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Abstract— This paper studies the problem of finding the
most rigid formation for a multi-agent system. The worst-case
rigidity index (WRI) and the mean rigidity index (MRI) are
proposed as the quantitative measures of formation rigidity.
From a practical point of view, the values of these indices
characterize the stability and robustness of the multi-agent
system in maintaining a given formation. An iterative algorithm
is presented for finding the most rigid formation through
the joint optimization of both the positions of agents and
their connection topology. The effectiveness of the algorithm
is illustrated through numerical examples.

Index Terms— formation control, graph rigidity, wireless
sensor network, optimization

I. I NTRODUCTION

Tasks arising in many practical applications such as
aerospace, battle field and emergency services, are often
difficult or even impossible for a single agent (vehicle,
aircraft, etc.) to accomplish as a large region with much
uncertainty needs to be covered/monitored. Completing these
tasks may become feasible through the coordination of a
group of autonomous agents. For maximal coordination effi-
ciency, it is often advantageous for these agents to maintain a
certain formation through sensing and communications. The
formation control of multi-agent systems has been studied
by many researchers in various contexts, such as robotics,
unmanned air vehicle (UAV) [1], underwater vehicles [2]
and so on [3], [4].

Rigidity is a critical concept in the study of formation
control as it characterizes the ability of a multi-agent system
to maintain a desired formation despite the presence of
(possibly significant) sensing errors, communication delays,
and environmental perturbations. An early paper on applying
the notion of rigidity to multi-agent systems can be found
in [5], which employed results in graph theory such as
the Laman’s theorem [6] and the rigidity matrix theorem
[7], [8] to determinequalitatively whether a formation is
rigid or non-rigid. Dynamics of formation such as splitting,
merging [3], and closing ranks [9] have also been explored.

In [10], quantitative measures of formation rigidity are
proposed based on the notion of stiffness matrix by analogiz-
ing a formation to a mass-spring system: each node (agent)
corresponds to a mass and each edge (communication link)
connecting a pair of nodes corresponds to a spring with a
given elastic constant. The rigidity indices are then derived
from the eigenvalues of the stiffness matrix associated with
the overall elastic structure. With these quantitative measures,

Yanghyun Kim, Guangwei Zhu, and Jianghai Hu are with the School of
Electrical and Computer Engineering, Purdue University, West Lafayette, IN
47907, USA{yhkim,guangwei,jianghai}@purdue.edu.

one can now formally compare the degree of rigidity among
different formations previously only known to be rigid.

In this paper, we focus on two quantitative measures
of formation rigidity: the worst rigidity index (WRI) first
proposed in [10] and a novel measure called the mean
rigidity index (MRI). Furthermore, we try to find the most
rigid formations as measured by these indices through an
iterative algorithm that optimizes both the node locations
and the formation topology simultaneously. Such optimized
formations typically result in better robustness of the multi-
agent systems on formation control or localization tasks.

This paper is organized as follows. The two rigidity indices
derived from the stiffness matrix are discussed in Section II.
The formation rigidity optimization problem is formulatedin
Section III. Section IV discusses the optimization of agent
position. In Section V, the edge-by-edge topology switching
algorithm is introduced as the topology optimization method.
Section VI illustrates an alternative algorithm that simulta-
neously optimizes the discrete topology and the continuous
agent positions. Some examples are shown in Section VII.
Section VIII summarizes the paper.

A. Notation

Throughout this paper,R, Rn, Rn×m denote the spaces of
real numbers,n-dimensional real column vectors, andn-by-
m real matrices, respectively. Italic lowercase letters, with
or without subscripts, e.g.,kij , r, represent scalar variables
or constants. Italic uppercase letters, such asR,K, Sij , are
matrices. Calligraphic letters, e.g.,I, C, denote general sets.
Column vectors are denoted by bold letters. The transpose
of v ∈ R

n (or A ∈ R
n×m) is denoted byv⊤ (or A⊤).

A vector is called amulti-quantity if it is a stacked vector
composed by several quantities which themselves are vectors.
A bold lowercase letter with no subscript often denotes a
multi-quantity, and each of its components is denoted by the
same letter with a subscript. For example,p ∈ R

2n is amulti-
point, p =

[

p⊤
1 p⊤

2 · · · p⊤
n

]⊤
; each componentpi ∈

R
2 represents the two-dimensional coordinate of a point in an

n-point system. The inner product of two vectorsu,v ∈ R
n

is defined as〈u,v〉 = u⊤v ∈ R. The Euclidean norm of
a vectorv is denoted by‖v‖ =

√

〈v,v〉. For symmetric
matricesA,B, we writeA � 0 if A is non-negative definite;
A � B if A−B � 0. The Moore-Penrose pseudo-inverse of
a square matrixA ∈ R

n×n is denoted byA†. Let G = (V, E)
be a graph with a set of verticesV and a set of edgesE . Then
E∁ denotes the set of all missing edges (i.e., edges not inE).



II. BACKGROUND

In this section, derivation of the rigidity indices to be
used in this paper is reviewed. Suppose there aren agents
moving in a two-dimensional spaceR2, whose locations are
denoted bypi ∈ R

2, i ∈ I = {1, . . . , n}. The strength of the
communication link (or the sensing data correlation) between
each pair of agentsi and j is modeled by a scalar constant
kij ≥ 0. We assume thatkij = kji; and thatkij = 0 if
agentsi andj do not communicate with each other directly.
Particularly, letkij = 0 when i = j. Then the connectivity
matrix is defined asK = [kij ]1≤i,j≤n. In this formulation,
the n agents form a weighted graph, with each node of the
graph being an agent and edge weights represented by the
entries of the connectivity matrixK. This graph with weights
kij and node positionspi specifies aformation graph, or
simply, a KP-formation. A KP-formation is described by a
tuple (I,p,K) in this paper.

A. Stiffness Matrix

To study the robustness of a KP-formation under perturba-
tions, a mechanical analogy is constructed as follows. Each
node (agent) is modeled by a mass, and the edge connecting
nodesi andj is modeled by a spring with spring constantkij

and natural length‖pi−pj‖. Thus, the springs are all relaxed
for the original node positionsp1, . . . ,pn. Now assume the
position of each nodei is perturbed tôpi = pi +∆pi ∈ R

2

after a net perturbation∆pi, i = 1, . . . , n. This results in a
deviation of the length of the spring between two nodesi and
j from its natural length. Denote byfij ∈ R

2 the resulting
force applied on nodei by nodej. By the Hooke’s law,

‖fij‖ = kij

∣

∣‖p̂i − p̂j‖ − ‖pi − pj‖
∣

∣. (1)

Consider infinitesimally small perturbations∆pi, i =
1, . . . , n. Denote byEij ∈ R

2×2 the projection matrix onto
the direction ofpi − pj :

Eij =
(pi − pj)(pi − pj)

⊤

‖pi − pj‖2
. (2)

Then∆pi can be decomposed into an along-spring perturba-
tion Eij∆pi and a cross-spring perturbation(I2−Eij)∆pi.
For small perturbations, only the along-spring perturbations
affect the spring length; thus, the infinitesimal change in
spring length between nodesi and j is approximately

∣

∣‖p̂i − p̂j‖ − ‖pi − pj‖
∣

∣ ≃ ‖Eij∆pi − Eij∆pj‖.

Hooke’s equation is generalized to be

fij = kijEij(∆pi −∆pj).

Let fi =
∑n

j=1
∆fij be the total force applied on nodei, or

fi =
∑

j∈I

kijEij(∆pi −∆pj)

with the fact thatkij = 0 if agentsi andj are not neighbors.
Denotef = [f⊤1 · · · f

⊤
n ]⊤, ∆p = [∆p⊤

1 · · · ∆p⊤
n ]⊤ ∈ R

2n.
Then the above can be written in matrix form as

f = −S∆p (3)

for a matrix S = [Sij ]1≤i,j≤n ∈ R
2n×2n where each block

Sij ∈ R
2×2 is defined by

Sij =

{

∑

j∈I kijEij if i = j

−kijEij if i 6= j.

The matrixS is called thestiffness matrix associated with
the KP-formation. We may writeS(K,p) to show its depen-
dency onK andp.

B. Rigidity Indices

According to (3), the stiffness matrixS describes the
relation between the perturbation∆p in node positions and
the resulting (resistance) forcef that generally tries to return
the formation to it original configuration. Intuitively, a more
rigid formation should be one that the same amount of
position perturbation∆p would result in a larger resistance
force f . More precisely, a rigidity indexr(S) is a scalar
derived from the stiffness matrixS which measures the
rigidity of a KP-formation. A valid rigidity indexr(S) should
have the following properties:

Property 1. Non-negativeness: r(S) ≥ 0 for any forma-
tion. Furthermore,r(S) = 0 if and only if the formation
represented byS is not rigid.

Property 2. Invariance: r(S) is invariant under rigid body
motions and scaling of node positions of the formation.

Property 3. Consistency: r(S) does not decrease when
kij (connectivity) increases for any pair of nodesi 6= j.

These properties fit well our intuitive expectations of a
measure of formation rigidity. Based on the above properties,
two valid rigidity indices can be proposed:

rw(S) = λ4(S),

r̄(S) =

(

2n
∑

k=4

1

λk(S)

)−1

,

whereλk(S) is thek-th smallest eigenvalue of the matrixS.
Particularly,r̄(S) := 0 if λ4(S) = 0. We call rw the Worst-
case Rigidity Index (WRI) and r̄ the Mean Rigidity Index
(MRI). A proof of the validity of rw as a rigidity index is
given in [10]. This proof can also be applied tor̄ after some
minor changes.

We further note that, whenever a formation is rigid, the
MRI can be rewritten in the following simpler form:

r̄(S) =
[

tr(S†)
]−1

, (4)

whereS† is the Moore-Penrose pseudo-inverse ofS.

III. F ORMATION OPTIMIZATION PROBLEM

In Section II, rigidity indices are obtained from the
stiffness matrix which encodes information on both agent
locations and formation topology. These indices can serve
as quantitative measures of formation rigidity. A natural
question that follows is: what are the most rigid formationsas
measured by these indices? The answer to this question will
be useful in the design of more robust multi-agent systems.



A general KP-formation optimization problem based on a
rigidity index r(·) can be formulated as follows:

max
K,p

r(S(K,p)). (5)

With different choices of the rigidity indexr(·), the objective
function, hence the optimal solutions, will be different.
Nonetheless, it can be expected that meaningful rigidity in-
dices are all “comparable” because of the shared consistency
property. In other words, a rigid formation measured by one
index will tend to be also rigid in other indices. As a result,
switching the rigidity index is not expected to affect the
optimization results significantly.

In this paper, we pick the MRI as our objective function
for the KP-formation optimization problem. An important
practical implication of the MRI is its direct relation to
the well-known Craḿer-Rao lower bound (CRLB) in the
network localization applications [11]. By optimizing the
MRI, one can obtain a localization network formation with
the lowest CRLB. This generally leads to a smaller total
localization error in practice.

Without any constraint on the connectivity matrixK, the
solution to problem (5) would be trivial as any rigidity index
will increase to infinity asK → ∞. In this paper, we
consider the following constraint onK:

subject to kij ∈ {0, 1} and
∑

i∈I

∑

j∈I\i

kij = kc,

where kc is a constant integer equal to the total available
communication channels in the formation. Under the above
constraint, the optimization with respect toK is essentially
a process of optimizing channel resource allocation, a useful
problem in some practical applications.

To sum up, the KP-formation optimization problem to be
solved in this paper is

max
K,p

r̄(S(K,p))

subject to kij ∈ {0, 1}
∑

i∈I

∑

j∈I\i

kij = kc.

(6)

Note that there is no constraint onp, as the objective function
is invariant under scaling and rigid body motions ofp.
The optimal formation can be arbitrarily scaled, rotated and
translated as one desires when applied to practical scenarios.

IV. A GENT POSITIONSOPTIMIZATION

Solution of the optimization problem stated in (6) in
Section III can be divided into two phases: optimizing agent
positionsp and optimizing formation topologyK. In this
section, optimization of agent positions will be discussed.

A. Problem Statement

In the agent positions optimization phase, one assumes
that the connectivity matrixK is fixed and tries to find the

agent positionsp that results in the largest rigidity index, by
solving the following problem:

max
p

r̄(S(K,p)). (7)

Here the MRI is chosen as the rigidity index in the objective
function andK is assumed to be constant.

It is reasonable to assume that the initial formation from
which the optimization starts is at least rigid, i.e.,r̄(S0) >
0. Under this assumption, by recalling (4), the optimization
problem (7) can be equivalently formulated as

min
p

tr(S(K,p)†). (8)

B. Gradient of Objective Function

Optimization problem (8) can be solved by computing the
gradient of its objective function. We give a brief deduction
of the gradient in this subsection. Some well-known facts in
matrix calculus [12] are applied in the deduction.

Since bothS andS† are symmetric, we have

d tr(S†) = tr(d(S†)) = −tr(S†S†dS). (9)

We define

X , S†S† =











X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

.. .
...

Xn1 Xn2 · · · Xnn











where eachXij is a2-by-2 matrix, andXij = X⊤
ji from the

symmetry ofX. On the other hand,

dS =



















∑

j 6=1

k1jdE1j −k12dE12 · · · −k1ndE1n

−k21dE21

∑

j 6=2

k2jdE2j · · · −k2ndE2n

...
...

. . .
...

−kn1dEn1 −kn2dEn2 · · ·
∑

j 6=n

knjdEnj



















(10)
with Eij being the projection matrix defined in (2).

Suppose now we pick anyj ∈ I and perturb onlypj while
keepingpi’s constant for alli 6= j. It is clear that in (10), all
blocks except those involvingEij ’s and Eji’s will become
zero matrices, resulting in a cross-shapeddS matrix (non-
zero blocks inj-th block row andj-th block column only).
Furthermore, for any2-by-2 matrix A,

tr(A dEij) =

〈

dpj , (I − Eij)(A + A⊤)(pj − pi)
〉

‖pj − pi‖2
.

From the above results, (9) considered as a partial derivative
with respect topj can be written as

−tr(S†S†dS)
∣

∣

dpi=0,i6=j
= 〈dpj , cj〉 ,

wherecj is defined by

cj , −2
∑

i,i 6=j

kij(I − Eij)(Xjj −Xij −Xji)(pj − pi)

‖pj − pi‖2
.



If we computecj for all j ∈ I, the stacked vector

c =
[

c⊤1 c⊤2 · · · c⊤n
]⊤

is actually the gradient of the objective function with respect
to variations inp. The steepest descent direction of the cost
function in (8) is then given by− c

‖c‖ .
With the knowledge of the gradient of objective function,

many well known optimization methods that require only
first-order derivative information, such as the gradient meth-
ods and the quasi-Newton methods [13], can be used to find
an approximate optimal solution to problem (7).

V. TOPOLOGYOPTIMIZATION

In this section, we look for methods that can increase
the rigidity index of a KP-formation by changingK (i.e.,
formation topology) for fixed agent positionsp, subject to
the connectivity constraint that the number of edges needs to
be kept constant. The worst-case rigidity indexrw is used as
the rigidity index to be maximized in the objective function.
The reason for this choice is that, compared with MRI in
the previous section, the variations in WRI under changing
formation topology are easier to characterize. In addition, as
remarked after problem (7) in Section III, the two indices
tend to favor similar KP-formations.

A. Rank-One Update

Suppose that we start from an initial formation with agent
positions p and connectivity matrixK. We assume that
the initial formation with a stiffness matrixS is rigid, for
otherwise the rigidity index may remain zero even after
changing the topology. In this section, the secular equation
([14]) and a bisection algorithm proposed in [15] will be
used for finding the optimal formation topologyK.

When a single edge is added to or removed from the
formation graph, the original stiffness matrixS is updated
by a rank-one modification. Specifically, suppose an edge
between nodesi andj with positionspi andpj is added (or
removed). Defineeij = (pj − pi)/‖pj − pi‖ ∈ R

2. Then
the stiffness matrix̃S of the new formation is given by

S̃ = S + ρ∆S.

Here ∆S = kijzz
⊤, whereρ = 1 (or −1) if the edge is

being added (or removed), andz = [z⊤1 · · · z⊤n ]⊤ is a
stacked vector inR2n whose blockszk ∈ R

2 are defined by

zk =











eij if k = i

−eij if k = j

0 otherwise.

The strategy we propose here to maximize WRI is to add
an edge that leads to the greatest increment to WRI, and
then delete an edge with the smallest decrement. Thus each
execution of this process involves two rank-one updates to
the stiffness matrix. The following general theorem can be
used to characterize how the spectrum of the stiffness matrix
is affected by this rank-one modification.

Theorem 1 ([14]): Let C = D + σbb⊤, where C ∈
R

2n×2n is a symmetric matrix;D = diag(d1, d2, . . . , d2n) ∈

TABLE I

EDGE ADDITION BISECTION ALGORITHM

Input ρ = 1, l = λ4(S), u = λ5(S), m = (l + u)/2 ,
A0 = E∁ and t = 0

Step 1 If |At| = 1, then go to Output; otherwise,A+ = φ,
A− = φ, and go toStep 2.

Step 2 For eacheij ∈ At, if ωij(m) > 0, thenA− ← A− ∪
{eij}; Otherwise,A+ ← A+ ∪ {eij}

Step 3 If |A+| = 0, u ← m and At+1 = A− otherwise,
l← m andAt+1 = A+

Step 4 t← t + 1 and go toStep 1

Output At (singleton)

R
2n×2n is diagonal;b ∈ R

2n and σ ∈ R. Supposed̄1 ≤
d̄2 ≤ · · · ≤ d̄2n are the eigenvalues ofC. Then,

d1 ≤ d̄1 ≤ d2 ≤ d̄2 ≤ · · · ≤ d2n ≤ d̄2n, if σ > 0

d̄1 ≤ d1 ≤ d̄2 ≤ d2 ≤ · · · ≤ d̄2n ≤ d2n, if σ < 0.

As a result of the above theorem, if an edge is added,
thenλ4(S̃) is betweenλ4(S) andλ5(S). On the other hand,
if an edge is deleted, thenλ4(S̃) is between0 and λ4(S).
Furthermore, it has been shown in [14] that any eigenvalue of
the modified stiffness matrix̃S must be a root of thesecular
equation defined as below,

ω(µ) , 1 + ρkij z̄
⊤(D − µI)−1z̄

= 1 + ρkij

2n
∑

k=1

ξ2
k

λi − µ
, (11)

where QDQ⊤ is the diagonalization ofS, z̄ = Q⊤z and
ξ1, ξ2, . . . , ξ2n are components of̄z. The secular equation as
a scalar equation can be easily solved numerically to yield
all the eigenvalues of the modified stiffness matrixS̃.

B. Fast Rigidity Computation by Eigenvalue Update

As discussed in the previous section, when a single edge
is added to the original formation graph, the WRI of the
new formation graph will lie between the forth and the fifth
smallest eigenvalues of the stiffness matrix of the original
graph. Table I illustrates an algorithm called theEdge Addi-
tion Bisection Algorithm that can be used to determine which
additional edge to add for maximizing the WRI.

Suppose one edgêeij ∈ E
∁ is added toG to form G′ =

(V, E ′) where E ′ = E ∪ êij . Note that the new WRI is a
solution of the secular equation (11) in the open interval
(λ4(S), λ5(S)), andω(µ) is non-decreasing on this interval.
Thus, the bisection algorithm can be used to find the best
edge with the largest WRI.

Instead of applying the bisection algorithm to find the
WRI for every possible edgêeij ∈ E

∁ to be added, we
propose a more efficient algorithm called theEdge Addition
Bisection Algorithm that performs the bisection operation
for the secular equations associated with all these edges
simultaneously to find the one resulting in the largest WRI.
Supposel andu are the current lower and upper bounds of



TABLE II

EDGE SWITCHING ALGORITHM

Input Connectivity matrixK;

Step 1 Run Edge Addition Bisection Algorithm, then updateK
by adding the returned edgeeadd;

Step 2 Run Edge Removal Bisection Algorithm, then updateK
by deleting the returned edgeedelete;

Step 3 If eadd = edelete, then go toOutput ; otherwise go to
Step 1

Output K.

the WRI for the stiffness matrix of the current edge setAt

(with initial feasible edge setAt = E∁ at t = 0), and let
m = (l + u)/2 be the mid point. Then, the following rules

(i) ω(m) < 0 ⇒ rw(S̃) ∈ [m,u]

(ii) ω(m) > 0 ⇒ rw(S̃) ∈ [l,m]

can be used to divide the set of edges inAt into two subsets:
A− = {eij ∈ At|λ4(S̃) ∈ [l,m)} and A+ = {eij ∈
At|λ4(S̃) ∈ [m,u]}. If the subsetA+ is empty (i.e.,A−

contains all candidate edges), then the midpointm becomes
the new upper bound and the new feasible edge setAt+1 is
updated toA−; otherwisem becomes the new lower bound
andAt+1 is updated toA+. This process is repeated until
only one edge is left in the current feasible setAt.

The above idea can also be applied to the similar problem
of deleting one edge while still maintaining the largest
WRI. In this case, the new WRI lies inside the interval
(λ3(S) = 0, λ4(S)); and sinceρ = −1, ω(µ) in the
secular equation (11) is non-increasing on this interval.
Correspondingly, the following changes to the Edge Addition
Bisection Algorithm must be made to obtain theEdge Re-
moval Bisection Algorithm: ρ = −1, l = λ3(S), u = λ4(S)
andAt = E in the Input ; in the Step 2, if ω(m) < 0, then
A+ ← A+ ∪ eij , otherwiseA− ← A− ∪ eij .

C. Edge Switching Algorithm

By cascading the two bisection algorithms, we obtain a
combined algorithm that maximizes the WRI by first adding
and then deleting an edge from the formation graph. When
the edges being added and deleted are not the same, the
net effect is to relocate an edge within the formation graph.
Table II illustrates the resultingEdge Switching Algorithm.

Fig. 1 shows a step-by-step illustration of applying the
Edge Switching Algorithm to a simple example. The worst-
case rigidity index of the example in Fig. 1 increases from
0.268 to 0.586 due to the topology optimization.

VI. A LTERNATING POSITION AND TOPOLOGY

OPTIMIZATIONS

Based on the optimization algorithms introduced in Sec-
tions IV and V, we propose analternating method for for-
mation rigidity optimization, which is illustrated in Table III.
The idea of the algorithm is to alternatively apply the position

TABLE III

ALTERNATING OPTIMIZATION ALGORITHM

Input Original KP-formation(I, K(0),p(0)), t = 0

Step 1 Fix K(t), optimize p
(t+1) = arg max

p

r̄(S(K(t),p))

locally from p
(t) (Section IV)

Step 2 Fix p
(t+1), optimize K(t+1) =

arg max
K

rw(S(K,p(t+1))) locally from K(t)

(Section V)

Step 3 If r̄(S(K(t+1),p(t))) < r̄(S(K(t),p(t))) or
r̄(S(K(t+1),p(t+1))) = r̄(S(K(t),p(t))), go to
Output

Step 4 t := t + 1, go to Step 1

Output K(t),p(t)

(d) (e)

(a) (b) (c)

Fig. 1. Edge Switching Algorithm (a)Input → (b) Step 1→ (c) Step 2,
Step 3→ (d) Step 1→ (e) Step 2, Step 3thenOutput

optimization and topology optimization processes until both
fail to improve the formation rigidity any further.

Since we have used different objective functions in the two
optimization problems, verification of consistency between
the two objective functions becomes necessary when we
merge the two optimization processes in Sections IV and V
into one. This verification is done through the first condition
described inStep 3of the algorithm in Table III.

An important advantage of the alternating method is that
it can avoid some local extrema with poor overall value. The
reason is that an extremum in agent positions may not be an
extremum in topology, and vice versa. By switching between
two objective functions, the optimal value obtained can be
improved compared to non-alternating algorithm.

VII. E XAMPLE

Fig. 2 depicts the simulation results of the alternating
formation optimization algorithm for a five-agent system
under the connectivity constraint. The initial formation has
random agent positions and a given topology as shown
in Fig. 2(a). We first keep the topology unchanged, and
apply the gradient descent algorithm to update the agent
positions. The resulting local maximum of the MRI is shown
in Fig. 2(b). The initial and final positions are shown by
hollow and solid dots, respectively, and the dashed lines
represent the trajectories of the intermediate results during



−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

1

2

3

4
5

(a) Initial formation
−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

1

2

3

4

5

(b) After position optimization
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(c) After topology optimization
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(d) Final formation

Fig. 2. Example on Alternating Optimization Algorithm
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Fig. 3. Rigidity Indices versus Time step

the agent position optimization process. After the formation
is locally optimized with the given topology, the edge-by-
edge switching algorithm is applied to find the optimal
topology for the new agent locations. The result is shown
in Fig. 2(c). These two steps are repeated alternatively until
neither of them can lead to an improvement. The final
optimized configuration is rendered in Fig. 2(d).

Fig. 3 plots the rigidity indices: WRI and MRI, as func-
tions of the time steps for the example in Fig. 2. Both rigidity
indices increase during the execution of the formation opti-
mization algorithm. The MRI grows from0.0137 to 0.2084,
while the WRI grows from0.0145 to 0.8365. There exists
a sudden improvement of the MRI from0.1478 to 0.1820

(from 0.3160 to 0.5302 for the MRI) at time step50 when
topology optimization occurs. As can be seen from the figure,
the MRI exhibits a similar general trend but with a smoother
variation compared with the WRI.

VIII. C ONCLUSION

Formation optimization is an important problem in multi-
agent systems, such as sensor networks and UAV’s. In this
paper, we try to optimize the rigidity of a given formation
as measured by two rigidity indices by reconfiguring the
positions and the connection topology of the agents while
conserving the total number of connections. We propose a
solution to this constrained optimization problem by breaking
it up into two phases: agent positions optimization and
topology optimization. An alternating algorithm is proposed,
whose effectiveness is demonstrated by examples. A future
direction is to find a distributed version of this algorithm.
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