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Abstract—This paper extends the recent study of the gen- generating function approach can also be extended to handle
erating function approach to stability analysis of switched state-dependent switchings [13].
linear systems from the Euclidean space to a closed convex  \nst jiterature on switched systems concentrates on those
cone. Examples of the latter class of switched systems include the Euclid H ot f lied
switched positive systems that model various biologic and on the Euch ean_ space. 0\_/vever,.a. varley_ o &TPP e
economic systems with positive states. Strong and weak stability Systems have their states confined within certain regions. A
notions are considered in this paper. In particular, it is shown prominent example is positive systems [5] that model a wide
that asymptotic and exponential stability are equivalent for range of industrial, biological, economic, and social systems.
both notions. Strong and weak generating functions on cones giapijity of switched positive systems and their extension,

are introduced and their properties are established. Necessary . itched t h | ved i
and sufficient conditions for strong/weak exponential stability 1.€., SWIIChed SySIEmS OVEr CONEs, Nas also received Increas-

of switched linear systems on cones are obtained in terms of iNg attention due to applications in such areas as communi-
the radii of convergence of strong/weak generating functions. cation and multi-agent systems; certain stability tools have
been studied, e.g. the common Lyapunov function approach
. INTRODUCTION [2], [4], [6], [12]. In this paper, we carry out the stability

o ) ) analysis for switched linear systems on closed convex cones

There has been a surging interest in switched and hyb;ghusing the generating function approach. Specifically, we
systems and their applications across a number of fields, s sider the strong and weak stability notions on a cone, and
as engineering, robotics, and systems biology. A fundamentglow that for both notions, the asymptotic and exponential

issue in the analysis and design of switched dynamical Sysapility are equivalent. Analytic properties of strong and
tems are their stability [11], [14], [15]. Numerous techniquegyeak generating functions on a cone, as well as their stability
have been proposed for the stability analysis, e.g., the Lignpjications and numerical approximations, are established.
algebraic approach [10] and the Lyapunov framework [3], The paper is organized as follows. In Section II, switched
[7]. In the vast literature on switched systems, switcheglhaar systems on cones are introduced and their stability
linear systems have received particular attention due to thejptions are defined. In Section Ill, the equivalence of the
relatively simple structure and yet rich dynamical bEhaVior%symptotic and exponential stability is proven. Sections IV
Recently introduced in [8], the generating functions havgngd Vv treat the strong and the weak generating functions of

been proven to be an efficient and unified tool for studyingwitched linear systems on closed convex cones, respectively.
the exponential stability of discrete-time switched linear

systems. Roughly speaking, generating functions are suitably |- STABILITY OF SWITCHED LINEAR SYSTEMS ON
defined power series with coefficients determined from the CONEs

systems trajectories under certain switching policies. Their The dynamics of a discrete-time autonomous switched
radii of convergence characterize the exponential growtinear system (SLS) is given by

rates of the system trajectories. Therefore, the exponential

stability of a switched linear system can be completely 2(t+1) = Asz(t), t=0,1,.... @)
described in terms of the radii of convergence of its generagtere »(t) € R is the state;{A4;,...,A,,} is a set of
ing functions. Furthermore, generating functions are closelyyhsystem dynamics matrices; and) € M := {1,...,m}

related to the value functions of properly defined optimajor all ¢, or simply o, is the switching sequence. Given the
control problems and admit efficient numerical computationnitial state x(0) = z, the trajectory of the SLS under the
This allows one to develop effective algorithms to determingwitching sequence is denoted byz(t; z, o).
the exponential growth rates, and in turn the exponential | et ¢ be a closed convex cone. Throughout this paper,
stability, under different switching policies, e.g., arbitranywe assume that the SLS (1) is positively invariant with
switching, optimal switching, or random switching. Therespect taC, namely, each subsystem defined bysatisfies
A;z € C wheneverz € C. This assumption ensures that a
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R? is the nonnegative orthant ®", and 4;, i« € M, are switching, we consider a more general setting: conewise

all positive matrices. linear inclusions (CLIs) on the corte SLSs orC are special
o ) instances of CLIs of.
A. Stability Notions of SLSs on Cones Let = := {X;}’_, be a finite family of nonempty closed
The stability of the SLS (1) on the coriecan be defined cones whose union i€, namely,U!_, &; = C. EachX; is
as follows. neither necessarily polyhedral nor convex, and two cones in
Definition 1: The SLS (1) on the coné is called = may overlap. Associated with each coAg is a linear

« exponentially stable under arbitrary switchifgith the ~ dynamicsz — A;z if = € &;, for some matrix4; € R™*"
parameters: andr) if there existsx > 0 andr € [0,1)  positively invariant onC. The conewise linear inclusion on
such that starting from any initial state € ¢ and C is the dynamical system defined by:
under any switching sequenegethe trajectoryz(t; z, o
satisfies||z(t; z,0)| < krt|z| for all t € Z; ( : wt+1) € fla(®)), teZy. 2)

« exponentially stable under optimal switchifgith the Here, f : C = C is the set-valued map defined Hyx) :=
parameterss and r) if there existx > 1 andr € {A;z| for all ¢ such thatz € X;}. Thus, at any time,
[0,1) such that starting from any initial state € C, eachX; which the current state(¢) = x belongs to offers a
there exists a switching sequencéor which z(¢; z,5)  possible location4;z to which the state may evolve at the
satisfies||z(t; z, o) | < xrt|z]|, for all t € Z,.. next step. Obviously, by setting= m and x; = C for all

Similar to linear systems, we can define the notions of=1,...,m, the CLI (2) onC reduces to the SLS (1) ah

stability (in the sense of Lyapunov) and asymptotic stability Starting from an initial statez € C, denote byz (¢, z)
for the SLS orC under both arbitrary and optimal switchings.a solution trajectory of the CLI (2). Due to the set-valued
Due to the homogeneity of the SLS, the local and globaiature of the dynamics, there are in general (infinitely) many
stability notions are equivalent. For simplicity, we also refechoices ofz(t, z). The (local) stability notions of the CLI (2)
to the stability under arbitrary switching asrong stability — at the equilibrium pointz. = 0 are defined as follows.
and stability under optimal switching ageakstability. Definition 2: At x, = 0, the CLI (2) onC is called
In Definition 1, by replacing the corgwith R™, we obtain « strongly stablef, for eache > 0, there is &, > 0 such
the corresponding notions of strong and weak exponential that||z(t,2)| < ¢,V t € Z, for any trajectoryxz(t, z)

stability for the original SLS (1) (ofR™). It is easily seen starting fromz € C with ||z|| < d.;
that stability of the SLS ofR™ in any particular sense (such . strongly asymptotically stabiéit is strongly stable and
as strongly or weakly exponentially stable) implies thatCon there is ad > 0 such thatz(¢,z) — 0 ast — oo for

but not vice versa. As a result, the stability study for SLSs  any trajectoryz(t, z) starting fromz € C with ||z|| < §;
on cones poses new challenges beyond that for SL&’on . strongly exponentially stabiéthere exists > 0, x > 1,
Before ending this section, we briefly review some basic  andr € [0,1) such that|z(t, z)|| < srt|2|, V¢ € Zy.,
notions of cones [1]. A con& is called pointed if the for any x(t, z) starting fromz € C with ||z|| < .
condition thatz, +--- + 2z, =0 with 2; € C,i=1,...,k, Due to homogeneity of the dynamics (2), the local and global
implies thatz; = 0 for all 4. A convex coneC is pointed if  stability notions of the CLI (2) are equivalent. In other words,
and only if C N (—=C) = {0}, or equivalently, ifC does not in the above definitions we can equivalently §et oc.
contain a nontrivial subspace. For exam@, is pointed In the Appendix, we shall prove the following result.
but the half spacgx € R™ [z, > 0} is not. A convex cone  Theorem 1:The CLI (2) onC is strongly asymptotically
C can always be decomposed @s= K + V, whereC is a stable if and only if it is strongly exponentially stable.
pointed cone and’ = C N (—C) is a subspace (called the Since the SLS (1) oi is a special instance of CLIs on
linearity space of’) orthogonal tofC: /C L V. A coneC is (C, Theorem 1 implies the following.
solid if it has nonempty interior. For exampl&’! is solid Corollary 1: The asymptotic and exponential stability of
and henceproper (i.e. closed, convex, solid, and pointed.) the SLS (1) onC under arbitrary switching are equivalent.

[1l. ASYMPTOTIC AND EXPONENTIAL STABILITY OF B. Equivalence of Weak Asymptotic and Exponential Stabil-
SLSs oNCONES ity for SLSs on Cones

It is well known that the notions of asymptotic stability It has been shown through a counter example in [13, Ex-
and exponential stability are equivalent for linear systems. lample 5] that weak asymptotic and weak exponential stability
this section, we will extend this result to SLSs on cones, firstre not equivalent for general CLIs @h(or even onR™).
for strong stability and then for weak stability. The previoudn this subsection, however, we establish the equivalence of
result in [13] on the strong stability of SLSs dR* then these two weak stability notions for SLSs on cones. The
becomes a special case of our proof. underlying reason for the difference in these two cases, as

. ) ) evidenced by the following proof, is that solutions to SLSs
A. Equivalence of Strong Asymptotic and Exponential Stg, ¢ under a fixed switching sequence depend continuously
bility for SLSs on Cones on initial states, while this is not the case for CLIs ©n

To show the equivalence of asymptotic and exponential Theorem 2:The SLS (1) onC is weakly asymptotically
stability for the SLS (1) on the coné€ under arbitrary stable if and only if it is weakly exponentially stable.



Proof: It suffices to show that weak asymptotic stability The radius of convergencef the strong generating func-
implies weak exponential stability as the other direction ision onRR" is defined as
trivial. Assume that the SLS (1) ahis asymptotically stable
under optimal switching, namely, for any initial state= C, An = sup{A > 0| Gx(z) < oo, Vz€R"}. (4)
the state trajectory(¢;2,0) — 0 ast — oo for at least ) ) )
one switching sequence. For eachz € C N S"~!, where ~ The following result is proved in [8]. _
St=1 .= {z € R"||z|| = 1}, there exist a switching Theorem 3:The _SLS (1) onR™ is 9xponentlally stable
sequence. and a timeT, € Z,. such that|z(T.; z,0.)|| < under arbitrary switching if and only ik}, > 1.
1. Since under the fixed switching sequenge the solution ~ Thus the radius of convergence of the strong generating
x(t;z,0,) at time T, depends continuously on the initial function onR™ fully characterizes the strong exponential
statez, we can find a neighborhooll, of z in ¢ nS*~!  stability of the SLS orR™.
such that||z(T.;y,0.)|| < % for all y € U.. The union
of all such neighborhoodqU, |z € CNS"~'}, is an open B. Strong Generating Functions of SLSs on Cones
covering of the compact s€énS™~!; hence there must exist
a finite sub-coveringg NS™~* C U{_, U.~ for somel < oo
andzj,...,z; eCNS" L

For the closed convex cortg definelV to be the smallest
subspace dR™ invariant with respect t§ 4; };c »¢ containing
. - . C, or equivalently, the set of all vectors generated from
The above obtained finite covering enables us to COements ot through repeated operations of multiplication

struct a gtate-feedba_ck swnchmg policy that Ieaqls o a% matrices in{44,..., A,,} and linear combinations:
exponentially converging state trajectory. To see this, defin

T := max; T,». For any initial state: € CNS™1, the above
argument implies that U, for somel <i < ¢. By our
constructionz(T) := z(T;; 2, 0s; ) satisfies|z(T1)| < 3. n particular, if ¢ is solid, then W = R If
Assume without loss of generality thaTy) # 0. Then ¢ s polyhedral, ie. it is finitely (and positively)
z(Ty)/||lz(T1)|| € U.; for somel < j < ¢, and as a result, generated such thaf — {Ziﬂ ap vk a; > 0} for
2(Ty) := @(Ter; 2(Th), 0.2 satisfies||z(T2)|| < 3ll=(T1)|.  some vectorsv € R™k = 1,---.,0, then W =
Repeating this process inductively, we obtain a switchingpar{ {v*}¢ UiemA{oF}e Ui se A A {oR e )

k=1
sequencer. concatenated by.-,o.-,... and a sequence  Ngte thatC C )W C R™ form a cascade of sets invariant
of times0 = Ty < T1 < Tp < --- with at mostT,

) ] < with respect to{ 4;};cr. Hence, the SLS (1) restricted to
between successive ones such that the resulting trajectiych set is well defined and the definition of the generating
x(t; 2,0.) satisfies|z(Tit1;2,02)[| < lle(Thiz,02)] for  gynction in (3) can be extended © and W as well. In

all k. Let k := Y 1= (maxienm | Ai]])’. Then it is easily particular, the strong generating function of the SLS (1) on
seen that|z(t; z,0.)|| < x(0.5)Y/T=~1|z| for all t € Z,. the coneC is defined as, foi > 0,

Since neithers nor T, depends ore, the SLS (1) orC is

W= spar{ C, UiemAiC, Ui,jeMAiAjC; . }

exponentially stable under optimal switching. [ ] e oyt . q
Remark 1:We call the SLS (1) or€ weakly convergent Ga(2) : bip;A Izt 2, )%, V= €C. ®)

if for any z € C, a switching sequence, exists such that

x(t; z,0,) — 0 ast — oo. This condition seems weaker thanHere, the same notatio@'(-) is used as in (3) as (5) is
weak asymptotic stability as weak Lyapunov stability is noexactly the restriction of (3) o@. For this reason, we simply
required. However, the proof of Theorem 2 essentially showsfer to (5) as the strong generating functionrSimilarly,
that weak convergence is equivalent to weak exponentigle can defingz,(-) on W as the restriction of (3) o .
(thus asymptotic) stability. This observation will be exploited Define the radii of convergence of the strong generating
in Theorems 5 and 6 in Section V. functions onC and W respectively as

IV. STRONG GENERATING FUNCTIONS OFSLSS ON
CONES
A. Strong Generating Functions of SLSs®h
In [8], the notion of strong generating functions is pro-For each) > 0, define the three subsets
posed to study the exponential stability under arbitrary
switching of SLSs. The strong generating function of the GA(C):={2 € C|GA(2) < xx} CC,

SLS (1) onR™ is the mapG : Ry x R” — Ry U {o0} Ga(W) :={z € W|Ga(z) < 0} T W,
defined as follows: for each € R™ and A > 0, Gr(R™) := {z € R" | Gx(2) < o0} C R™

A :=sup{A > 0| G\(z) < 00, Vz € C},
w i=sup{A > 0| Gxr(z) < 00, Vz € W}.

G)\(Z) = G()\,Z) = SupZ)\tHx(t;z,a)Hq, (3) which SatiSfygA(C) C g)\(w) C gA(Rn), and

7 =0
where the supremum is taken over all the possible switching G\(C) =GR NC, GW)=G(R")NW. (6)
sequencesy is a positive integer, and - || is an arbitrary
norm onR™. These sets will be useful in the next subsection.



C. Properties of Strong Generating Functions 5.G\(W) = GA(R™) N W is evidently a subspace.

Obtained through restriction, the strong generating func- 6- The proof is similar to that in [8], hence omitted.m
tions onC and W inherit many of the properties of their ~ Besides the above inherited properties, the strong gener-

counterpart orR™ established in [8], as listed below. ating functions onC and W also have some other shared
Proposition 1: For anyq € N and any vector norn - |, properties. Obviously, the former is the restriction of the
the strong generating functior$, (z) of the SLS (1) onC latter on the con€. Less obviously, we have the following.
and )V have the following properties. Proposition 2: For any A > 0, the strong generating
1. (Bellman Equation): For alh > 0 andz € C (or W), ~ fUnctionsG(z) of the SLS (1) onC and )V satisfy:
Ga(z) = ||2]|7 + X - max G5 (4;2). Gr(z) <00, VzEC <= Gr(2) <00, VzEW.
teM Proof: It suffices to show %" direction. Suppose
2. (Sub-additivity): For each > 0, we have G(+) is finite on C, i.e., GA(C) = C. Since GA\(R"™) is
1/q 1/q 1/q a subspace oR™ invariant with respect to{A;};cr¢ and
(Galzr+22)) 77 < (Ga(z0)) 7+ (Galz2)) containsG, (C), henceC, it must also contailV, asW is
for all z1,2, € C (or W). the smallest invariant subspace containthdn other words,
3. (Convexity): For each\ > 0, the function(G,(z))"/? W S Gx(R"). HenceG(2) is finite for all z € W. n
is convex onC (or W). As a result, the radii of convergence of the strong generat-

4. (Invariant Cone): Let\ > 0 be arbitrary. The sef,(C) ing functions onC, W, andR"™ have the following relation.
is a closed convex cone ifi invariant with respect to ~ Corollary 2: A\t = Aj,, > Ag... In particular, ifC is solid,
{A;};c . Particularly, ifC is polyhedral, so i€ (C). thenis = Ajy, = Ag..

5. (Invariant Subspace): Let > 0 be arbitrary. The set  Proposition 3: The strong generating functiors, (z) of
Gr(W) is a subspace ofV invariant with respect to the SLS (1) onC and W have the following properties.

{Aitiem. 1. If XA € [0,)\5) (henceG,(z) < oo for all z € C), then
6. For 0 < \ < (max;en ||4i]|9)~1, where the matrix there exists a constante [1,00) such that

norm is induced from the vector north- ||, Ga(z) is

finite everywhere ort. 2] < (GA(z))l/q <czll, Vzew.

Proof: 1. This follows directly from the dynamic ) ) . ;
programming principle. 2. (Relative Lipschitz Property) Leh € [0,\}). Then

1/q - . o
2. For anyzy, 2z, € C, 21 + 22 € C asC is a convex cone. (Ga(2)) ' is relatively Lipschitz onW (thus onC),
Then, by definition, i.e., there existd. > 0 such that for anyc,y € W,

1 1
(GA@) """ = (Ga) "] < L]z = y].
Proof: 1. The first inequality is obvious a§,(z) >
oo |z]|¢ follows directly from the definition. To show the
< Supz)\t<||z(t;zl’g)|| + Hx(t;%g)”)q second inequality, by homogeneity, it suffices to show that

(oo}
Ga(z1 + 22) = supZ)\tHx(t; z1,0) + z(t; 22,0)|
7 t=0

=0 (GA(2))"P < ¢, ¥z € WNS"1, for some constant > 1.
>, /q Let {u'}¢_, be a basis o#V. SinceWw N S"~! is bounded,
< sup KZA ||x(75;2170)q> we can findy > 0 such that for each: € W N S* 1,
=0 y there exists a unique real tup{ev, - -- , o, } satisfyingz =
oo 9749 14 i 14 ) :
n (Z)\tnx(t; 2, O_)Hq) ] > oy’ andy . |aj| <. Therefore, by Vlmf? of the
i—o subadditivity and positive homogeneity QG,\(Z)) ! we
1/q Y i\ 1/a
1/q 1/q conclude that(Gy(2)) " < ¢ ==y Y, (Ga(u?)) " for
< [(Gk(zl)) + (Ga(22)) } ’ all ze WNS* 1. It is easy to verify that > 1. )
e . 1/q
where the second inequality is due to the Minkowski inequal- 2- It follows from the subadditivity ofGx(2)) " on W
ity. The case fonV is entirely similar. that for anyz,y € W,
3. This is due to the subadditivity and the positive homo- 1 1/ 1
1/g Y P (Ga(@) "~ (CA() " < (Calz — )",

geneity of (Gx(z))
4. The conic property and the convexity ¢4 (C) fol-  Switchingz andy, we have

low from the positive homogeneity and the convexity of » » ”
(GA(2))", respectively. The invariance with respect to (Ga(y) " = (Ga(x) ™" < (Galy —2)) .
{A;}iem is a consequence of the Bellman equation. T%
show thatG,(C) is a closed convex cone, we note that
GA(C) = Gx(R™) N C, and GA(R™) is easily shown to 1/q _ 1/q o Ve _

be a subspace [8]. Thug,(C) as the intersection of the |<GA($)) (GA(y)) | = (GA(x y)) < dle=yll
convex cone& and a subspace is convex and closed, and 8here the last step is due @ — y) € W and the first
polyhedral whenevef is polyhedral. property. ]

ombining the above two inequalities, we obtain



Remark 2:By the results of this subsectiog,(C) is a
closed convex sub-cone 6f supposeC admits the decom-
positon C = K + V where K is a pointed cone an®
is a subspace, the@,(C) = K\ + V, with £, Cc K a
pointed cone and’, C V a subspace. A3 increases(7y
will increase, hence the invariant subsg§gC), G, (W), and
G (R™) will shrink. In particular, ifC is not pointed (i.e.y #
{0} is nontrivial), then as\ increasesgG,(C) will change
from non-pointed to pointed, or equivalently, will shrink
to {0}, at exactlyA}, ;= inf{\ > 0| G\ (z) = o0, Vz € V}.

D. Strong Exponential Stability Characterization

The radii of convergence of the strong generating functions
characterize the strong exponential stability of the SLS on

C, as stated by the following theorem.
Theorem 4:The following are equivalent:
1. the SLS (1) on the coné (or on the subspac®)) is
exponentially stable under arbitrary switching;
2. M= > 1,
3. G1(z) is finite for all z € C (or W).
Proof: In view of Corollary 1 and Proposition 3, the
proof is essentially the same as that of [8, Theorem M.

where\ > 0, z € C, and the infimum is over all switching
sequences of the SLS orC. In addition,q € N, and||- || is
an arbitrary norm irR™. The radius of convergence for the
weak generating function of the SLS ¢his defined as

XS = sup{A > 0| H(2) < o0, Yz € C}.
Proposition 5: For anyg € N and any vector nornjj - ||,
the weak generating functioH ), (z) of the SLS (1) orC has

the following properties.
1. (Bellman Equation): For anyx > 0 andz € C,

— q . 1 .
Hy(z) = ||]|7+ A min Hy(A;2).
2. (Invariant Cone): For any > 0, the set
HA(C) :={z € C|Hx\(z) = o0}

is a cone inC not containing0. Further, H,(C) is
invariant with respect to{A;}icm, i€, A;HA(C) C
HA(C), Vi e M.

For 0 < X\ < (minzen ||4:9)~1, where the matrix
norm is induced from the vector norin- ||, Hx(z) is
finite everywhere ort.

Proof: The proofs of these properties are similar to

E. Numerical Computation of Strong Generating Functionshose in [8] for the corresponding properties of the weak

The algorithm developed in [8] for computing strongg€nerating function oiR™; hence they are omitted.

generating functions oR" can be extended to compute The subsequent theorem shows two important results:
those on closed convex cones. We briefly discuss thf§ AS A increases)l is the exact value at whiclff (z)

in this section. For anyA € [0,A}), define g
Sup.ec, |-=1 GA(2). Moreover, define the following func-
tions that approximate the strong generating functiyz)
on C: Gh(2) = max, Yr_, M|zt 2,0)[|9, ¥V 2z € C.
It is easy to see thaG¥%(z) satisfiesG%(z) = |z]|9 +
Amax;epm GY 1 (Aiz), ¥ 2z € C, with G(2) = ||z||%. This

yields a recursive procedure to compute these functions. Ap-

starts to have the infinite value; (ii) if for some> 0, the
weak generating functiott?,(-) is finite everywhere or€,
then it must be bounded by a homogeneous functjp|
uniformly onC.

Theorem 5:For each\ > 0, the following are equivalent:
(@) Hx(z) < c||z]|9, Vz € C, for some constant > 0
(generally dependent ok);

plying Propositions 1 and 3 as well as the similar argumentt) Hx(z) < oo for all z € C;

as in [8, Proposition 6], we have the following.
Proposition 4: The functionsG% () satisfy
(1) G%(2) <Gi(2) <~ < Gi(2),VA >0, Vz €C.
(2) 1GX(2) = GA(2)| < ga(1 —1/g2)"*1||2]l%, VK € Z,
Vz € C, for any A € [0, A§).
These results show that the sequence of functigié}
converges uniformly and exponentially fast €@, and as

such can provide numerical approximations of the latteri
To efficiently implement this numerical procedure, an ove
approximation can be developed using the convex, cont
structure ofC; we refer the interested reader to Algorithm 14

in [8] for further details.
V. WEAK GENERATING FUNCTIONS OFSLSs oN CONES

(€) A€ [0,)9).

Proof: It is obvious that(a) = (b) and(c) = (b). We
shall show(b) = (a) and(b) = (c) as follows, which leads
to the equivalence of the three statements.

To prove (b) = (a), considerA > 0 such that (b)
holds. Then for anyz € C, there exists a switching se-
quenceo. such that}";° A|z(t; z,0.)[|9 < oco. Define
A; = M/9A;Vi € M. For the initial statez € C

@and the switching sequence,, let %(t;z,0.) denote the

fajectory from z under o, with the dynamics matrices
in the corresponding:(¢; z,0,) replaced byA;. Then,
|Z(t; z,0,)||9 = A|jx(t;2,0.)| for all t € Z,. Since
Yoo lZ(t;2,02)||7 < oo for eachz € C, Z(t;2,0.) — 0
ast — oo. In other words, the SLS defined by subsystem

Similar to the strong generating functions, weak gendynamics matrice$ﬁi},-eM is weakly convergent od. We
erating functions can be defined to address weak asymgrus deduce from Remark 1 that it is weakly exponentially
totic/exponential stability of SLSs on cones, i.e. the stabilitgtable onC. Thus there exist > 0 andp € (0, 1) such that
of the SLSs on cones under optimal switching. Specificallyjz(¢; z, 0.,)||? < kpt||z||?, Vt € Z for eachz € C. Hence

for the SLS (1) on the closed convex canedefine its weak
generating functiod : Ry x C — R4 U {co} as

H,\(Z) :

H(\z):==inf > Mlz(t;2,0)|7,  (7)
t=0

Hy(2) <> Ma(tz,00)[* = D1t 2,02)]10
t=0 t=0
K
- P

<

Iz]|7, ¥ zecC.



Letting ¢ := /(1 — p) yields (a). Further(c) = (a) holds.

To show (b) = (c), it suffices to show thafiyc(z) =
oo for some z € C. To this end, definehy
sup,ce, |2j=1 Hr(2), YA € [0,X9). It follows from the

implication (¢) = (a) and a similar argument as in [8,

Proposition 9] that for any € (0, X9), \/(1 —1/hy) < XS,
or equivalently,0 < 1/hy < 1— A/X¢. Therefore h), tends
to infinity as A T A¢. This in turn implies thatif ¢ (z) = oo
for somez € C, since otherwise, by usin®) = (a), we
would haveh,c < c for somec > 0, a contradiction to the
fact thathy — oo as\ 1 AS. ]
The next result shows that the radius of convergekice

characterizes the weak exponential stability of the SLSS.on

Theorem 6:The SLS (1) onC is exponentially stable
under optimal switching if and only RS > 1.

{29} be that subsequence convergingzth In view of (i)-

(i) and the construction of¢;}, we see that the sequence

{z(1,29) k>, C C satisfiesy < |lz(1,22)|] < r for all

k > t;. Thus it has a subsequence convergingrtoc C

with ¢ < ||z1|| < r. By Lemma 1, a neighborhood/ of

9 can be found such th&iV' N C) C U;cz(,0)X;. Note that

z(1,29) = A; 29 for some;j andz € N for all large k.

Furthermore, since the index 5é¢x2) is finite, we deduce

that there exist a subsequer{cql z9)} of {x(1,29) b,

and an indexj; € Z(z?) such thatr(l z9,) = Aj 2, for

aII k' with z(1,2%,) — «! and xk, — 2. This shows that

rl = A;, 20, Recallingj; € Z(z9), we havez! € f(z9).
Repeatlng this argument and using induction, we obtain

{a'}1ez, C C such that ()p < ||zL|| < r for all t € Zy;

(i) for eacht € Z,, 2!ttt € f(2l). This shows that the

Proof: The proof for necessity is straightforward. Totrajectory z(t,z?) = {z}iez, is such thatl|z(t,z2)[| >

show sufficiency, supposk > 1. Thus for\ = 1, Hy(z)
is finite for anyz € C. This implies that the SLS od is

u,V t € Z,. This contradicts the assumption of asymptotic
stability of the CLI onC. |

weakly convergent and thus weakly exponentially stable, in With Proposition 6 in hand, the remaining proof of The-

view of Remark 1 and Theorem 2. [ ]
Using Theorem 6, it can be shown as in [8] that

Corollary 3: For anyr > (X¢)~1/4, there existss, > 0

orem 1 essentially follows from the similar argument in the
proof of [13, Theorem 3].
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