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Abstract—This paper investigates semistability of discrete- communcation link failures/creations. Hence, the iteration
time, switched linear systems under both deterministic and process of an algorithm is subject to switching dynamics
random switching policies. The notion of semistability pertains and thus can be formulated as a discrete-time. switched

to a continuum of initial state dependent equilibria and has i t T luate th f f terati
found wide applications such as consensus problems in multi- ''N€ar System. 10 evaluate the periormance o an iterative

agent systems. The main contributions of the paper are three algorithm, e.g., convergence and its convergence rate, it
folds. First, we show that exponential semistability on acommon is essential to develop efficient techniques to characterize
equilibrium space is equivalent to output exponential stability —semistability and (exponential) growth rate of the related
of the switched linear system with a suitably defined output, switched linear system. This sparks our study in this paper.

under both arbitrary and random switchings. Further, their . . . . .
convergence rates are shown to be identical. Second, it is Related semistability results in the literature include [16],

shown that output stability and its convergence rates can be [17], [18], [19]. In particular, the references [18], [19] study
efficiently characterized via the recently developed generating semistability of continuous-time, switched linear systems in
function approach. Third, we consider algorithm development  the Lyapunov framework. Distinct from this perspective, we
and analysis of resource allocation schemes for topologically  estigate semistability and characterize growth rates using

changing, distributed sensor networks. We formulate an it- . . . .
eration process of such an algorithm as a switched linear th€ generating function approach recently introduced in [9],

system, and characterize its convergence using the obtained [11], [12], [13]. Informally speaking, generating functions
semistability results. are certain power series with coefficients determined from

systems trajectories under switching policies. Their conver-
gence radii characterize system growth rates which can be
Semistability extends the regular notion of stability perecomputed via effective algorithms developed in [11]. In this
taining to a single, isolated equilibrium. Roughly speakingpaper, we convert the semistability problem into an equiva-
for a dynamical system with a continuum of equilibria,lent, projection based, output stability problem, under both
semistability implies that any trajectory converges to a (posteterministic and random switchings. The latter problem can
sibly different) stable equilibrium that is dependent on itde efficiently handled via the generating function approach.
initial state. Semistable dynamics have been found in various The rest of the paper is organized as follows. In Section I,
fields, e.g., mechanical systems [1], [2], network systemse introduce semistability and output stability notions. Sec-
[15], [3], biomedical systems [4], [5], chemical kinetics [6],tion 11l focuses on semistability analysis and generating func-
[7], etc, to cite but a few examples. tion characterization under arbitrary switching. Randomly
Motivated by algorithm design and analysis of distributedswitched linear systems and their generating functions are ad-
multi-agent sensor networks, we perform semistability anatiressed in Section IV. Finally, the application to distributed
ysis for a class of switched linear systems under differersiensor networks is treated in Section V.
switching policies. A resource allocation algorithm for a
distributed sensor network is an iteration process that can bell. SEMISTABILITY OF SWITCHED LINEAR SYSTEMS
trgated asa discrete-time “”e"?“ system. A notable fgature Ofp discrete-time, (autonomous) switched linear system
this dynamical process is that it may possess a continuum gLS) onR” is:
initial state dependent equilibria. For example, a consensus
r_eaphed in. a distﬁb_qted, mu_lﬁ-agent network is an equi- o(t+1) = A,z(t), t=0,1,..., (1)
librium relying on initial conditions [15]. Further, a sensor
network often has a switching topology because of possiblhere its stater(t) € R" evolves by switching among a
finitely family of linear dynamics indexed by the finite index
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subspace. := ;e N (A — I,), and let&,- be the or- of dimension?. Let O € R™**("~9 be the matrix whose
thogonal complement &, in R™. Obviously,&. is invariant ~ columns constitute an orthonormal basis&f and define
under {4;};erm. Hence eachr, € & is an equilibrium the invertible matrixT := [0 O]T € R"*" and the state
of the SLS (1) under an arbitrary switching sequence. Theansformatior(¢) = Tx(t). In the new coordinates; =
following standing assumption asserts that b6thand &+ R* x {0}, & = {0} x R(=8) and the relevant matrices

are nontrivial subspaces &". can be written a®® = O™7"' = [, 0], P =00" =
Assumption 2.1The dimension and codimension 6f 17, (] - ) Ain O .
are both at least one. [ 0}’ A =TAT = g"m I, for all i € M.

Hence, there exists at least ohe M such thatd; # I,,. ~ —_ ~
Definition 2.1: The SLS (1) isexponentially semistable FgrthermoreT,r(t? - [yT(t)T; IT(t)]T’.iT: ly* (0): 2% (O)),
under arbitrary switching if there exist constapts> 0 and Ted (*) - ly™(¢); 0], and xf'? (t) = [0;27(#)], wherey(t) <
r € [0,1) such that for any € R” and under any switching R’ andZ(t) € R~ satisfy
sequence, there exists a (unique).(z, o) € & (dependent -7
on z and o) such that||z(t; z,0) — xe(z,0)| < prilz — y(t+1) = Ao ia19(0), )
Zo(2,0)||, Vt € Z. Here,r is called theexponential growth and
rate of semistabilitunder arbitrary switching). t—1
It is known that the asymptotic stability and exponential Z(t) =2(0) + Z 10(7)721 y(7). 4
stability of switched linear systems under arbitrary switching =0
are equivalent [8], [9]. Next, we show that the same holds fqqote that (3) yields a switched linear system defined by
semistability and exponential semistability of switched lineagyhsystem matriceé&u} and is decoupled from (4). See
systems. Before we state this result, the following definitioRemark 3.1 for the geometry of the above dynamics under
of semistability for switched linear systems is needed.  exponential stability conditions. Since the state transforma-
Definition 2.2: The SLS (1) issemistableunder arbitrary  tion does not affect the semistability and output stability as
switching if there exists a clags_ functiona(., -) such that  \yel| as their growth rates, we consider the switching dynam-
anyz € R" and under any, there existsrc(z,0) € & such  jcs (3)—(4) throughout the rest of the paper by dropping the
that||z(t; 2, 0) —ze(2,0)|| < a(llz—ze(2,0)[,1),V t € Z1.  notation™ in the equations.
The following lemma, whose proof is omitted, states the

semistability equivalence under arbitrary switching. [Il. SEMISTABILITY OF SWITCHED LINEAR SYSTEMS:
Lemma 2.1:The SLS (1) isexponentially semistablen- DETERMINISTIC CASE

der arbitrary switching if and only if it is semistable under |n this section, we study semistability under deterministic,

arbitrary switching. arbitrary switchings.

To characterize the exponential semistability and conver- o -
gence rate of (1), we project the dynamics o@tp. Let A. Semistability and Output Stability
O € R be the matrix whose columns constitute an We firstly show the equivalence of exponential semistabil-
orthonormal basis of - (this implies tha€! is of dimension ity and output exponential stability. To this end, we introduce
0), and letP = OOT € R™*™ be the matrix representing some notions and a technical result that is of its own interest.
the orthogonal projection ont&;-. Clearly, P is idempotent, This result asserts the equivalence of convergence, asymp-
i.e., P2 = P. For a given trajectoryz(t), let z¢ (t) and totic and exponential stability for general switched linear
zg1(t) denote the (unique) orthogonal projectionsadt)  systems under arbitrary switching. Specifically, consider a
onto & and &}, respectively. That ispe1 (t) = Pxz(t) and  switched linear system defined by a finite family of matrices.
xg (t) = [I, — Plz(t). Define the output of the SLS (1) We call the switched linear systetonvergentnder arbitrary
using the projection matri: switching if for any initial statez, z(t; z, o) converges to the

T origin ast — oo under any switching sequenee
y(t) =0"a(t), ¢=0,1,2,... 2) Theorem 3.1:A switched linear system is convergent un-

Then, at anyt, regardless of the current mod€t), ||y(¢)|| der arbitrary switching if and only if it is exponentially stable
is the Euclidean distance aft) to the equilibrium subspace under arbitrary switching.
E.. In the following, denote by (¢; z, o) the output trajectory Proof: It suffices to prove the “only if”. Consider a
of the SLS (1) starting from the initial conditionunder the SLS with the matrice§ A;}7,. The following claim holds:
switching sequence. Claim: If there existsT, € N (independent ofz and

Definition 2.3: The SLS (1) with the output (2) isutput o) such that for anyz with ||z|| = 1 and under any
exponentially stableinder arbitrary switching if there exist switching sequence, there existst, € [0,7.] such that
constantss > 0 and7 € [0,1) such that for any: € R*, |z(t.;2,0)|] < 0.5, then the SLS is exponentially stable
ly(t; z,0)|| < w7z, Vt € Z4, under any switching under arbitrary switching.
sequencer. Here, the parametét is called theexponential Let x := Zf;o(maxi | 4;]|)?. The claim can be shown
growth rate of output stabilitfunder arbitrary switching).  via induction that under the given conditionis;(¢; z, o) || <

To simplify the subsequent development, we introduce(0.5)%/7<~1||z|, V¢ € Z, for any z and under any switch-
a coordinate transformation as follows. Recall ti#at is ing sequence. This thus yields the exponential stability.



Now suppose that the SLS is convergent but not expde the origin ofR¢, contradicting the exponential semistabil-
nentially stable, under arbitrary switching. It follows fromity of the SLS (1) under arbitrary switching.
the above claim that there exist an initial state sequenceFinally, we show that a constamt< [0,1) is the expo-
{z} with ||zx|| = 1, an increasing time sequen{&;,} with  nential growth rate of semistability if and only if it is that of
limg_ o, Tx, = oo, and a sequence of switching sequencesutput stability. It suffices to consider the “only if” part as the
{0} such that for eaclk, ||x(t;zk,0,)]] > 0.5 for all other part has been shown before. Suppose that the SLS (1)
t = 0,1,---,T,. Using a similar argument as that ofis exponentially semistable with the exponential growth rate
[9, Theorem 3], we can construct an initial stateand a r € [0,1), i.e., for anyz € R" and under any, there exists
switching sequence such that||xz(¢; z,0)|| > 0.5 for all t.  z.(z,0) € & such that|z(t; z,0) — ze(2,0)|| < prt||z —
This is contradictory to the convergence of the SLS. B z.(z,0)], V¢ with p > 0. This implies, in light of the proof
Theorem 3.2:The SLS (1) is exponentially semistablefor the “only if” above, that the SLS (3) is exponentially
under arbitrary switching if and only if the SLS (1) with stable with the exponential growth rate € [0,1) (not
the output (2) is output exponentially stable under arbitrarfiecessarily equal to at this stage) and the parameter 0,
switching. Further, the exponential growth rates of semistander arbitrary switching. By slightly abusing notation, we
bility and output stability are equivalent, namely, a constaritse y(t; y(0),o) to denote the trajectory of the SLS (3)
r € [0,1) is the exponential growth rate of semistability ifstarting fromy(0) undero. Hence, we have, for any(0) €
and only if it is that of output stability. R and under any, ||y (t; (0), 0)|| < &7||y(0)]|, V¢. It thus
Proof: “If”. Suppose x > 0 and 7 € [0,1) ex- follows from the above proof for the “if” part that for any
ist such that for any: € R™ and any switching se- initial statez = [y*(0); Z*(0)]* and any switching sequence
quencea, |[y(t;z,0)| < wit||z| for all t € Z,. For 0 Te(2,0) = T(0) +limi—oo 32 _g Ag(r),21 4(734(0), )
a initial statez € R™ and switching sequence, it fol- such that the latter limit exists. Moreover,
lows from (4) that, for anys,w € Z, with s < w,

— Z — Tel\Z,0
||§(w;z,a) _%(S;ZaU)H = ||Z¢):sl Aa(‘r),Ql y(T;Z,O')H S H ( )”

t—1
S ol - ly(mz o)l < masi(l[Aiall) (57 + < O + || lim Y Agiry 21 y(39(0),0)
co RO 2] < maxi(HAi721||)m?‘“/(l—?)HzH. Hence, =0 oo
for all s,w sufficiently large (no matter how far they < Hy(())”-|—max||Ai’21HZHy(T;y(O)7U)H

are apart),||z(w; z,0) — Z(s;z,0)| is sufficiently small. —0
This shows that{z(t;z,0)} is a Cauchy sequence in

()| + max [ 4i0| (S w7 [l5(0)])

R”~¢ and thus converges iR" ¢ (as R** is com- <
plete). Let Z.(z,0) := lim; .o Z(t;2,0). Since R"* =0
is closed, Z.(z,0) € R"~‘ Further, letz.(z,0) = < |y +max [ Ai 21| = [ly(0)]-
0;2X(z,0)]T € & and Z = 2 — x.(2,0). It fol- ’ -
B L~ _|yltz0)| Consequently, by the exponential semistability,

ous fom @)-(¢) tat 50 = L0 It 2,0)] < lla(ti . 0) = (2, )] < prf]l = (2,0

0 . s B . < pri|y(0)|| < prt|z||,Vt € Z4 for a constanty > 0.
To(z,0)| This shows thatly(t: %, o)l| = [ly(t;2,0)ll = ;s 1 is the exponential growth rate of output stabilim
kT||Z||. Moreover,||Z(t; Z,0)|| = |2(¢; 2, 0) — Ze(2,0)|| = Remark 3.1:The above theorem and the equations (3)—

| 3202 Ao(r) 1 y(73 2, g)H < maXi(HAi,an)ﬁ(Ft 4+7t+1 4 (4) show that under the exponential stab_ility assumption, the
B I _ SLS (1) can be thought of two dynamical processes: one
"‘)HZH < max; [[Ai21[[$55 [[Z]l, V¢ Inview of the above ig the dynamics ofy(¢) in the fiber direction governed by
results and||z(t;z,0)[ < [ly(t;z,0)[ + [[Z(t;Z,0)[, we  the exponentially stable SLS (3) defined ft; 11}, and the
obtain a constanp > 0, independent ot and s, such that other is the dynamics df(¢) along the base direction that
lx(t; 2, 0) = we(z,0)| = l|lz(t; Z,0)|| < p7||Z]l = p7*llz —  evolves by integratingl, ;) 21 y(t). The latter dynamics will
ze(2,0)||,Vt € Z,. This gives rise to the exponential move at worst in the pace proportional ffg(¢)|| and thus

semistability and shows that the exponential growth rate converge at the same exponential rate as thg(©fto zero.
of output stability is also that of exponential semistability.

“Only if". We prove this by contradiction. Suppose thatB- Semistability Analysis via Strong Generating Functions
the SLS (1) is exponentially semistable but not output In view of Theorem 3.2, the maximal exponential growth
exponentially stable, under arbitrary switching. It is seen thaaite of the semistability of the SLS (1) is completely char-
the output trajectory(¢) is equivalent to the state trajectory acterized by that of the SLS (3). This growth rate, denoted
of the SLS (3) defined by the subsystem matri¢els 11 }. by r*, may serve as a quantitative measure of robustness
Hence, if the original SLS (1) is not output exponentiallyof the semistability of the SLS (1). Indeed, the SLS (1) is
stable under arbitrary switching, neither is the SLS (3). Wexponentially semistable if and only if* < 1.
deduce from Theorem 3.1 that the SLS (3) is not convergentIn what follows, lety(¢; v, o) denote the trajectory of the
under arbitrary switching. Hence, there exist R™ and a SLS (3) starting from the initial state ¢ R’ under the
switching sequence such thaty(¢; z, o) does not converge switching sequence. Certain quantities such as the joint



spectral radius and the Lyapunov exponent can determinector X.(z,p) € &, such that
the maximal exponential growth rate of the SLS (3) and ) 5 ‘ 5
therefore its exponential stability, under arbitrary switching. E [ X(52,p) = Xe(z,p)I*] < pr¥llz = E[Xe(z,p)] | '
We next characterize exponential stability and the maxim?l I 7. H th teri lled th (t')l
exponential growth rate of the SLS (3) using the recentlgratht et +'f ere, the parame e_ns{ Ct?l'? exponential
proposed generating function approach [9], [12], [11], [13]: rowth rate of mean square semistabuiity
The strong generating functio? : R, x RY — R, U Define the output for the random SLS (5) as
{400} of the SLS (3) is defined a&(\,v) := G\(v) = Y (t) = OTX(¢), 7)
sup, Yoo Myt 0)|?, v € RY X > 0, where the _ o _ _
supremum is taken over all switching sequeneesnalytic Where O is the projection matrix defined before. For a
properties of the generating functions can be found in [11fiven probability distributionp, denote byY(;z,p) the
The radius of strong convergenas G is defined as\* := stochastic output trajectory of the SLS (5) starting from the
sup{\ > 0: G (v) < 00,V v € R‘}. The following theorem deterministic initial statex (0) = . .
characterizes the exponential stability of the SLS (3)via  Definition 4.2: The random SLS (5) with the output (7)
Theorem 3.3:[11, Theorem 2] The SLS (3) is exponen-iS Mean square outBut exponentially stabifethere exist
tially stable under arbitrary switching if and only if its radiusconstantss > 0 andr € [0,1) such that for any: € R",

of strong convergenca* > 1. E [||Y(t;;,p)\\2} < k7||2||?, Vt € Zy. Here, T is called the
Moreover, as shown in [11, Corollary 1], the maximal€Xponential growth rate of mean square output stability
exponential growth rate of the SLS (3) is giveniby= —— We adopt the same (deterministic) state transformation

introduced in Section Il. Thereforé\.(¢) can be written as

Au(t) 0 oxe

{ Aoi(t) Iy ,where ateach, A;;(t) e R

and Ay (t) € ROt gre drawn independently randomly
from {4, 11} and{4; 21 }, respectively. Further, leX T (¢) =

[YT(t); XT(t)], and X £ (t) = [0; X7 ()]. Hence,

Hence, we obtain the following statement without proof:
Theorem 3.4:The SLS (1) is exponentially semistable if A(¢) =
and only if the radius of strong convergente of the SLS
(3) satisfies\* > 1. Further, the maximal exponential growth
rate of the semistability of the SLS (1) {8*)~1/2.
To compute the generating functiad, and the radius

of strong convergence\* for the SLS (3), we approxi- Y(t4+1) =AY (t), (8)
mate G, by a sequence of finite horizon problems. Specif-

ically, define G%(v) := max, Y5 A|ly(t;v,0)|%,0 € and

RY k € Z,. Then the functionsz5(v) can be computed _ _ t—1

recursively by GJ(v) = |jv]? and Gk(v) = |v]? + X(t) = X(0)+ > Asi(1)Y (7). ©)
Amax;erm Gy (Ai11v), k=1,2,.... Based on the Bell- =0

man equation and the sub-additivity property, an iterativ. Semistability and Output Stability
numerical algorithm can be developed to compute increas- 1o following theorem, as a counterpart of Theorem 3.2,

ingly accurate estimates &f, on a grid of the unit sphere. ,qqerts the equivalence of mean square exponential semista-
See [12] or [11, Section Il for details. bility and mean square output exponential stability.

Theorem 4.1:The random SLS (5) is mean square expo-
nentially semistable if and only if the SLS (5) with the output
(7) is mean square output exponentially stable. Further, a

The notion of semistability can be extended to a randomlgonstantr € [0, 1) is the exponential growth rate of mean
switched linear system that evolves at each time by sguare exponential semistability if and only if it is that of
subsystem matrix selected randomly from the {séf};c A«  mean square output exponential stability.
according to a stationary distribution. In this case, the system Proof: “If". Let x > 0 and7 € [0,1) be such that

IV. SEMISTABILITY OF SWITCHED LINEAR SYSTEMS:
RANDOM CASE

state is a stochastic proce&qt) with the dynamics for any z € R", E[||Y(t;2,p)|?] < wi|z]? for all ¢ €
Z.. SinceA;;(¢) in (8) is identically distributed, the matrix
X(t+1)=A0X({1), t=012..., G v .= E[A11(¢)] is independent of. We claim thatV is

where at each time, A(t) € R™*" is drawn independently a stable matrix in the discrete-time sense, i.e., the spectral

randomly from the matrix sefA; }ic v with the probability radius of V' is strictly less than 1. To see this, note that the
P{A(t) = A} = pi, i € l/\/ZIEA?or some probability mean square exponential stability assumption implies that
ot o o ’ _ E[|Y (¢; z,p)||?], henceE[Y (¢; z,p)], converges to zero as
distributionp := {p;}iem with >_._, p; = 1 andp; > 0.
: T iy i M - t — oo, for all z. SinceE[Y (t +1; z,p)] = V-E[Y (¢; 2, p)],
For a given probability distributiop, denote byX (¢; z, p) | radius of b 7I ’ than 1 1
the stochastic trajectory of the random SLS (5) starting frorwe _spectra racius must befess than L.~
a deterministic initial stateX(0) = z, and denote byE the Given an initial statez and a probability distributior,
expectation operator ’ let X (¢; z,p) denote the stochastic state trajectoryoft)
Definition 4.1: The random SLS (5) isnean square ex- " (9) and dgflngL = I;?aXfEM H’;l’il H]i2 F;/)r f':\rb|trary
ponentially semistabléf there exist constanty > 0 and 0 =5 < W ”X(w’z’pl* (S”;’p)Hw_—l I (S’Z’@ +
r € [0,1) such that for any: € R", there exists a random *- + Y(w — Lzp)|® < L ( k=s 1Y (K 2,p)|° +



2 Zs§j<k§w—1 YT(]a Zap) Y(ka va)> ' SinceY(k; Z7p) -
Aj(k—1)---A11())Y(4; 2,p) for any j < k, we have
E YT (j;2,p) Y (k; z,p)]
= tracgE[A11(k—1)--- A11(j)]
E[Y (j; 2,p)Y " (j; 2,p)])
tracg V" IE[Y (j; 2,p)Y " (j; 2, p)])
a* T E[|Y (j; 2, p)I|°]

for some constants > 0 andv € [0, 1) dependent oY’ and

IN

“Only if”. Suppose that the random SLS is mean square
exponentially semistable but not mean square output ex-
ponentially stable. In light of (8)-(9), we deduce, via the
equivalence of mean square asymptotic stability and mean
square exponential stability of random jumped linear systems
[14, Theorem 4.1.1], that the random SLS (8) is not mean
square asymptotically stable, leading to a contradiction via
a similar argument of Theorem 3.2.

To complete the proof, we only need to show that
the exponential growth rate € [0,1) of mean square

its order¢ only. Here the last step follows from the fact thatxPonential semistability is that of mean square output
V is stable. In view of the mean square exponential stabilitgxPonential stability. By observing the above “only if

of Y(¢; z,p), we further have

E[I1X (w: 2, p) = X(s:.2,p)]

w—1

< L2( Sl 2 S H’fﬂ'nzn?)
k=s s<j<k<w-1
s
< KL2(17;?+205 > VI )2
s<j<k<w-1
Using the pattern of the summation above, we have
) w—s w—s+1—1
DI S (D D%
s<j<k<w-1 i=1 k=1
Voo~ v
< ~s—1 ~i < 78 .
=T T LT =T a o ya oy

i=1
This implies that

E[IX(w:zp) - X(s:2p)|2] < |22 (20)
where L > 0 is a constant independent af, s and z. By
letting s = 0, we conclude thatX(t;z,p) has bounded
second moment. Hence X (¢;z,p)}i=0.1,... IS a Cauchy

yeen

sequence of random vectors in t&-space with respect

to the underlying probability measure. Since théspace

part, we deduce thafE[|y(t;z,p)||?)] < &rt||z||*> for
all ¢ and z, for some constant& > 0 and 7 € [0,1)
(not necessarily equal to- at this stage). It follows
from the above “if” part thatX(t;z,p) converges to
Xe(z,p) iIn mean square as — oco. By (9), this further
implies  that Zizo Ao (T)Y(1;2,p) also converges

in the L2-space ast — oo. Consequently,H)N((O) —
o = [ESeaneresa][ <

2 ~

E[| S0 Anmy(mzn)|] < E[IRGp) -
X(0)2| < L||z|?, where the last inequality follows
from (10) by lettings = 0 andw = oo. Finally, recalling
that X (z, p) = [0; XT (z,p)], we haveR [||Y (¢; 2, p)[|?] <
E[|X(t2,p) = Xe(2,0) ] < prillz — E[Xe(2,p)]|* <
prt(||Y(O)||2 + ZHZHQ) < pri|z|2, V t € Z. for some
constantp > 0. This leads to the desired exponential growth
rate for the mean square output exponential stability. m

B. Semistability Analysis via Mean Generating Functions

Theorem 4.1 allows us to determine the mean square
exponential semistability and its maximal exponential growth
rate via the mean generating function of the random SLS (8).

Let Y(¢;v,p) denote the stochastic state trajectory of the
random SLS (8) starting from the deterministic initial state

is complete, X (4; z,p) converges in mean square t0 SOME, R’ ynder the switching probability distribution The
random vectorX,(z,p) (with the finite second moment) ean generating functiod : R, x R’ — R, U {+oc}

ast — oo. Letz = 2z — [O;E[)}E(z,p)}]T. Hence,

of the random SLS (8) is defined d@3(\,z) = Fi(z) :=

Y (t;Z,p) = Y(¢;2,p) (in distribution), and this, together g [Zzo AtHY(t;v,p)HQ] = T2 NE [HY(t;v,p)HQ] “The

with (9), shows that)~((t; Z,p) = )N((t; z,p) — E {)?e(z,p)].

Further, ast — oo, X(t;%,p) converges to the random

vector X (Z,p) = Xe(z,p) — E[Xe(2,p)] (with zero mean)
in mean square. LeX[l'(2) = [0; XX (2)] and XX (Z,p) =

0; X1 (Z,p)]. Then E[||X(t;2,p) - Xe(2,p)[P] =
E[|IX(tZp) - Xe(Z?] =  E[VEGZIP] +
E[|X(tz,p) — Xe(z,p)|?]. By letting s = ¢,
w = oo, and replacingz by Zz in (10), we see

E[|X(:%p) - XZp)P] < L3P Along with

mean generating functiofty, shares the similar properties
of the strong generating functiad,, and a collection of its
properties can be found in [11, Proposition 13]. The radius of
convergence of'y is defined as\; := sup{\ > 0: F)(v) <
oo,V v € R}, This quantity can be used to determine the
mean square exponential stability as shown below.

Lemma 4.1:[11, Theorem 4] The random SLS (8) is
mean square exponentially stable if and onlpjf> 1.

It also follows from a similar argument of [11, Corollary
1] that()\;)—% is the maximal exponential growth rate of the

the mean square output exponential stability, we obtaiyndom SLS (8). In view of this and Theorem 4.1, we have:

E[IX(tzp) - Xe(zp)?] < (v + DFZ? <
(k + L)tz — IE[Xe(z,p)]H2 for all t and z. This

Theorem 4.2:The random SLS (5) is mean square expo-
nentially semistable if and only if the radius of convergence

yields the mean square exponential semistability and show§the random SLS (8) satisfies, > 1. Further, the maximal
that the exponential growth rateof the mean square output exponential growth rate of the mean square semistability of

stability is also that of the mean square semistability.

the SLS (5) is(\;) /2.



V. APPLICATION TO SENSORNETWORK ALLOCATION here is to identifylV,, ;) and its convergence rate so that (11)
ALGORITHMS exponentially converges te, ast — oo, wherez, denotes

. . . the final distribution pattern of mobile sensors among the
We apply the stability results developed in the precedlngites, which is a function af(0) (1", — 172(0)).

sections to the consensus problem of distributed sensor
networks under possible topology switching. SpecificallyA. Applications to Gossip Algorithms
cc_)nsider a network characterizgd.by a strongly connectedy,e analyze mean square exponential semistability of ran-
directed graphg = (V,£) consisting of a set of nodes 4o gossip algorithms proposed in [20] using the semistabil-
V={l,...,q} and asetof edge C VxV representing the ity techniques. Consider an asynchronous randomized gossip
communication links between two nodes, where each edggysrithm described as follows. Each node has a clock that
(,j) € € is an ordered pair of distinct nodes. The set ofjcks according to a rate 1 Poisson process. Thus, the random
neighbors of nodeis denoted byVi = {j € V: (i,j) € £}.  inter-tick times at each node are exponentially distributed,
Letz;(¢) € R denote the number of mobile sensors that nodg,q independent across nodes and over time. We discretize
i has at timet. Those mobile sensors are used to colleGfme according to clock ticks since these are the only times
information at nodei gnd travel along the graph network i \which the value ofX (t) changes. In the-th time slot,
based on some algorithms. _ let nodes’s clock tick and let it contact some neighboring
At the initial time, the number of mobile sensors at nodgode;j with probabilityp; ;. At this time, both nodes set their
i is given byz;(0). During thet-th time window, suppose ygjues equal to the average of their current values. Formally,

node i contacts a neighboring nodg to see how many |et x(¢) denote the vector of values at the end of the time
mobile sensors both nodes have. Then at this time, boghut +. Then X () is updated by the algorithm

nodes will relocate their mobile sensors in such a way that
the number of mobile sensors at each node is proportional ~ X(t+1) =W()X(t), t=0,1,2,..., (12)
to a value defined by a certain merit function. ObViO“S|3(/vhereW(t) is a random matrix drawn independently from
node: may have more than just one neighboring node. Whetlﬂe set{W;;} with W;; = I, — (e; — e;)(e; — ¢;)" /2 and

; P ; : ij ] i VAN J
the execution com_mand is sent out for action, thgse mobilg, probability p;; /¢ (the probability that the-th node’s
sensors start moving together SO that more_moblle SENSYBck ticks is1/q, and the probability that it contacts node
will aggregate at some location of interest. This movement I5is pi,). Heree; € R? is a vector with thei-th component

177 ()

a coordinated motion in the sense that these mobile SensQif,al to 1 and the rest equal to 0. In other woRIEW (1) =

will self-organize their collective moves by updating theirWH} — P G i—1....q i)
information based on neighbor-to-neighbor interaction. Zli i egs;/ to7 verify; the;tl’TW~ T 1T and Wl — 1
Due to possible link failures and link creations of COM=or all i j such that1TW(¢) —U 1T, v¢ Furth@ér E =

) - ) . ) e

munications between sensors, the sensors may connectsoerm{l} and P = 00T = Iq _ 111T for a suitable matrix

glst_:onntﬁct with eac? I(_)lther Vlt?\ wireless (_:orrt1_murt1|cat:0n . Therefore, for any initial state, it can be shown via direct
unng the movement. Hence, the communication topologyy e ation that the equilibriunX,(z) is deterministic and is

for this mobile sensor network is not fixed, leading to a_. T
o . S . ~ “given by11 and thatX¢. (¢; 2,p) = X (t; 2, p) — Xe(2).
switching topology. This calls for a distributed, 'terat'veag:onse(;/uentli/(ihe foIIowinggeLEesZulfs) hold( %)= Xe()

allocation algorithm to efficiently redistribute mobile sensors Corollary 5.1: The gossip algorithm (12) is mean square

in a topologically changing graph. By yiewing _the itera.tionexponentially semistable if and only if the auxiliary system
process of such an algprlthm as a discrete-time, SW'tChz 2) and (7) is mean square output exponentially stable.
linear system, the stability results developed before can eCoroIIary 5.2: The gossip algorithm (12) is mean square
used'to address the.semistapility and convergence rate.Of@Ebonentially semistable if and only if the radius of conver-
algorithm under arbitrary switching and random switching, . .o tor the auxiliary system (12) and (7) satisfigs> 1.

so that the growth rate of the proposed algorithm can b Proof: This follows directly from Theorem 4.2. m
established on a solid theoretical foundation.
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