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Abstract— This paper presents a convex optimization-based
control method for sustainable communities with multiple
buildings served by a central cooling plant and with on-site
solar generation and batteries. A model predictive control
(MPC) approach is used to optimally schedule the energy flows
among the different energy sources, on-site battery and building
end users to achieve the minimum operation cost. A convex
formulation is derived for the MPC problem which is then
solved with a convex programming package. With the optimal
operation strategy, a 9.4% energy cost savings and a 35.6%
demand cost savings were achieved compared to a baseline
control strategy, for a case study with three buildings and an
on-site PV and battery system.

I. INTRODUCTION

With fast technology advancements and lower manufactur-
ing costs, on-site renewable generation such as photovoltaic
(PV) and wind turbines are becoming more popular for
building owners to reduce electricity purchases from the grid
and also to lower their electricity costs. On-site renewable
generation is often used together with batteries to collect
the generated electricity when power demand is moderate
and the infrastructure does not allow selling excess power
back to the grid. Other advanced energy systems, such as
geothermal-assisted heat pumps, district heating and cooling,
combined cooling, heating and power, are also attractive to
residential and commercial buildings due to their improved
energy efficiency. Although the costs of the on-site renewable
generation and advanced energy systems have been reduced
in recent years, these systems are more widely adopted in a
community- or city-level application, and are not commonly
used in individual buildings due to less favorable economics.
Proper operation of sustainable communities with these
features is critical to achieve their full potentials but it is
a challenging task due to the large number of optimization
variables involved.

Extensive work can be found in the literature that studied
the integration of renewable generation in buildings (e.g., [1]-
[4]). In [5], a mixed-integer nonlinear programming approach
was proposed for optimal scheduling of building energy
systems integrated with renewable generation and a thermal
storage tank to minimize the operation cost. [6] studied
optimal sizing of an on-site PV and energy storage system for
a grid-connected residential building through optimizing the
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load profiles and system operation. In [7], a particle swarm
optimization-based decision framework was developed for
optimized operation of a building cluster with multiple
buildings and on-site PV and energy storage systems. Most
of the previous work heavily relied on heuristic optimiza-
tion or mixed integer programming algorithms which are
computationally demanding and cannot guarantee optimal
performance.

In this paper, the optimal demand management problem
is investigated for sustainable communities with multiple
buildings and on-site PV and batteries. A model predictive
control (MPC) problem is considered to find the optimal
schedules of energy flows among different sources and end
users with the minimum operation cost. With certain near-
optimal heuristics and specific manipulation, the MPC prob-
lem is formulated as a convex optimization problem and is
solved with a convex programming solver. To benchmark the
cost savings potential associated with the proposed control
solution, a baseline strategy is simulated with a conventional
night setup/setback indoor temperature control and a rule-
based control for charging and discharging the battery.

II. COMPONENT MODELS

Fig. 1 shows the system layout of the sustainable commu-
nity considered in this study. The community has multiple
buildings served by a central cooling plant, which uses an
air-cooled chiller in the case study. The chiller provides
chilled water at a constant temperature to all buildings.
Only the cooling scenario is investigated and a gas furnace
is used in each building for space heating. There is an
electricity bus to power the central cooling plant and also
to satisfy the other electrical uses in the buildings. The
power bus can take electricity from PV generation, battery
discharge, electricity purchase from the power grid or any
combination of the three. The on-site battery can be charged
with electricity purchased from the power grid or generated
by PV panels. In the following model and optimization
formulations, underlined variables are used to highlight the
boundary conditions in the optimization problem that are
known ahead of time.

A. Building Model

The case study community is assumed to have three
commercial buildings. Dynamic building thermal models
were developed for three offices at the Center for High Per-
formance Buildings (CHPB) at Purdue University and these
three office models are used to represent the three individual
buildings in the case study. The models utilize simplified
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Fig. 1. A sustainable community layout.

thermal networks to capture the responses of building indoor
temperatures given heating/cooling rates provided by the
heating, ventilation and air-conditioning (HVAC) systems.
Parameters in the models were estimated based on field
measurements. The model details can be found in [8] and the
obtained model for building j is formulated under a discrete-
time state-space representation:

xj [i+ 1] = Ajxj [i] +Bj
ww

j [i] +Bj
uQ

j
z[i]

yj [i] = Cjxj [i] = xjz[i]

where i indicates the time step, w is a vector of uncon-
trollable inputs or disturbances including weather conditions
and internal heat gains, Qz is the sensible cooling or heating
provided to the space by the HVAC system and is the only
controllable input. y or xz is the zone air temperature.

B. Cooling Plant

In the case study, an air-cooled chiller is used as the central
cooling plant providing constant temperature (8.5◦C in the
case study) chilled water to the different buildings. Chilled
water flow rates in combination with the building supply fan
speeds are modulated to meet the building cooling loads.
In [9], a near-optimal control heuristic was developed for
this chilled-water system that maintains minimum supply fan
speeds and varies the chilled-water flow to meet individual
building load. By virtue of the developed heuristic, the
sensible cooling capacity for building j can be formulated
as

Qj
z = LRj · Caprate(Toa)

where LRj is the ratio of the cooling load in building j
to the chiller total cooling capacity (Caprate). Only the
sensible building loads are considered in this study because
the simulation carried out in the case study involves dry
weather conditions and a building moisture model is not
considered here. Since the chiller leaving water temperature
is constant, the chiller capacity is only a function of the out-
door temperature Toa. Note that the heuristic helps remove
the total airflow (ma) from the design variables and make
the following convex formulation possible. Define Powch as

the total power consumed by the chiller and chilled water
pump. A 4th order convex polynomial fit was obtained that
correlates Powch to the total load ratio LR at each outdoor
air temperature (see [9]):

Powch = Powch

(
LR, Toa

)
= Powch

(∑3

j=1
LRj , Toa

)
In addition to HVAC power consumption, other building

electricity uses attributed to supply fan (supply fan power is
constant providing the minimum airflow), lighting, computer
and other electrical appliances, should also be accounted
for in the optimal operation since demand is charged based
on the total peak power. The non-HVAC power is assumed
to be non-controllable and a typical diurnal profile for the
non-HVAC power was obtained by averaging the actual
measurements taken at Purdue CHPB for a whole month
(see [9] for details). The same profile is applied to each day
within the simulation test.

C. PV Generation

In this study, GridLAB-D ([10]), a power distribution sys-
tem simulation tool, is used to provide PV power generation
using the internal PV power model and based on TMY
weather data for Indianapolis, IN. The case study uses a
crystalline silicon PV panel with a face area of 33.4 m2

and an efficiency of 0.2. For some time periods, generated
solar power can be directly used to meet building electricity
demands. Excess power can be stored in a battery that can
be used at a later time. In this study, it is assumed that the
excess PV power that cannot be used, or stored, cannot be
sold back to the grid, so when the on-site battery is fully
charged and there is no other electricity demand, the surplus
PV power will be wasted.

D. On-Site Battery

A simple battery dynamic model is used ([11]):

SOC[i+ 1] = SOC[i] + Pc[i]− Pd[i] (1)
0 ≤ SOC[i+ 1] ≤ SOCmax (2)
0 ≤ Pc[i] ≤ Pc,max (3)
0 ≤ Pd[i] ≤ Pd,max (4)

where SOC is the battery state of charge, Pc and Pd are
the charging and discharging rates, SOCmax is the battery
capacity, Pc,max and Pd,max are the maximum charging and
discharging rates for the battery. The case study uses a 4kWh
battery (SOCmax = 4kWh) and assumes the battery can
be drained from full capacity or fully charged from zero
charge in 2 hours with maximum charging or discharging
rates, i.e., Pc,max = Pd,max = 2kW. Battery charging (ηc)
and discharging (ηd) efficiencies are considered explicitly in
the problem formulation in (7) and (8) and more details will
be given in the following section.

III. OPTIMAL STRATEGY

A 24-hr prediction horizon MPC problem is formulated to
find the optimal control solution for the whole community.
The goal is to optimize the building thermal control along
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with the energy flows among the various energy sources
and users to minimize the operation cost within the look-
ahead horizon. At each decision step, the MPC problem
formulated in (5) to (18) is solved. In practice, weather and
load conditions should be predicted in the beginning of each
MPC step. This study assumes perfect prediction to illustrate
the overall control approach. The cost function shown in (5)
represents the total utility cost within the look-ahead horizon
(Np steps) at a decision step k. k is reset to 1 at the beginning
of a billing cycle. re, rDC,l and rgas are the electricity energy
rate ($/kWh), electricity demand charge rate ($/kW) and gas
price ($/kWh), respectively. Time-of-use (TOU) energy rates
are considered so the energy price is time indexed. The
formulation can handle multiple demand charges associated
with different rating periods denoted by Pl (the set of time
indices in the l-th rating period), where l = 1, ..., Nd and
Nd is the number of demand rating periods. Qht is the gas
heating rate and the gas price is assumed constant (0.03
$/kWh-heating in the case study). The first two terms in the

cost function represent accumulated electricity energy cost
and gas cost respectively, while the third term represents the
incremental demand charge within the look-ahead horizon.
Powthresh,l[k] is the peak demand in the grid electricity
purchase that occurs in rating period l within the previous
k − 1 time steps of the billing cycle. So the demand cost
term is the incremental demand charge attributed to the
additional peak demand beyond Powthresh,l[k] that occurs
within the look-ahead horizon. If the predicted peak demand
is lower than Powthresh,l[k], the demand cost term is 0.
The billing cycle peak Powthresh,l[k] needs to be updated
after each MPC decision step if the current action leads to
power consumption greater than the current Powthresh,l[k],
so Powthresh,l[k + 1] = max(Powthresh,l[k], Pg[k]) if
k ∈ Pl (Pg is the grid electricity purchase). Powthresh,l[1]
needs to be reset at the beginning of each billing cycle
and [12] showed that a zero reset can provide near-optimal
performance in most cases, i.e., Powthresh,l[1]← 0 for each
billing cycle.

min


∑Np+k−1

i=k

{
Pg[i] · re[i] +

∑3
j=1

(
Qj

ht[i] · rgas
)}

+
∑Nd

l=1

{
max

(
max
i∈Pl

(Pg[i])− Powthresh,l[k], 0

)
· rDC,l

}  (5)

s.t. (j = 1, ..., Nbuild and i = k, ..., k +Np− 1)

Powtot[i] = Powch

(∑3

j=1
LRj [i], Toa[i]

)
+ Pownctrl[i] (6)

Pg[i] = max
(
Powtot[i] + Pc[i]/ηc − Pd[i] · ηd − PPV,max[i], 0

)
(7)

PPV [i] = Powtot[i] + Pc[i]/ηc − Pd[i] · ηd − Pg[i] (8)
SOC[i+ 1] = SOC[i] + Pc[i]− Pd[i] (9)

0 ≤ SOC[i+ 1] ≤ SOCmax (10)
0 ≤ Pc[i] ≤ Pc,max (11)
0 ≤ Pd[i] ≤ Pd,max (12)

xj [i+ 1] = Ajxj [i] +Bj
ww

j [i] +Bj
uQ

j
z[i] (13)

Qj
z[i] = −LRj [i] · Caprate(Toa[i])+Qj

ht[i] + Powfan +mj
oa[i]Cpa

(
Toa[i]− TRA

)
(14)

Tz,lb[i+ 1] ≤ xjz[i+ 1] = Cjxj [i+ 1] ≤ Tz,ub[i+ 1] (15)

moa,min ≤ mj
oa[i] ≤ moa,max (16)

0 ≤ LRj [i] ≤ 1 (17)

0 ≤ Qj
ht[i] ≤ Qht,max (18)

The optimization constraints are listed in (6) to (18).
Powtot in (6) represents the sum of controllable and non-
controllable power for all buildings. Pg in (7) represents the
amount of electricity purchased from the power grid and
PPV in (8) is the actual electricity use from PV generation.
Note that PPV is not directly involved in the optimization but
is an important intermediate variable for post-optimization
analysis. PPV,max is the PV generation capacity calculated
in Section II-C and the difference between PPV,max and
PPV represents the amount of PV power that is wasted.

Remark 1: An alternative and more intuitive formulation for
(7) and (8) is

Pg[i] = Powtot[i] + Pc[i]/ηc − Pd[i] · ηd − PPV [i] (19)
0 ≤ PPV [i] ≤ PPV,max[i] (20)

but the first inequality in (20) would compromise convexity
in the overall formulation (Powtot is strictly convex and its
hypograph is not convex). The formulation in (7) and (8),
however, can preserve convexity and is equivalent to (19) and
(20) except that (7) and (8) ensure the maximum utilization
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of PV power whenever possible, which should be expected
in the optimal solution.

Constraints in (9) to (12) come from the battery model
developed in Section II-D.
Remark 2: An important constraint in the battery operation
is to prevent simultaneous charging and discharging. It is
difficult to formulate this constraint in a convex form. For
example, Pc · Pd = 0 and min(Pc, Pd) ≤ 0 are two
possible formulations but both are non-convex. However,
the efficiency losses associated with the battery charging
and discharging processes that are explicitly considered in
(7) and (8) will intrinsically prevent simultaneous charging
and discharging in the optimal solution. This will eliminate
the need of an explicit constraint which helps to preserve
convexity.

The set of constraints shown in (13) come from the build-
ing dynamic models developed in Section II-A. Constraints
in (14) calculate the net sensible cooling/heating rates by
considering different energy sources: from cooling coil, gas
heating, constant fan heat (Powfan) and ventilation. Note
that this constraint is originally bilinear since the return air
temperature TRA is the design variable xjz . However, this
is simplified to a linear constraint by fixing the return air
temperature to a constant nominal value (see [9] for details).
moa is the outdoor airflow rate which should be above the
ventilation requirement moa,min and below the fixed total
airflow moa,max = ma for each building, which is reflected
in constraints (16). Constraints (15) are used to ensure indoor
thermal comfort. The upper and lower bounds, Tz,lb and
Tz,ub, can vary depending on the occupancy status of the
building. Constraint in (17) comes from the requirement that
the sum of cooling rates provided to different buildings needs
to be smaller than the chiller’s cooling capacity. Heating
capacity constraints are shown in (18).

The formulated MPC problem is convex, and is solved
with the convex programming package CVX in Matlab ([13])
with the SDPT3 solver ([14]).

IV. BASELINE STRATEGY

A baseline control strategy was also simulated to assess the
cost savings potential with the optimal control solution. The
baseline control implements a night setup cooling setpoint
trajectory and a night setback heating trajectory for the
building indoor temperatures. Minimum cooling or heating
is enabled to maintain the indoor temperatures within the
temperature band. Algorithm 1 shows a baseline algorithm
for the battery and PV operation. This algorithm only uses
battery to collect excess PV generation when building electri-
cal demands are low. During the high building-load periods,
electricity stored in the battery is used first to meet the
building demands and electricity purchase from the grid is
only allowed when the battery is fully drained.

V. CASE STUDY RESULTS

The case study utilizes typical summer TOU electricity tar-
iffs shown in Table I. Electricity energy cost differs slightly
between on-peak, mid-peak and off-peak periods and only

Algorithm 1 : Baseline strategy
Initialize SOC[1] = 0
for i = 1 to Nsim do

if Powtot[i]− PPV,max[i] < 0 then
Pg[i]← 0
SOC[i + 1] = min(SOC[i] + (PPV,max[i] −
Powtot[i]) · ηc, SOCmax)
Pc[i]← SOC[i+ 1]− SOC[i]
Pd[i]← 0

else if Powtot[i] − PPV,max[i] ≥ 0 and Powtot[i] −
PPV,max[i] < SOC[i] · ηd then
Pg[i]← 0
SOC[i + 1] ← SOC[i] + (PPV,max[i] −
Powtot[i])/ηd
Pc[i]← 0
Pd[i]← (Powtot[i]− PPV,max[i]) /ηd

else if Powtot[i]− PPV,max[i] ≥ SOC[i] · ηd then
Pg[i]← Powtot[i]− PPV,max[i]− SOC[i] · ηd
SOC[i+ 1]← 0
Pc[i]← 0
Pd[i]← SOC[i]

end if
PPV [i] = Powtot[i] + Pc[i]/ηc − Pd[i] · ηd − Pg[i]

end for

an anytime peak demand charge is present. So there is only
one demand rating period and Nd = 1 in the cost function
in (5). The solution is implemented in a MPC scheme with
a 24-hr look-ahead horizon (Np = 24) and an 1-hr decision
step (the same as the building dynamic model time step).
Zone temperature lower and upper bounds assume Tz,lb =
20.5◦C and Tz,ub = 24.5◦C during unoccupied periods and
Tz,lb = 21.5◦C and Tz,ub = 23.5◦C during occupied periods.
The occupied period starts from 9am and ends at 9pm every
day and the rest of the time is unoccupied. The minimum
outdoor air intake is moa,min = 250 CFM (0.14 kg/s) for
ventilation and the maximum is moa,max = 1200 CFM
(0.67 kg/s) which is the fixed total airflow for all buildings.
Actual weather measurements from June 2015 were used as
external excitations in the simulation test and perfect weather
prediction was assumed in the MPC optimization.

The whole month simulation results associated with the
baseline and optimal control strategies are shown in Fig. 2
and Fig. 3, respectively. The top subplot shows the variations
of building indoor temperatures. The middle subplot shows
variations of the non-HVAC power for all three buildings
and also the total chiller power. The bottom subplot shows
the energy intakes from the different sources: Pg-electricity
purchase from the grid; Pd-battery discharge; PV -actual
electricity use from PV generation (PPV in (8)). The tra-
jectory of the peak demand in the electricity purchase from
the grid (Powthresh,l in (5)) is also shown in the bottom
plot denoted by Peak. Negative values in the bottom subplot
represent energy charged into the battery which can be from
either grid purchase or PV generation.

With the baseline strategy, the right amount of cooling

1010



Fig. 2. Baseline control results.

Fig. 3. Optimal control results without economizer operation.

is provided to prevent the indoor temperatures from rising
beyond the temperature upper bounds. The total building
electricity demand has a peak occurring at hour 400. The
baseline strategy only allows the battery to collect excess
PV power. The battery is charged and discharged only
once within the whole simulation month which occurs at
hour 160. That is because each office (case study building)
houses dozens of continuously operating computers leading
to significant building power demand during unoccupied

periods which consumes all PV power generation for most of
the time. It is expected that in typical commercial buildings,
the battery will be used more often.

Fig. 3 shows the optimal control results without econ-
omizer operation (outdoor air flow is maintained at the
minimum level throughout the whole simulation period by
setting moa,max = moa,min). It can be seen that the optimal
control solution performs load shifting to reduce the on-
peak energy use and also to reduce the total peak demand
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TABLE I
SUMMER TOU TARIFFS WITH DEMAND CHARGES

Rate
periods

Electricity
price ($/kWh)

Hours Demand charge

On-peak 0.108 Noon-6PM 19.2 $/kW
anytime peak
demand

Mid-peak 0.089 8AM-Noon;
6PM-11PM

Off-peak 0.064 Other hours

TABLE II
COMPARISON OF ELECTRICITY COSTS FOR THE VARIOUS STRATEGIES

Scenario Energy cost
($)

Demand
cost ($)

Total cost ($)

Baseline w/o
PV, battery

372
(45.6%↗)

197
(8.8%↗)

569 (30%↗)

Baseline 255.6 181 436.6
Optimal 247.5

(3.2%↘)
121.1
(33.2%↘)

368.6 (15.6%↘)

Optimal w/
econ.

231.6
(9.4%↘)

116.5
(35.6%↘)

348.1 (20.3%↘)

leading to lower operation cost. Two types of load shifting
can be observed: 1) during the on-peak days such as hours
340 to 400 and also in the first few days of the month, all
buildings are precooled in evening and early morning to shift
the on-peak cooling energy use to off- or mid-peak hours;
2) electricity is purchased from the grid to fully charge the
battery within off-peak hours and the battery is fully drained
during the on-peak periods to reduce the on-peak electricity
purchase for almost all simulation days. In addition, different
buildings carry out precooling at different times of the day to
maintain a flat total power profile. With optimal scheduling
of the building thermal loads and battery operation, the peak
demand in the electricity purchase is significantly reduced,
and a demand cost savings of 30%, an energy cost savings
of 3.2% and a total cost savings of 15.6% can be achieved as
shown in Table II. With optimal economizer operation, much
higher energy cost savings can be achieved and the total cost
savings is increased to 20.3%. To understand the economic
benefit of the on-site PV and battery system, a baseline
control case without PV generation and batteries was also
simulated with the night setup/setback control strategy. It
can be seen that total electricity cost for this case is 30%
higher than the baseline control case with an on-site PV and
battery system.

VI. CONCLUSION

This paper presented a convex-optimization-based control
strategy for a sustainable community with multiple buildings
and with on-site PV electricity generation and batteries.
A MPC problem was formulated to obtain the optimal
schedules of the energy flows among the different sources
and electricity end users. With certain manipulation in the
formulation, the MPC problem was expressed as a convex
optimization problem and was then solved with a convex
solver package. To benchmark the performance of the pro-
posed control solution, a baseline operation strategy was
also simulated with a conventional night setup/setback indoor

temperature control and a heuristic strategy for charging and
discharging the on-site battery. A 35% demand cost savings
and a 20% total cost savings were demonstrated using a
three-building case study with a 33.4 m2 PV panel and a
4kWh battery. The optimal operation strategy proposed in
this paper can also be used to properly size the PV panel
and battery for a sustainable community.

For optimal energy management of sustainable communi-
ties or cities with certain complexities, a distributed control
strategy such as multi-agent control is more suitable since
the distributed approach is scalable and can better handle
complex optimization problems and also because of the dis-
tributed nature of the energy sources/users in a community or
city. For distributed control approaches, convexity is critical
to guarantee convergence in the distributed and cooperative
optimization algorithms. Future studies will build on top
of the work presented in this paper and develop a multi-
agent controller for optimal community- or city-level energy
management.
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