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Abstract— This paper studies the problem of finding the one can now formally compare the degree of rigidity among

most rigid formation for a multi-agent system. The worst-case  different formations previously only known to be rigid.
rigidity index (WRI) and the mean rigidity index (MRI) are hi f o

proposed as the quantitative measures of formation rigidity. In this paper, we focus on two quantitative measures
From a practical point of view, the values of these indices Of formation rigidity: the worst rigidity index (WRI) first
characterize the stability and robustness of the multi-agent proposed in [10] and a novel measure called the mean
system in maintaining a given formation. An iterative algorithm rigidity index (MRI). Furthermore, we try to find the most

is presented for finding the most rigid formation through P ; P
the joint optimization of both the positions of agents and rigid formations as measured by these indices through an

their connection topology. The effectiveness of the algorithm It€rative algorithm that optimizes both the node locations

is illustrated through numerical examples. and the formation topology simultaneously. Such optimized
Index Terms—formation control, graph rigidity, wireless  formations typically result in better robustness of the tinul
sensor network, optimization agent systems on formation control or localization tasks.

This paper is organized as follows. The two rigidity indices
derived from the stiffness matrix are discussed in Section |
Tasks arising in many practica| app”cations such aghe formation rlgldlty Optimization prOblem is formulatad
aerospace, battle field and emergency services, are oftefiction lll. Section IV discusses the optimization of agent
difficult or even impossible for a single agent (vehicleosition. In Section V, the edge-by-edge topology switghin
aircraft, etc.) to accomplish as a large region with muci@lgorithm is introduced as the topology optimization meitho
uncertainty needs to be covered/monitored. Comp|etir@thesecti0n VI illustrates an alternative algorithm that sitatl
tasks may become feasible through the coordination of eously optimizes the discrete topology and the continuous
group of autonomous agents. For maximal coordination effdgent positions. Some examples are shown in Section VII.
ciency, it is often advantageous for these agents to maiatai Section VIl summarizes the paper.
certain formation through sensing and communications. The
formation control of multi-agent systems has been studied
by many researchers in various contexts, such as robotigg, Notation
unmanned air vehicle (UAV) [1], underwater vehicles [2]

and so on [3], [4]. Throughout this pape®}, R, R"*™ denote the spaces of
Rigidity is a critical concept in the study of formation rea| numbersp-dimensional real column vectors, aneby-
control as it characterizes the ability of a multi-agentteys ,,, real matrices, respectively. Italic lowercase lettershwi
to maintain a desired formation despite the presence @f without subscripts, e.gk;;,, represent scalar variables
(possibly significant) sensing errors, communication ygla o constants. Italic uppercase letters, suchRas, S;;, are
and environmental perturbations. An early paper on apglyinmatrices. Calligraphic letters, e.d.,C, denote general sets.
the notion of rigidity to multi-agent systems can be foundcolumn vectors are denoted by bold letters. The transpose
in [5], which employed results in graph theory such agfy < R (or A € R"*™) is denoted byv' (or AT).
the Laman’s theorem [6] and the rigidity matrix theorema yector is called amulti-quantity if it is a stacked vector
[7], [8] to determinequalitatively whether a formation is composed by several quantities which themselves are wector
rigid or non-rigid. Dynamics of formation such as spliting A pold lowercase letter with no subscript often denotes a
merging [3], and closing ranks [9] have also been exploregyti-quantity, and each of its components is denoted by the
In [10], quantitative measures of formation rigidity are same letter with a subscript. For exampbes R2" is amulti-
proposed based on the notion of stiffness matrix by anamgiﬁoint, p=[p] pl - pﬂT; each componenp; €
ing a formation to a mass-spring system: each node (agefi} represents the two-dimensional coordinate of a point in an
corresponds to a mass and each edge (communication linkhsint system. The inner product of two vectarsv € R™
connecting a pair of nodes corresponds to a spring with;a yefined asiu,v) = u'v € R. The Euclidean norm of
given elastic constant. The rigidity indices are then &&#iv 5 \ectorv is denoted byllv| = /(v,v). For symmetric
from the eigenvalues of the stiffness matrix associatetl Wity atricesA. B, we write A = 0 if A is non-negative definite;
the overall elastic structure. With these quantitativesneas, 4« pif A— B > 0. The Moore-Penrose pseudo-inverse of

_ _ _ _ _ a square matrixl € R"*" is denoted byA’. LetG = (V, )
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Il. BACKGROUND for a matrix S = [S;;]1<i,j<n € R?"*?" where each block
In this section, derivation of the rigidity indices to beSij € R?*? is defined by

used in this paper is reviewed. Suppose therenasgents b i
moving in a two-dimensional spa®?, whose locations are Sii = Zjel i tj ' Z _2
’ 7]{3,;]'E1'j if ¢ 7é B

denoted byp; € R?,i € Z = {1,...,n}. The strength of the
communication link (or the sensing data correlation) betwe The matrix§ is called thestiffness matrix associated with
the KP-formation. We may writé' (K, p) to show its depen-

each pair of agents and j is modeled by a scalar constant
kij > O We_ assume thak;; = kji; _and thatk;; = 0 if dency onk andp.
agentsi andj do not communicate with each other directly.
Particularly, letk;; = 0 wheni = j. Then the connectivity B Rigidity Indices
matrix is defined ad{ = [k;;]1<; j<n. In this formulation, . ) . .
the n agents form a weighted graph, with each node of the Agcor%mtg to (fg thetstg'frl_ess r_natmi desc_;l_bes ch
graph being an agent and edge weights represented by fﬁnjea lon | etween the per ?r ; 'r(]mp N o I(Ia posftions an
entries of the connectivity matrik’. This graph with weights the ;esu tlng (res_lsta_nge) lor efc at ge:neraIL Y t.r!esl to return
k;; and node positiong; specifies aformation graph, or t. gdofrmatlo_r1 10 |thor|ic1d|nz con |gurr1at|or;]. ntuitively, aore f
simply, a KP-formation. A KP-formation is described by a'9e. ormation shou e one t at.t ¢ same amoum 0

I position perturbatiomMp would result in a larger resistance
tuple (Z, p, K) in this paper. ) A )

force f. More precisely, a rigidity index:(S) is a scalar

A. Siffness Matrix derived from the stiffness matri¥¥ which measures the

To study the robustness of a KP-formation under perturbaigidity of a KP-formation. A valid rigidity index(.S) should
tions, a mechanical analogy is constructed as follows. Eadtave the following properties:
node (agent) is modeled by a mass, and the edge connecting’roperty 1. Non-negativeness: r(S) > 0 for any forma-
nodes and; is modeled by a spring with spring constapg ~ tion. Furthermorer(S) = 0 if and only if the formation
and natural lengthip; —p;||. Thus, the springs are all relaxedrepresented by’ is not rigid.
for the original node positionp1, ..., p.. Now assume the  Property 2. Invariance: r(S) is invariant under rigid body
position of each nodéis perturbed tgp; = p; + Ap;, € R2  motions and scaling of node positions of the formation.
after a net perturbatiotp;, i = 1,...,n. This results in a  Property 3. Consistency: 7(S) does not decrease when
deviation of the length of the spring between two nodasd  k;; (connectivity) increases for any pair of nodeg ;.
j from its natural length. Denote bff; € R? the resulting These properties fit well our intuitive expectations of a
force applied on nodé by nodej. By the Hooke’s law, measure of formation rigidity. Based on the above propgrtie
two valid rigidity indices can be proposed:

€511 = kis| 1B — Bl — Ipi — psl]- 1)
Consider infinitesimally small perturbation&p;, i = rw(5) = Aa(S), .
1,...,n. Denote byE;; € R**? the projection matrix onto 2 B
he direction ofp; — p;: 7(S) = Z ,

)T

Pi —P;)(Pi — Pj . .
( |p?)_( [ ! (2)  where),(S) is thek-th smallest eigenvalue of the matrfk
Lo _ Particularly,7(S) := 0 if \4(S) = 0. We callr,, the Worst-

'I_'henApi can be decomposgd into an alqng-sprmg perturbgasge Rigidity Index (WRI) and 7 the Mean Rigidity Index

tion Ei; Ap; and a cross-spring perturbation, — £i;)Api.  (MRI). A proof of the validity ofr,, as a rigidity index is

For small perturbations, only the along-spring pertudyai given in [10]. This proof can also be applieditafter some

affect the spring length; thus, the infinitesimal change iminor changes.

spring length between nodésand ;j is approximately We further note that, whenever a formation is rigid, the
’||I3z‘ — b, — Ipi — ij’ ~ | Ei;Api — Ei;Apy]. MRI can be rewritten in the following simpler form:

Eij =

Hooke's equation is generalized to be 7(S) = [te(SH)] ", 4)

fij = kijEij(Ap; — Apy). where St is the Moore-Penrose pseudo-inversesSof

Letf; = Zj:l Af;; be the total force applied on nodgor I, FORMATION OPTIMIZATION PROBLEM

f; = ZkijEij(Api — Ap;) In Section I, rigidity indices are obtained from the
JE€T stiffness matrix which encodes information on both agent
with the fact thatk;; = 0 if agentsi andj are not neighbors. locations and formation topology. These indices can serve
Denotef = [f --- £]7, Ap=[Ap, --- Ap,]T e R*. as guantitative measures of formation rigidity. A natural
Then the above can be written in matrix form as guestion that follows is: what are the most rigid formatiass
measured by these indices? The answer to this question will
f=—-SAp () be useful in the design of more robust multi-agent systems.



A general KP-formation optimization problem based on agent positiong that results in the largest rigidity index, by

rigidity index (-) can be formulated as follows: solving the following problem:
max r(S(K,p)). ©) max 7(S(K,p)). ()
K.p p

With different choices of the rigidity index(-), the objective Here the MRI is chosen as the rigidity index in the objective

function, hence the optimal solutions, will be differentfunction andk is assumed to be constant. ,
Nonetheless, it can be expected that meaningful rigidity in !t IS reasonable to assume that the initial formation from
dices are all “comparable” because of the shared consisterhich the optimization starts is at least rigid, i.(5) >
property. In other words, a rigid formation measured by ong: Under this assumption, by recalling (4), the optimization
index will tend to be also rigid in other indices. As a resultProplem (7) can be equivalently formulated as
SW|_tch|ng_ the r|g|d|ty_|n(_jgx is not expected to affect the min  tr(S(K, p)}). 8)
optimization results significantly.
In this paper, we pick the MRI as our objective functiong, Gradient of Objective Function
for the KP-formation optimization problem. An important
practical implication of the MRI is its direct relation to
the well-known Crarar-Rao lower bound (CRLB) in the
network localization applications [11]. By optimizing the
MRI, one can obtain a localization network formation with
the lowest CRLB. This generally leads to a smaller total
localization error in practice. d tr(Sh) = tr(d(sh)) = —tr(ststds). 9)
Without any constraint on the connectivity matix, the
solution to problem (5) would be trivial as any rigidity inde We define

Optimization problem (8) can be solved by computing the
gradient of its objective function. We give a brief deduntio
of the gradient in this subsection. Some well-known facts in
matrix calculus [12] are applied in the deduction.

Since bothS and ST are symmetric, we have

will increase to infinity asK — oc. In this paper, we X1 X - Xin
consider the following constraint oR": Xo1 Xoo -+ Xop
X £ 815t = _ _
subject to k;; € {0,1} and Z Z kij = ke, : : -
1€L jET\1 an Xn2 e Xnn

where k. is a constant integer equal to the total availablgvhere eachX;; is a2-by-2 matrix, andX;; = X ; from the

communication channels in the formation. Under the abowymmetry ofX. On the other hand,

constraint, the optimization with respect 16 is essentially r A o .

a process of optimizing channel resource allocation, aulisef j; k1 dEn, FizdEi FindBin

problem in some practical applications. —ko1dEa Y kojdEy; -+ —kopdEs,
To sum up, the KP-formation optimization problem to be 49 = J#2

solved in this paper is :

max ’I‘_(S(K, p)) *knldEnl *andEnQ e Z knjdEnj

K,p L Jj#n

. (10)
subject to  kq; € {0,1} (6) with E;; being the projection matrix defined in (2).
Z Z kij = ke. Suppose now we pick anye Z and perturb only; while

‘ keepingp;’s constant for all # j. It is clear that in (10), all

blocks except those involving;;’s and E;;'s will become
Note that there is no constraint nas the objective function zero matrices, resulting in a cross-shapkfi matrix (non-
is invariant under scaling and rigid body motions pf  zero blocks inj-th block row andj-th block column only).
The optimal formation can be arbitrarily scaled, rotated anfFyrthermore, for any-by-2 matrix A,

translated as one desires when applied to practical sosnari -
(dp;, (I — Eij)(A+ AT)(p; — pi))

Ip; — pill®
Solution of the optimization problem stated in (6) inFrom the above results, (9) considered as a partial dervati
Section Il can be divided into two phases: optimizing ageniith respect top; can be written as

positionsp and optimizing formation topology<. In this ot .
. N o . . —t d .= {dpj,c;
section, optimization of agent positions will be discussed r(s1S S)|dpi=0ﬂ#ﬂ (dpj. ;)

i€T jET\i

tI‘(A dEij) =
IV. AGENT POSITIONSOPTIMIZATION

wherec; is defined by
A. Problem Satement

kij(I — Eij)(Xj; — Xij — X;0)(Pp; — Pi)
In the agent positions optimization phase, one assumes; 2 -2 Z ’ ’ \Tp: _p{“2 e :
that the connectivity matri¥s is fixed and tries to find the i s



TABLE |

If we computec; for all j € Z, the stacked vector EDGE ADDITION BISECTION ALGORITHM

.
¢c= [clT C2T CI] Input p=1,1=X(09),u =X, m=({I+u)/2,

is actually the gradient of the objective function with resp Ao = €° andt =0
to variations inp. The steepest descent direction of the cost Step 1 If |4;| = 1, then go to Output; otherwisedt = ¢,
function in (8) is then given by- <. A” = ¢, and go toStep 2

With the knowledge of the gradient of objective function,| Step 2  For eache;; € Ay, if wi;(m) > 0, then A~ «— A~ U
many well known optimization methods that require only {eij}; Otherwise, AT — AT U {ei;}
first-order derivative information, such as the gradienthme | Step3 If |[A*]| = 0, v — m and A,y = A~ otherwise,
ods and the quasi-Newton methods [13], can be used to find L—mandApy =AY
an approximate optimal solution to problem (7). Step 4 t«< t+1and go toStep 1

V. TOPOLOGY OPTIMIZATION Output At (singleton)

In this section, we look for methods that can increase
the rigidity index of a KP-formation by changing (i.e.,
formation topology) for fixed agent positions, subject to
the connectivity constraint that the number of edges needs
be kept constant. The worst-case rigidity indexis used as dy <dy <dy <dy < <dyyy <y, fo>0
the rigidity index to be maximized in the objective function B <di<dy<dy<---<doy <doy Iifc<O0.

The reason for this choice is that, compared with MRI in - - - = = - '

the previous section, the variations in WRI under changing As a result of the above theorem, if an edge is added,
formation topology are easier to characterize. In addit&® then \4(S) is between\,(S) and \5(S). On the other hand,
remarked after problem (7) in Section IlI, the two indicesf an edge is deleted, thek,(S) is between0 and \4(S).
tend to favor similar KP-formations. Furthermore, it has been shown in [14] that any eigenvalue of
A. Rank-One Update the modified stiffness matri§ must be a root of theecular

_— ) ) equation defined as below,
Suppose that we start from an initial formation with agent

R2mx2n js diagonal;b € R?" ando € R. Supposed; <
(%2 < ... <dy, are the eigenvalues @f. Then,

positions p and connectivity matrixX. We assume that w(p) 2 14 pkijz' (D — pl) ™'z

the initial formation with a stiffness matri¥ is rigid, for 2n 9

otherwise the rigidity index may remain zero even after =1+ pk;; \ k| (12)
changing the topology. In this section, the secular eqoatio =1 i T H

([14]) and a bisection algorithm proposed in [15] will beWhere 0DQT

is the diagonalization o5, z = Q 'z and
used for finding the optimal formation topolody. ! 'ag 1zat b,z =@Q 2

1,&9,...,&, are components &f. The secular equation as

; Wh?” a sm?]lethedge_ 'S a:do![_ef? to or rteg(qved ;rotmd th scalar equation can be easily solved numerically to yield
ormation graph, the original Siin€ss matnixis updated o e eigenvalues of the modified stiffness matsix

by a rank-one modification. Specifically, suppose an edge
between nodesand; with positionsp; andp; is added (or B. Fast Rigidity Computation by Eigenvalue Update
removed). Defines;; = (p; — p:)/llp; — pill € R?. Then

' - S Bl = As discussed in the previous section, when a single edge
the stiffness matrixS of the new formation is given by

is added to the original formation graph, the WRI of the
S =954+ pAS. new formation graph will lie between the forth and the fifth
smallest eigenvalues of the stiffness matrix of the origina
graph. Table I illustrates an algorithm called tBége Addi-
tion Bisection Algorithm that can be used to determine which
additional edge to add for maximizing the WRI.
e if k=31 Suppose one edgg; < £C is added toG to form G =
(V,&") where&’” = £ U é;;. Note that the new WRI is a
solution of the secular equation (11) in the open interval
(Aa(S), A5(5)), andw(p) is non-decreasing on this interval.
The strategy we propose here to maximize WRI is to addihus, the bisection algorithm can be used to find the best
an edge that leads to the greatest increment to WRI, aedige with the largest WRI.
then delete an edge with the smallest decrement. Thus eachnstead of applying the bisection algorithm to find the
execution of this process involves two rank-one updates ¥RI for every possible edgeé;; < £C to be added, we
the stiffness matrix. The following general theorem can bpropose a more efficient algorithm called thdge Addition
used to characterize how the spectrum of the stiffness xnatiisection Algorithm that performs the bisection operation
is affected by this rank-one modification. for the secular equations associated with all these edges
Theorem 1 ([14]): Let C = D + obb', where C € simultaneously to find the one resulting in the largest WRI.
R?"*2n js @ symmetric matrixD = diag(d, ds, . ..,ds,) €  Supposd andu are the current lower and upper bounds of

Here AS = k;;zz', wherep = 1 (or —1) if the edge is
being added (or removed), and= [z{ --- z!]" is a

stacked vector iflR?” whose blocksz;, € R? are defined by

Zi = § —€ij if k :j
0 otherwise



TABLE I TABLE Il

EDGE SWITCHING ALGORITHM ALTERNATING OPTIMIZATION ALGORITHM
Input Connectivity matrixK; Input Original KP-formation(Z, K©), p™) ¢t =0
Step 1 Run Edge Addition Bisection Algorithm, then update Step 1 Fix K®, optimize p(t1) = argmax #(S(K", p))
by adding the returned edggqg; P

o _ locally from p(®) (Section 1V)
Step 2 Run Edge Removal Bisection Algorithm, then updéfe

by deleting the returned edggelets Step 2 Fix p(t+D), optimize K+ _

(t+1) )
Step 3 If eadd = edelete then go toOutput; otherwise go to arg m}?XTW(S(K’p ) locally from K

Step 1 (Section V)
Output K. Step 3 If #(S(KEHD pM)) < FS(K®,p®)) or
F(S(KEHD ptFl)) = #(S(K®,p1)), go to
Output

Step4 t:=t+1,gotoStep 1
the WRI for the stiffness matrix of the current edge gkt
(with initial feasible edge sef, = £C att = 0), and let
m = (I + u)/2 be the mid point. Then, the following rules

Output K® p®

(1) wim)<0 = TW(S) € [m,u]

(17) w(m) >0 = ry(S) €ll,m]

can be used to divide the set of edgesdininto two subsets: @ ®) ©

A™ = {eij € AN\ (S) € [I,m)} and At = {eij S

Ai|As(S) € [m,u]}. If the subsetA™ is empty (i.e., A~

contains all candidate edges), then the midpoinbecomes — - .

the new upper bound and the new feasible edgedset is

updated ta4~; otherwisem becomes the new lower bound

and A, is updated taA™. This process is repeated until (@ ()

only one edg? Is left in the current.fea5|ble ge.t . Fig. 1. Edge Switching Algorithm (ahput — (b) Step 1— (c) Step 2,

The above idea can also be applied to the similar probleRje;, 3. (q) step 1 (e) Step 2, Step ZhenOutput

of deleting one edge while still maintaining the largest

WRI. In this case, the new WRI lies inside the interval

(A3(S) = 0,A4(5)); and sincep = —1, w(u) in the optimization and topology optimization processes untthbo

secular equation (11) is non-increasing on this intervafaijl to improve the formation rigidity any further.

Correspondingly, the following changes to the Edge Additio  Since we have used different objective functions in the two

Bisection Algorithm must be made to obtain tBege Re-  optimization problems, verification of consistency betwee

moval Bisection Algorithm: p = —1, 1 = A3(S), u = A\4(S)  the two objective functions becomes necessary when we

and.A; = € in the Input; in the Step 2 if w(m) <0, then  merge the two optimization processes in Sections IV and V

AT — AT Uey, otherwiseA™ — A~ Uey;. into one. This verification is done through the first conditio
o i described inStep 3of the algorithm in Table 111.

C. Edge Switching Algorithm An important advantage of the alternating method is that
By cascading the two bisection algorithms, we obtain & can avoid some local extrema with poor overall value. The
combined algorithm that maximizes the WRI by first addingeason is that an extremum in agent positions may not be an
and then deleting an edge from the formation graph. Whesxtremum in topology, and vice versa. By switching between
the edges being added and deleted are not the same, tlve objective functions, the optimal value obtained can be

net effect is to relocate an edge within the formation graplimproved compared to non-alternating algorithm.
Table Il illustrates the resultingdge Switching Algorithm.
Fig. 1 shows a step-by-step illustration of applying the VII. EXAMPLE
Edge Switching Algorithm to a simple example. The worst- Fig 2 depicts the simulation results of the alternating
case rigidity index of the example in Fig. 1 increases fromyrmation optimization algorithm for a five-agent system
0.268 to 0.586 due to the topology optimization. under the connectivity constraint. The initial formatioash
random agent positions and a given topology as shown
in Fig. 2(a). We first keep the topology unchanged, and
apply the gradient descent algorithm to update the agent
Based on the optimization algorithms introduced in Segositions. The resulting local maximum of the MRI is shown
tions IV and V, we propose aalternating method for for- in Fig. 2(b). The initial and final positions are shown by
mation rigidity optimization, which is illustrated in Tablll.  hollow and solid dots, respectively, and the dashed lines
The idea of the algorithm is to alternatively apply the dosit represent the trajectories of the intermediate resultngur

V1. ALTERNATING POSITION AND TOPOLOGY
OPTIMIZATIONS



(from 0.3160 to 0.5302 for the MRI) at time ste®0 when
topology optimization occurs. As can be seen from the figure,
the MRI exhibits a similar general trend but with a smoother
variation compared with the WRI.

VIII. CONCLUSION

Formation optimization is an important problem in multi-
agent systems, such as sensor networks and UAV’s. In this
paper, we try to optimize the rigidity of a given formation
as measured by two rigidity indices by reconfiguring the
positions and the connection topology of the agents while
conserving the total number of connections. We propose a
2 solution to this constrained optimization problem by biargk
it up into two phases: agent positions optimization and
topology optimization. An alternating algorithm is propds
whose effectiveness is demonstrated by examples. A future
direction is to find a distributed version of this algorithm.

(a) Initial formation
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