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Abstract— Assessing air traffic complexity on a mid term
horizon can help to timely identify those safety-critical en-
counter situations that would require many tactical resolu-
tion maneuvers to be resolved. This is particularly useful in
advanced autonomous air traffic management systems, where
aircraft are responsible for self-separation maintenance.
In this paper, we propose a new method to evaluate mid term
traffic complexity based on the aircraft intent information and
current state. The key novelty of the approach is that uncer-
tainty in the future aircraft positions is explicitly accounted for
when evaluating complexity.

I. I NTRODUCTION

An Air Traffic Management (ATM) system is a multi-agent
system, where many aircraft are competing for a common,
congestible resource, represented by airspace and runways
space, while trying to optimize their own performance eval-
uated, e.g., in terms of travel distance, fuel consumption,
passenger comfort. Coordination between different aircraft
is needed to avoid conflicts where two or more aircraft get
too close one to the other or even collide.

In the current, centralized ground-based ATM system,
coordination is operated on two different time scales by the
Air Traffic Control (ATC) and Traffic Flow Management
(TFM) functions. The human-based ATC function operates
on a mid term horizon with the goal of maintaining the
appropriate separation between aircraft, thus avoiding that
a conflict occurs. The TFM function operates on a long term
horizon by defining the flow patterns so as to ensure a smooth
and efficient organization of the overall air traffic, possibly
reducing the need for the ATC intervention at a finer time-
scale. The airspace is structured in sectors and a team of 2/3
air traffic controllers is in charge of each sector. The capacity
of a sector is limited by the sustainable workload level of
the air traffic controllers, and TFM accounts for this capacity
constraint when performing traffic flow optimization.

The growth in air traffic demand is pushing to its limit the
current ground-based ATM system. For example, in 2007
there was a 5.3% growth in the air traffic over Europe
over 2006, with a disproportionate increase of 17.4% in the
total delay [1]. This has fostered the development of new
operational concepts in ATM, as witnessed by the SESAR
(Single European Sky ATM Research), [2], and NextGen
(Next Generation Air Transportation System) projects, [3].
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Current initiatives for increasing the system capacity without
compromising safety consist in introducing automated tools
to support the air traffic controllers. On a longer time horizon
perspective, a conceptually different innovation is foreseen
with a significant transfer of separation responsibilitiesfrom
ground controller to on board pilots. In advanced automated
airborne ATM, aircraft entering the self-separation airspace
will be allowed to modify their flight plan so as to opti-
mize performance and improving the effectiveness of their
flight. In turn, pilots will have to take over the ATC tasks
for separation assurance, possibly relying on tools enabled
by advanced technologies for sensing, communicating, and
decision making. Ground control will assume a new role
consisting in a higher level, possibly automated, supervisory
function as opposed to lower level human-based control.

The objective of this paper is to develop a new method for
air traffic complexityevaluation on a mid term horizon. The
method explicitly takes into account the uncertainty affecting
the future aircraft positions when evaluating complexity.
Though representing a relevant factor in the assessment of
complexity, this characteristic has been overlooked in the
literature. Deterministic models for predicting the aircraft
future positions along the reference time horizon have been
in fact adopted in the literature for complexity evaluationand
prediction.
In an autonomous ATM context, the proposed method could
be useful to timely identify those safety-critical situations
that could be over-demanding for the aircraft to solve au-
tonomously.

The rest of the paper is organized as follows. In Section II,
we briefly review the approaches in the literature to air
traffic complexity evaluation. We then illustrate in Section III
the novel notion of complexity proposed in this paper. A
numerical example is reported in Section IV. Finally, some
conclusions are drawn in Section V.

II. EXISTING APPROACHES TO COMPLEXITY EVALUATION

Most studies on air traffic complexity have been developed
with reference to ground-based ATM, as it clearly appears
from the literature reviews [4] and [5].

The concept of air traffic complexity has been originally
introduced to evaluate the difficulty perceived by the air traf-
fic controllers in handling safely a certain air traffic situation
(ATC workload). The idea is that assessing the impact on the
ATC workload of different air traffic configurations can help
to evaluate how the current ground-based ATM system is
operated, and can also provide guidelines on how to obtain
more manageable sectors by reconfiguring the airspace and
by modifying traffic patterns, see e.g. [6], [7], [8]. The



work [9] was perhaps the first one to systematically examine
the relationship between air traffic characteristics and ATC
workload.

Among the proposed complexity measures, it is worth
mentioning thedynamic densityintroduced in the pioneering
work by NASA, [10], [11]. Dynamic density is a single
aggregate indicator where traffic density and other controller
workload contributors (such as the number of aircraft un-
dergoing trajectory change and requiring close monitoring
due to reduced separation) are combined linearly or though a
neural network whose weights are tuned based on interviews
to qualified air traffic controllers. Aircraft density on itsown
is not an adequate indicator of the ATC workload. Analysis
of the traffic in a sector in fact indicates that sometimes
controllers accept aircraft even when the assigned capacity
is exceeded, while at some other time they will start rejecting
entries even if capacity is below the threshold.

The difficulty in obtaining reliable workload measures
has been one of the strongest motivations for investigating
complexity metrics independent of the ATC workload, such
as theinput-output approachin [12], the fractal dimension
in [13], and theintrinsic complexitymeasures in [14], [15]
and [16]. These metrics are actually those that appear more
portable to an autonomous ATM context.

Workload-independent metrics can be classified as control-
dependent or control-independent, depending on the fact
that they explicitly account for the controller in place or
not. The fractal dimension and the intrinsic complexity
measures are control-independent metrics and do not require
the knowledge of the controller in place, which is accounted
for only indirectly, through the effect of its action on the
air traffic organization. The input-output approach provides
a control-dependent metric, since complexity is evaluatedin
terms of control effort needed to accommodate an additional
aircraft crossing the considered airspace region. Indeed,in
[17] it is suggested that, to achieve the aggregate objective
of avoiding excessive “air traffic complexity” in autonomous
aircraft ATM, aircraft should plan their trajectory so as to
preserve maneuvering flexibility to accommodate possible
disturbances stemming from other traffic.
In principle, control-dependent metrics could be employedin
the airborne self-separation framework. In practice, however,
a control-independent measure of complexity appears to be
better suited for an airborne self-separation ATM system
where the controller has a decentralized time-varying struc-
ture, difficult to characterize for the purpose of control effort
evaluation, and involving a human-in-the-loop component
represented by pilots.

Those approaches providing a spatial complexity map,
such as the input-output and the intrinsic complexity ones,
can support decision making by isolating critical areas;
whereas a scalar aggregate indicator of complexity can be
useful as synthetic index to compare different air traffic
situations. Fractal dimension, in particular, is an aggregate
metric for measuring the geometrical complexity of a traffic
pattern based on the trajectories observed on an infinite time
period.

The time dependence aspect has been mostly neglected
in the literature and should be better focused, introducing
approaches to air traffic complexity evaluation tailored tothe
the specific time horizon. Complexity evaluation on a long
term prediction horizon can help in identifying congested
areas for strategic flight plan optimization, whereas complex-
ity evaluation on a mid term horizon can help identifying
encounter situations that are critical to solve.

To our knowledge, the uncertainty affecting the aircraft
motion has been neglected in all approaches to air traffic
complexity characterization. This is a critical aspect since
the reliability of complexity prediction depends on that of
the aircraft motion prediction, which is affected by different
sources of uncertainty, primarily to wind, but also to errors
in tracking, navigation, and control.

III. PROPOSED APPROACH TO COMPLEXITY EVALUATION

The introduced notion of air traffic complexity aims at
timely pointing out those safety-critical situations character-
ized by a limited inter-aircraft manoeuvrability space that
could be difficult for the aircraft to resolve autonomously.
As in mid term conflict resolution, mid term complexity
evaluation is based on the aircraft state and intent information
along a time horizon[0, tf ] of the order of tens of minutes.
The intent information allows to reconstruct thenominal
trajectory of each aircraft over the look-ahead time horizon
[0, tf ].

Computations are performed in the level-flight case, under
the assumption that a multi-legged approximation of the
nominal trajectory can be adopted, with the aircraft flying
at constant velocity in each leg.

A. Complexity from a global perspective

ConsiderN aircraft flying at the same constant altitude in
the airspace region of interestS ⊂ R

2 during[0, tf ]. Fix x ∈
S andt ∈ [0, tf ] and denote byP ρ

m(x, t) the probability that
at leastm aircraft will enter a ball of radiusρ centered atx
within the time window[t, t+∆], with ∆ > 0 denoting some
short term look-ahead time horizon. We call this quantity as
the probabilistic occupancy of levelm and sizeρ of the
airspace at positionx ∈ S and at timet ∈ [0, tf ].

For m = 1, mapP ρ
m(·, t) is close to 1 along the nominal

paths of theN aircraft and goes to zero if one gets far from
the nominal paths, at a rate that depends on the uncertainty
affecting the aircraft future positions. Form ≥ 2, P ρ

m(·, t) is
instead close to 1 in those regions of the airspaceS visited
during the time interval[t, t + ∆] by at leastm ≥ 2 aircraft
with high probability. For eachx ∈ S and t ∈ [0, tf ],
P ρ

m(x, t) is decreasing as a function ofm ∈ N and increasing
as a function ofρ ∈ R+.

We introduce functionρmax : [0, tf ] → R+ given by

ρmax(t) := sup{ρ ≥ 0 : sup
x∈S

P ρ
2 (x, t) ≤ pT },

where pT is some threshold value for the probability that
two aircraft come close one to the other, and define

ρ⋆
max := sup

t∈[0,tf ]

ρmax(t).



Radiusρ⋆
max is an index of robustness of the overall air traffic

system to possible disturbances stemming from modifications
of the flight plan of the aircraft and from additional aircraft
entering the traffic. The larger isρ⋆

max, the more the aircraft
are far one from the other, both in time and in space, with
high (> 1 − pT ) probability, and, hence, the milder are
the safety constraints on the admissible flight plans for the
aircraft already present in the traffic and the easier is to safely
accommodate an additional aircraft entering the traffic.

We propose to take

ξ :=
1

ρ⋆
max

as a synthetic indicator of complexity of the traffic during
the time horizon[0, tf ], which will then depend on both the
local aircraft density and the traffic organization throughthe
aircraft flight plans.

ξ provides information on the possibility of future conflicts
between the aircraft that are currently present in the traffic.
Let ρ̄ denotes the minimum safe distance between each
aircraft pair. Ifξ ≤ 1

ρ̄
, then, all the aircraft keep at a distance

larger thanρ̄ during the whole time horizon[0, tf ], with
probability larger than1 − pT . If ξ > 1

ρ̄
, then, at least

two aircraft will get close in space and time at some time
instantt̄ ∈ [0, tf ] with probability larger than or equal topT .
Two aircraft will in fact visit the same circular are of radius
ρmax(t̄) < ρ̄ within the time frame[t̄, t̄+∆] with probability
larger than or equal topT .

The airspace region with highpercentage of occupancy
over the time horizon[0, tf ] can be identified through the
complexity mapΞ : S → [0, 1]:

Ξ(x) =
1

tf

∫ tf

0

P ρ̄
2 (x, t)dt. (1)

Ξ(x) = 0 means that there will be at most a single aircraft
within the ball of radiusρ̄ centered atx during the whole
interval [0, tf ], that is, each aircraft passing throughx at any
time t ∈ [0, tf ] will be at a safe distance from all the other
aircraft. Aircraft passing throughx such thatΞ(x) > 0 will
be possibly involved in a conflict and the likelihood of this
event grows withΞ(x).

1) Mathematical formulation:We suppose that each of
the N aircraft Ai, i = 1, . . . , N , that are flying at the
same constant altitude is following a flight plan given by
a sequence of way-points with the associated arrival times
{(O(i)

h , t
(i)
h ), h = 0, 1, . . . , ni} with O

(i)
0 representing the

current position of the aircraft at timet(i)0 = 0. The flight
plan of aircraftAi determines a nominal, piecewise constant,
velocity profileuAi : [0, tf ] → R

2 that the aircraft is trying
to follow starting fromO

(i)
0 . The corresponding, piecewise

constant, nominal heading function is denoted asγAi :
[0, tf ] → [0, 2π).

The actual future positionxAi of aircraft Ai along the
look-ahead time horizon[0, tf ], however, is not precisely
known and we assume that it is given by

xAi(t) = xAi

0 +

∫ t

0

uAi(s)ds + R(γAi(t))ΣWAi(t). (2)

WAi(t) in this equation is a standard 2-D Brownian Motion
(BM) whose variance is modulated byΣ = diag(νa, νc),
ν2

a , ν2
c being the power spectral densities of the perturbations

affecting the position in the along-track and cross-track
directions. The initial position is given byxAi

0 = O
(i)
0 . R(γ)

is the rotation matrix associated withγ ∈ [0, 2π) given by

R(γ) =

[

cos γ − sinγ
sin γ cos γ

]

.

The variance of the BMWAi(t) grows linearly with time,
thus modeling the fact that the uncertainty in the position
of aircraft Ai becomes larger as the prediction horizon gets
more extended. Similar models for predicting the aircraft
future positions have been proposed in [18], [19], [20]
and motivated based on the different sources of uncertainty
affecting the along-track and cross-track tracking errors.

For each aircraftAi we can define asπρ
i (x, t) the proba-

bility that aircraftAi will enter the ball of radiusρ centered
at x ∈ S within the time frame[t, t + ∆].

If the BMs affecting the future positions of theN aircraft
are independent, then the probabilistic occupanciesP ρ

1 and
P ρ

2 can be computed in terms ofπρ
i (x, t), i = 1, 2, . . . , N ,

as follows

P ρ
1 (x, t) = 1 −

N
∏

j=1

(

1 − πρ
j (x, t)

)

P ρ
2 (x, t) = P ρ

1 (x, t) −
N

∑

h=1

(

πρ
h(x, t)

N
∏

j=1, j 6=h

(

1 − πρ
j (x, t)

)

)

.

The independence assumption is actually reasonable if the
N aircraft are not flying too close one to the other, so that
the correlation introduced by the wind affecting the aircraft
motion is negligible, [21], [22]. If this is not the case, the
expressions above can be considered as estimates.

We now address the problem of determining the proba-
bility πρ

i (x, t). Analytic – though approximate – expressions
for πρ

i (x, t) as a function ofx ∈ S and t ∈ [0, tf ] will be
derived, starting from the case when aircraftAi is following
a one-leg nominal trajectory and then extending the approach
to the multi-legged case. The approximation scheme in the
one-leg case is based on the approach in [20] for estimating
the probability of conflict. For ease of notation, we shall refer
to aircraftAi as aircraftA, omitting the subscripti.

a) One-leg nominal trajectory:Consider aircraft A
flying with constant velocityuA ∈ R

2 and headingγA ∈
[0, 2π) starting fromxA

0 ∈ S. We address the problem of
evaluating the probabilityπρ(x, t) that aircraftA enters a
circle of radiusρ centered atx ∈ S within the time frame
[t, t + ∆].

By (2), the relative position of aircraftA with respect to
x is governed by:

∆x(t) = ∆x0 + ∆ut − n(t), (3)

where we set∆x(t) := x − xA(t), ∆x0 := x − xA
0 , ∆u :=

−uA, andn(t) := R(γA)ΣWA(t).



Processn(t) can be reduced to the standard 2-D BM
WA(t) by using the coordinate transformation with matrix
T = Σ−1R(γA)−1:

∆s(t) = ∆s0 + u t − WA(t),

where ∆s(t) := T∆x(t) is the relative position of the
aircraft in the new coordinates,∆s0 := T∆x0 and u :=
T∆u. In the new coordinate system, the circular zone of
radius ρ centered atx is transformed into an ellipse with
boundary described by:

ν2
a(x1 − c1(t))

2 + ν2
c (x2 − c2(t))

2 = ρ2, (4)

whose centerc(t) = (c1(t), c2(t)) moves according to
c(t) = ∆s0 + u t (see Figure 1).

Aircraft A then gets within a distanceρ from x within
[t, t+∆] if the 2-D standard BMWA(t) starting at the origin
wanders into this moving ellipse within[t, t+∆]. Denote this
event byFt. Then,πρ(x, t) is the probability ofFt.

k

h

L

xd

a

s∆ 0

x2

o
x1

u

Fig. 1. Transformed protection zone.

Let xd be the distance of the origin from the lineh along
which the center of the ellipse is moving, anda be the
distance from the position∆s0 of the center att = 0 to
the projection of the origin onh, as indicated in Figure 1
representing the new coordinate system. Then,xd anda can
be computed as follows:

xd =
|∆sT

0 R(π
2 )u|

‖u‖ , a = −∆sT
0 u

‖u‖ . (5)

Observe that a positive value fora indicates that aircraftA
is approachingx, whereas a negative value fora indicates
that it is flying away fromx.

The probabilityP (Ft) of Ft does not admit a closed-form
formula. However, we can approximate it by a “decoupled”
event. Letk be the line passing through the center of the
ellipse and orthogonal tou which moves along with the
ellipse at the velocityu (see Figure 1). The projected width
2L of the ellipse along linek can be computed as follows:

L =
ρ

νaνc

√

u2
1ν

2
a + u2

2ν
2
c

‖u‖ . (6)

Denote byτ the first timeWA(t) hits k and defineF ′
t to

be the event that the first timeWA(t) hits line k during the

time horizon[t, t + ∆], it is within a distance ofL from the
center of the ellipse.

We considerP (F ′
t ) as an estimate ofP (Ft). This approx-

imation is actually fairly accurate if the aircraft velocity is
much larger than the variance growth rate of the BM. The
intuition for this is that when the velocity of the moving
ellipse is high, the eventFt is largely determined by the
width of ellipse viewed in the direction ofu.

Without loss of generality, to computeP (F ′
t ) we assume

that u is aligned with the positivex1 axis. Indeed, the axes
rotation eventually necessary to makeu aligned with the
positivex1 axis can be incorporated into the transformation
matrix T , and stillWA(t) remains a standard BM, since BM
is invariant with respect to rotations.

When the aircraftA is approachingx, a given by equation
(5) is positive, and, if we ignore the effect of the noise, in
the new coordinate system the minimal separation distance
is given byxd in (5). Moreover, timeτ for the BM WA(t)
to reach linek has evidently the distributionpτ (·) given by
the following Lemma 1 withµ = ‖u‖.

Lemma 1 (Bachelier-Levy, [23]):Let b(t) be a standard
one dimensional BM starting at the origin. Fixµ ∈ R and
defineτ := inf{t ≥ 0 : b(t) = a − µt} to be the first time
b(t) reaches a point which is moving with speedµ towards
the origin starting at positiona > 0. Then,τ has probability
density function:

pτ (t) =
a√
2πt3

exp[− (a − µt)2

2t
], t ≥ 0.

The approximate probabilityP (F ′
t ) can then be written

as:

P (F ′
t ) =

∫ t+∆

t

pτ (t)

∫

|y−xd|<L

1

2πt
exp(−y2

2t
) dy dt

=

∫ t+∆

t

pτ (t)
[

Q(
xd − L√

t
) − Q(

xd + L√
t

)
]

dt, (7)

where we setQ(y) :=
∫ ∞

y
1√
2π

exp(−z2/2) dz.
It can be shown thatE[τ ] = a/‖u‖ andvar[τ ] = a/‖u‖3. If
we use a 0-th order expansions ofQ(xd−L√

t
) and Q(xd+L√

t
)

in (7), we get the following result.
Result 1: Suppose that aircraftA is approaching position

x ∈ S (a > 0). Then, the probabilityπρ(x, t) that aircraft
A enters the ball of radiusρ centered atx within the time
frame [t, t + ∆] can be approximated by:

P̂ (Ft) :=
(

V (t + ∆) − V (t)
)

(

Q
(xd − L√

t0

)

− Q
(xd + L√

t0

)

)

whereV (s) = Q
(

a−µs√
s

)

+ e2aµQ
(

a+µ s√
s

)

, t0 = a
µ

, if a
µ
∈

[t, t + ∆]; t + ∆
2 , otherwise, andµ = ‖u‖. �

For the purpose of complexity computations, we set
P̂ (Ft) = 0 when aircraftA is flying away fromx (a < 0).

b) Multi-legged nominal trajectory:Consider aircraft
A flying with piecewise constant velocityuA : [0, tf ] → R

2

and headingγA : [0, tf ] → [0, 2π) starting fromxA
0 ∈ S.

The future positionxA of aircraft A is given by

xA(t) = xA
0 +

∫ t

0

uA(s)ds + R(γA(t))ΣWA(t).



The relative position of aircraftA with respect tox evolves
according to the equation

∆x(t) = ∆x0 +

∫ t

0

∆u(s)ds − R(γA(t))ΣWA(t), (8)

where∆x0 := x−xA
0 is the aircraft relative position at time

t = 0 and∆u(s) := −uA(s).
At time t the aircraft is tracking some legh of its nominal

trajectory, associated with the deterministic time interval
[th, th+1), the (constant) heading angleγA

h = γA(th), and
the (constant) relative velocity∆uh = uB − uA(th). With
reference to[th, th+1), equation (8) can then be rewritten as
follows:

∆x(t) = ∆xh,0 + ∆uht − n(t), t ∈ [th, th+1), (9)

where we set∆xh,0 := ∆x0 +
∫ th

0 ∆u(s)ds − ∆uhth and
n(t) := R(γA

h )ΣWA(t).
Consider first the case when[t, t + ∆] ⊆ [th, th+1).

By (9), it is easily seen that to the purpose of computing
πρ(x, t), one can evaluate the probability that the perturba-
tion n(t) enters the ball of radiusρ whose center is moving
at constant velocity∆uh starting from∆xh,0 at timet = 0.
Similarly to the one-leg case, by applying the transformation
matrix Th = Σ−1 R(γA

h )−1, equation (9) can be rewritten as

∆s(t) = ∆sh,0 + uht − WA(t), t ∈ [th, th+1),

where∆s(t) := Th∆x(t), ∆sh,0 := Th∆xh,0 and uh :=
Th∆uh. The problem then becomes that of evaluating the
probability that during the time horizon[t, t+∆] the standard
BM WA(t) enters the ellipse with boundary given by (4) and
centerc(t) = (c1(t), c2(t)) moving according to equation
c(t) = ∆s0,h + uh t. An estimate of this probability can
then be derived by the same approximation scheme as in the
one-leg case.

If [t, t + ∆] ⊆ [th, th+1) is not satisfied, we can partition
[t, t+∆] in sub-intervals, each one corresponding to a leg of
the nominal trajectory. For each element of the partition we
can apply the procedure above to determine an estimate of
the corresponding probabilityP (Ft,h). By considering the
eventsFt,h as if they were independent,πρ(x, t) can be
approximated by

P̂ (Ft) = 1 −
mt
∏

h=1

[1 − P̂ (Ft,h))],

wheremt is the number of legs of the trajectory of aircraft
A within the time interval[t, t + ∆].

B. Complexity from a single aircraft perspective

Each single aircraft, say aircraftAi, is flying in some
specific region ofS and is interested in predicting the level
of complexity encountered along its own intended nominal
trajectory. To this purpose, we consider the set of all the
other N − 1 aircraft, excluding aircraftAi, and evaluate
the probabilistic occupancy of levelm and sizeρ within
[t, t+∆] with reference to such a set. We denote this quantity
asP ρ

m,i(x, t).

According to a reasoning similar to that in Section III-A,
we introduce functionρmax,i : [0, tf ] → R+ given by

ρmax,i(t) := sup{ρ ≥ 0 : P ρ
1,i(x̄

Ai(t), t) ≤ pT },

wherex̄Ai(t) is the nominal position of aircraftAi at time
t ∈ [0, tf ], and define

ρ⋆
max,i := sup

t∈[0,tf ]

ρmax(t).

Radiusρ⋆
max,i is an index of robustness of the air traffic

encountered by aircraftAi along its nominal trajectory. The
larger isρ⋆

max,i, the more aircraftAi is far from the other
aircraft, both in time and in space, with high (> 1 − pT )
probability, and, hence, the larger is the robustness of its
trajectory to possible disturbances due to possible deviations
of the other aircraft from their intent and additional aircraft
entering the traffic.

The quantityξi := 1
ρ⋆
max,i

can then be taken as synthetic
indicator of the air traffic complexity from the perspective
of aircraft Ai during the time horizon[0, tf ]. If ξi > 1

ρ̄
,

then, some conflict can occur with probability≥ pT and the
criticality of this conflict can be better assessed by computing
the earliestconflict timet⋆i = min{t ≥ 0 : ρmax,i(t) < ρ̄},
and thelikelihood of a multiple (m > 2) aircraft conflict
P ρ̄

m(x̄Ai(t⋆i ), t
⋆
i ).

Depending on the specific performance of the solver in place
and on its capability of solving conflicts that are close in
time and possibly involve multiple aircraft, one can define
a critical value fort⋆i and take a value form larger than 2
when assessing the likelihood of a multiple aircraft conflict.

IV. A NUMERICAL EXAMPLE

Consider a rectangular airspace regionS where 6 aircraft
are following a one-leg nominal trajectory from some starting
to some destination position during the look-ahead time
horizon [0, tf ] with tf = 15 minutes (min), while trying
to keep at a minimum safe distancēρ = 3 nautical miles
(nmi). The configuration of the aircraft nominal trajectories
is shown in Figure 2, where starting positions are marked
with ∗ and destination positions with⋄.

0 20 40 60 80 100 120
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Fig. 2. Snapshot at timet = 2 min of the resolution manoeuvres of a 6
aircraft system. The aircraft are moving from starting (∗) to destination (⋄)
positions, while trying to keep at a distancēρ = 3 nmi.



The trajectories in this figure are obtained by implement-
ing the decentralized resolution strategy introduced in [20],
which accounts for the uncertainty affecting the aircraft
motion according to a similar model for the aircraft predicted
motion. According to this strategy, resolution manoeuvres
involve only heading changes.

The global complexity of the considered air traffic system
obtained withpT = 0.2 is ξ ≃ 3, which means that aircraft
are only guaranteed to keep at a distance of about0.33 nmi,
with probability greater than0.8.

The complexity mapΞ : S → [0, 1] plotted in Figure 3
shows that there are two main regions with some significant
percentage of occupancy (larger than 10%): one in the upper
left-hand-side, and the other close to the center of the
airspace areaS.

Fig. 3. Complexity mapΞ : S → [0, 1] obtained forρ̄ = 3 nmi.

The earliest conflict time for both the two aircraft in the
upper left-hand-side of the airspace areaS is t⋆i = 2 min.
Indeed, the snapshot of the resolution manoeuvres taken at
time t = 2 min shows that this is the earliest time that
a significant deviation action is taken by the decentralized
solver and that it involves the two aircraft in the upper left-
hand-side (Figure 2).

In this example, the complexity mapΞ : S → [0, 1]
defined in (1) has been evaluated at uniformly sampled
grid points x ∈ S = [0, 120] × [0, 120] with a grid size
δx1

= δx2
= 1. Adopting a variable grid resolution, with a

larger grid size far from the aircraft and a finer one close to
the aircraft, would reduce the computational load.
In the numerical evaluation of the integral over[0, tf ] in-
volved in (1),[0, tf ] has been uniformly sampled withδt = 1.
The short term look-ahead time horizon∆ has been set equal
to 2 min, andνa = 0.25 andνc = 0.2 with the power spectral
densitiesν2

a andν2
c measured in nmi2/min.

V. CONCLUSIONS

In this paper, we have presented a novel method to evaluate
air traffic complexity on a mid term horizon, which accounts
for the uncertainty in the prediction of the aircraft future
positions. The computational issues have been addressed in
the 2D airspace case. Extensions to the 3D case are currently
being carried out.

A simple numerical example has been reported to illustrate
the approach. Further work is needed to assess the perfor-
mance of the method on air traffic data and its impact on
conflict resolution.
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