximal
exponential growth rate of the SLS (3) using the recently
proposed generating function approach [9], [12], [11], [13].

The strong generating functionG : R+ × R` → R+ ∪
{+∞} of the SLS (3) is defined asG(λ, v) := Gλ(v) =
supσ

∑∞
t=0 λt‖y(t; v, σ)‖2, v ∈ R`, λ ≥ 0, where the

supremum is taken over all switching sequencesσ. Analytic
properties of the generating functions can be found in [11].
The radius of strong convergenceof Gλ is defined asλ∗ :=
sup{λ > 0 : Gλ(v) < ∞, ∀ v ∈ R`}. The following theorem
characterizes the exponential stability of the SLS (3) viaλ∗:

Theorem 3.3:[11, Theorem 2] The SLS (3) is exponen-
tially stable under arbitrary switching if and only if its radius
of strong convergenceλ∗ > 1.

Moreover, as shown in [11, Corollary 1], the maximal
exponential growth rate of the SLS (3) is given byr∗ = 1√

λ∗
.

Hence, we obtain the following statement without proof:
Theorem 3.4:The SLS (1) is exponentially semistable if

and only if the radius of strong convergenceλ∗ of the SLS
(3) satisfiesλ∗ > 1. Further, the maximal exponential growth
rate of the semistability of the SLS (1) is(λ∗)−1/2.

To compute the generating functionGλ and the radius
of strong convergenceλ∗ for the SLS (3), we approxi-
mateGλ by a sequence of finite horizon problems. Specif-
ically, define Gk

λ(v) := maxσ

∑k
t=0 λt‖y(t; v, σ)‖2, v ∈

R`, k ∈ Z+. Then the functionsGk
λ(v) can be computed

recursively by G0
λ(v) = ‖v‖2 and Gk

λ(v) = ‖v‖2 +
λ maxi∈MGk−1

λ (Ai,11v), k = 1, 2, . . . . Based on the Bell-
man equation and the sub-additivity property, an iterative
numerical algorithm can be developed to compute increas-
ingly accurate estimates ofGλ on a grid of the unit sphere.
See [12] or [11, Section III] for details.

IV. SEMISTABILITY OF SWITCHED L INEAR SYSTEMS:
RANDOM CASE

The notion of semistability can be extended to a randomly
switched linear system that evolves at each time by a
subsystem matrix selected randomly from the set{Ai}i∈M
according to a stationary distribution. In this case, the system
state is a stochastic processX(t) with the dynamics

X(t + 1) = A(t)X(t), t = 0, 1, 2, . . . , (5)

where at each timet, A(t) ∈ Rn×n is drawn independently
randomly from the matrix set{Ai}i∈M with the probability
P{A(t) = Ai} = pi, i ∈ M, for some probability
distribution p := {pi}i∈M with

∑
i∈M pi = 1 and pi ≥ 0.

For a given probability distributionp, denote byX(t; z, p)
the stochastic trajectory of the random SLS (5) starting from
a deterministic initial stateX(0) = z, and denote byE the
expectation operator.

Definition 4.1: The random SLS (5) ismean square ex-
ponentially semistableif there exist constantsρ ≥ 0 and
r ∈ [0, 1) such that for anyz ∈ Rn, there exists a random

vectorXe(z, p) ∈ Ee such that

E
[‖X(t; z, p)−Xe(z, p)‖2] ≤ ρrt‖z − E [Xe(z, p)] ‖2,

(6)
for all t ∈ Z+. Here, the parameterr is called theexponential
growth rate of mean square semistability.

Define the output for the random SLS (5) as

Y (t) = OTX(t), (7)

where O is the projection matrix defined before. For a
given probability distributionp, denote byY (t; z, p) the
stochastic output trajectory of the SLS (5) starting from the
deterministic initial stateX(0) = z.

Definition 4.2: The random SLS (5) with the output (7)
is mean square output exponentially stableif there exist
constantsκ ≥ 0 and r̃ ∈ [0, 1) such that for anyz ∈ Rn,
E

[‖Y (t; z, p)‖2] ≤ κr̃t‖z‖2, ∀ t ∈ Z+. Here,r̃ is called the
exponential growth rate of mean square output stability.

We adopt the same (deterministic) state transformation
introduced in Section II. Therefore,A(t) can be written as

A(t) =
[

A11(t) 0
A21(t) In−`

]
, where at eacht, A11(t) ∈ R`×`

andA21(t) ∈ R(n−`)×` are drawn independently randomly
from {Ai,11} and{Ai,21}, respectively. Further, letXT(t) =
[Y T(t); X̃T(t)], andXT

Ee(t) = [0; X̃T(t)]. Hence,

Y (t + 1) = A11(t)Y (t), (8)

and

X̃(t) = X̃(0) +
t−1∑
τ=0

A21(τ)Y (τ). (9)

A. Semistability and Output Stability

The following theorem, as a counterpart of Theorem 3.2,
asserts the equivalence of mean square exponential semista-
bility and mean square output exponential stability.

Theorem 4.1:The random SLS (5) is mean square expo-
nentially semistable if and only if the SLS (5) with the output
(7) is mean square output exponentially stable. Further, a
constantr ∈ [0, 1) is the exponential growth rate of mean
square exponential semistability if and only if it is that of
mean square output exponential stability.

Proof: “If”. Let κ > 0 and r̃ ∈ [0, 1) be such that
for any z ∈ Rn, E

[‖Y (t; z, p)‖2] ≤ κr̃t‖z‖2 for all t ∈
Z+. SinceA11(t) in (8) is identically distributed, the matrix
V := E[A11(t)] is independent oft. We claim thatV is
a stable matrix in the discrete-time sense, i.e., the spectral
radius ofV is strictly less than 1. To see this, note that the
mean square exponential stability assumption implies that
E[‖Y (t; z, p)‖2], henceE[Y (t; z, p)], converges to zero as
t →∞, for all z. SinceE[Y (t+1; z, p)] = V ·E[Y (t; z, p)],
the spectral radius ofV must be less than 1.

Given an initial statez and a probability distributionp,
let X̃(t; z, p) denote the stochastic state trajectory ofX̃(t)
in (9) and defineL := maxi∈M ‖Ai,21‖. For arbitrary
0 ≤ s < w, ‖X̃(w; z, p) − X̃(s; z, p)‖2 ≤ L2‖Y (s; z, p) +
· · · + Y (w − 1; z, p)‖2 ≤ L2

( ∑w−1
k=s ‖Y (k; z, p)‖2 +



2
∑

s≤j<k≤w−1 Y T(j; z, p) Y (k; z, p)
)

. SinceY (k; z, p) =
A11(k − 1) · · ·A11(j)Y (j; z, p) for any j < k, we have

E
[
Y T(j; z, p)Y (k; z, p)

]

= trace
(
E[A11(k − 1) · · ·A11(j)]

E[Y (j; z, p)Y T(j; z, p)]
)

= trace(V k−jE[Y (j; z, p)Y T(j; z, p)])
≤ ανk−j E[‖Y (j; z, p)‖2]

for some constantsα > 0 andν ∈ [0, 1) dependent onV and
its order` only. Here the last step follows from the fact that
V is stable. In view of the mean square exponential stability
of Y (t; z, p), we further have

E
[
‖X̃(w; z, p)− X̃(s; z, p)‖2

]

≤ L2
( w−1∑

k=s

κr̃k‖z‖2 + 2
∑

s≤j<k≤w−1

ανk−j κr̃j‖z‖2
)

≤ κL2
( r̃s

1− r̃
+ 2α

∑

s≤j<k≤w−1

νk−j r̃j
)
‖z‖2.

Using the pattern of the summation above, we have

∑

s≤j<k≤w−1

νk−j r̃j = r̃s−1
w−s∑

i=1

r̃i
( w−s+1−i∑

k=1

νk
)

≤ r̃s−1 ν

1− ν

w−s∑

i=1

r̃i ≤ r̃s ν

(1− ν)(1− r̃)
.

This implies that

E
[
‖X̃(w; z, p)− X̃(s; z, p)‖2

]
≤ L̃ r̃s ‖z‖2, (10)

where L̃ > 0 is a constant independent ofw, s and z. By
letting s = 0, we conclude thatX(t; z, p) has bounded
second moment. Hence,{X̃(t; z, p)}t=0,1,... is a Cauchy
sequence of random vectors in theL2-space with respect
to the underlying probability measure. Since theL2-space
is complete,X̃(t; z, p) converges in mean square to some
random vectorX̃e(z, p) (with the finite second moment)
as t → ∞. Let z̃ := z − [

0;E[X̃T
e (z, p)]

]T
. Hence,

Y (t; z̃, p) = Y (t; z, p) (in distribution), and this, together

with (9), shows thatX̃(t; z̃, p) = X̃(t; z, p)− E
[
X̃e(z, p)

]
.

Further, ast → ∞, X̃(t; z̃, p) converges to the random
vector X̃e(z̃, p) = X̃e(z, p) − E[X̃e(z, p)] (with zero mean)
in mean square. LetXT

e (z) = [0; X̃T
e (z)] and XT

e (z̃, p) =
[0; X̃T

e (z̃, p)]. Then E
[‖X(t; z, p)−Xe(z, p)‖2] =

E
[‖X(t; z̃, p)−Xe(z̃, p)‖2] = E

[‖Y (t; z̃, p)‖2] +
E

[‖X̃(t; z̃, p) − X̃e(z̃, p)‖2]. By letting s = t,
w = ∞, and replacing z by z̃ in (10), we see
E

[
‖X̃(t; z̃, p)− X̃e(z̃, p)‖2

]
≤ L̃r̃t‖z̃‖2. Along with

the mean square output exponential stability, we obtain
E

[‖X(t; z, p)−Xe(z, p)‖2] ≤ (κ + L̃)r̃t‖z̃‖2 ≤
(κ + L̃)r̃t

∥∥z − E[Xe(z, p)]
∥∥2

for all t and z. This
yields the mean square exponential semistability and shows
that the exponential growth ratẽr of the mean square output
stability is also that of the mean square semistability.

“Only if”. Suppose that the random SLS is mean square
exponentially semistable but not mean square output ex-
ponentially stable. In light of (8)–(9), we deduce, via the
equivalence of mean square asymptotic stability and mean
square exponential stability of random jumped linear systems
[14, Theorem 4.1.1], that the random SLS (8) is not mean
square asymptotically stable, leading to a contradiction via
a similar argument of Theorem 3.2.

To complete the proof, we only need to show that
the exponential growth rater ∈ [0, 1) of mean square
exponential semistability is that of mean square output
exponential stability. By observing the above “only if”
part, we deduce thatE[‖y(t; z, p)‖2] ≤ κ̃r̃t‖z‖2 for
all t and z, for some constants̃κ > 0 and r̃ ∈ [0, 1)
(not necessarily equal tor at this stage). It follows
from the above “if” part that X̃(t; z, p) converges to
X̃e(z, p) in mean square ast → ∞. By (9), this further
implies that

∑t
τ=0 A21(τ)Y (τ ; z, p) also converges

in the L2-space ast → ∞. Consequently,
∥∥∥X̃(0) −

E
[
X̃e(z, p)

]∥∥∥
2

=
∥∥∥E

[∑∞
τ=0 A21(τ)Y (τ ; z, p)

]∥∥∥
2

≤
E

[∥∥∥∑∞
τ=0 A21(τ)Y (τ ; z, p)

∥∥∥
2]

≤ E
[
‖X̃e(z, p) −

X̃(0)‖2
]

≤ L̃‖z‖2, where the last inequality follows
from (10) by lettings = 0 and w = ∞. Finally, recalling
thatXe(z, p) = [0; X̃T

e (z, p)]T, we haveE
[‖Y (t; z, p)‖2] ≤

E
[‖X(t; z, p)−Xe(z, p)‖2] ≤ ρ rt‖z − E [Xe(z, p)] ‖2 ≤

ρ rt
(
‖Y (0)‖2 + L̃‖z‖2

)
≤ ρ̃ rt‖z‖2, ∀ t ∈ Z+ for some

constant̃ρ > 0. This leads to the desired exponential growth
rate for the mean square output exponential stability.

B. Semistability Analysis via Mean Generating Functions

Theorem 4.1 allows us to determine the mean square
exponential semistability and its maximal exponential growth
rate via the mean generating function of the random SLS (8).

Let Y (t; v, p) denote the stochastic state trajectory of the
random SLS (8) starting from the deterministic initial state
v ∈ R` under the switching probability distributionp. The
mean generating functionF : R+ × R` → R+ ∪ {+∞}
of the random SLS (8) is defined asF (λ, z) = Fλ(z) :=
E

[∑∞
t=0 λt‖Y (t; v, p)‖2] =

∑∞
t=0 λtE

[‖Y (t; v, p)‖2] . The
mean generating functionFλ shares the similar properties
of the strong generating functionGλ, and a collection of its
properties can be found in [11, Proposition 13]. The radius of
convergence ofFλ is defined asλ∗p := sup{λ ≥ 0 : Fλ(v) <
∞, ∀ v ∈ R`}. This quantity can be used to determine the
mean square exponential stability as shown below.

Lemma 4.1:[11, Theorem 4] The random SLS (8) is
mean square exponentially stable if and only ifλ∗p > 1.

It also follows from a similar argument of [11, Corollary
1] that(λ∗p)−

1
2 is the maximal exponential growth rate of the

random SLS (8). In view of this and Theorem 4.1, we have:
Theorem 4.2:The random SLS (5) is mean square expo-

nentially semistable if and only if the radius of convergence
of the random SLS (8) satisfiesλ∗p > 1. Further, the maximal
exponential growth rate of the mean square semistability of
the SLS (5) is(λ∗p)−1/2.



V. A PPLICATION TO SENSORNETWORK ALLOCATION

ALGORITHMS

We apply the stability results developed in the preceding
sections to the consensus problem of distributed sensor
networks under possible topology switching. Specifically,
consider a network characterized by a strongly connected
directed graphG = (V, E) consisting of a set of nodes
V = {1, . . . , q} and a set of edgesE ⊆ V×V representing the
communication links between two nodes, where each edge
(i, j) ∈ E is an ordered pair of distinct nodes. The set of
neighbors of nodei is denoted byNi = {j ∈ V : (i, j) ∈ E}.
Let xi(t) ∈ R denote the number of mobile sensors that node
i has at timet. Those mobile sensors are used to collect
information at nodei and travel along the graph network
based on some algorithms.

At the initial time, the number of mobile sensors at node
i is given byxi(0). During thet-th time window, suppose
node i contacts a neighboring nodej to see how many
mobile sensors both nodes have. Then at this time, both
nodes will relocate their mobile sensors in such a way that
the number of mobile sensors at each node is proportional
to a value defined by a certain merit function. Obviously
nodei may have more than just one neighboring node. When
the execution command is sent out for action, these mobile
sensors start moving together so that more mobile sensors
will aggregate at some location of interest. This movement is
a coordinated motion in the sense that these mobile sensors
will self-organize their collective moves by updating their
information based on neighbor-to-neighbor interaction.

Due to possible link failures and link creations of com-
munications between sensors, the sensors may connect or
disconnect with each other via wireless communications
during the movement. Hence, the communication topology
for this mobile sensor network is not fixed, leading to a
switching topology. This calls for a distributed, iterative
allocation algorithm to efficiently redistribute mobile sensors
in a topologically changing graph. By viewing the iteration
process of such an algorithm as a discrete-time, switched
linear system, the stability results developed before can be
used to address the semistability and convergence rate of an
algorithm under arbitrary switching and random switching,
so that the growth rate of the proposed algorithm can be
established on a solid theoretical foundation.

Let x(0) = [x1(0), . . . , xq(0)]T be the initial vector
and 1Tx(0) be the total number of mobile sensors for the
network, where1 := [1, . . . , 1]T ∈ Rq. Then an iterative
allocation algorithm for updatingxi(t) is given by the form

xi(t + 1) = Wσ(t),i,ixi(t) +
∑

j∈Ni

Wσ(t),i,jxj(t), (11)

or, equivalently, in the vector formx(t + 1) =
Wσ(t)x(t), t = 0, 1, 2, . . . , whereσ(t) ∈ Σ := {1, . . . , m}
represents the switching sequence andWk ∈ Rq×q, k ∈
Σ, are the subsystem dynamics matrices. Here we set
Wσ(t),i,j = 0 if j 6∈ Ni. We assume there is no sensor
dropping or adding to the network. Thus, the design aim

here is to identifyWσ(t) and its convergence rate so that (11)
exponentially converges toxe as t →∞, wherexe denotes
the final distribution pattern of mobile sensors among the
sites, which is a function ofx(0) (1Txe = 1Tx(0)).

A. Applications to Gossip Algorithms

We analyze mean square exponential semistability of ran-
dom gossip algorithms proposed in [20] using the semistabil-
ity techniques. Consider an asynchronous randomized gossip
algorithm described as follows. Each node has a clock that
ticks according to a rate 1 Poisson process. Thus, the random
inter-tick times at each node are exponentially distributed,
and independent across nodes and over time. We discretize
time according to clock ticks since these are the only times
at which the value ofX(t) changes. In thet-th time slot,
let nodei’s clock tick and let it contact some neighboring
nodej with probabilitypij . At this time, both nodes set their
values equal to the average of their current values. Formally,
let X(t) denote the vector of values at the end of the time
slot t. ThenX(t) is updated by the algorithm

X(t + 1) = W(t)X(t), t = 0, 1, 2, . . . , (12)

whereW(t) is a random matrix drawn independently from
the set{Wij} with Wij = Iq − (ei − ej)(ei − ej)T/2 and
with probability pij/q (the probability that thei-th node’s
clock ticks is1/q, and the probability that it contacts node
j is pij). Hereei ∈ Rq is a vector with thei-th component
equal to 1 and the rest equal to 0. In other words,P{W(t) =
Wij} = pij

q , i, j = 1, . . . , q, i 6= j.

It is easy to verify that1TWij = 1T and Wij1 = 1
for all i, j such that1TW(t) = 1T, ∀ t. Further, Ee =
span{1} andP = OOT = Iq − 1

q 11T for a suitable matrix
O. Therefore, for any initial statez, it can be shown via direct
calculation that the equilibriumXe(z) is deterministic and is
given by11Tz/q and thatXE⊥e (t; z, p) = X(t; z, p)−Xe(z).
Consequently, the following results hold.

Corollary 5.1: The gossip algorithm (12) is mean square
exponentially semistable if and only if the auxiliary system
(12) and (7) is mean square output exponentially stable.

Corollary 5.2: The gossip algorithm (12) is mean square
exponentially semistable if and only if the radius of conver-
gence for the auxiliary system (12) and (7) satisfiesλ∗p > 1.

Proof: This follows directly from Theorem 4.2.
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