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Abstract

The goal of this paper is to study stabilization problems for discrete-time switched linear systems (SLSs). To analyze the
switching stabilizability, we introduce the notion of graph control Lyapunov functions (GCLFs). The GCLF is a set of Lyapunov
functions which satisfy several Lyapunov inequalities associated with a weighted digraph. Each Lyapunov function represents
each node in the digraph, and each Lyapunov inequality represents a subgraph consisting of the edges connecting a node and
its out-neighbors (a directed rooted tree). The weight of each directed edge indicates the decay or growth rate of the Lyapunov
functions from the tail to the head of the edge. It is proved that an SLS is switching stabilizable if and only if there exists a
GCLF. The GCLF is an extension of the recently developed graph Lyapunov function for stability of SLSs under arbitrary
switching to switching stabilization problems, and it is proved that the GCLF approach unifies several control Lyapunov
functions and related stabilization theorems. Finally, computational methods are developed to evaluate the stabilizability and
estimate exponential convergence rates of SLSs.
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1 Introduction

Switched linear systems (SLSs) are a class of hybrid
systems where the system dynamics matrix is switched
among a finite set of indexed subsystem matrices, each
of which is called a mode. The SLSs have received a
great deal of attention during the past decades. A fun-
damental problem of the SLSs is to analyze their stabil-
ity/stabilizability and design the stabilizing controls [1].
In the stability problem, it is assumed that the switch-
ings among the modes are arbitrary, while in the stabi-
lization problem, the mode is assumed to be controlled
in the autonomous system case.

A predominant approach to tackle these problems is
to construct a Lyapunov or Lyapunov-like function [2].
The simplest one is a common quadratic Lyapunov func-
tion [3–5], which however has inherent conservatism [6].
For instance, it was proved in [7] that, for stabilization,
even the existence of a convex Lyapunov function is only
sufficient but not necessary. For the stability problem,
the existence of convex homogeneous Lyapunov func-
tions is necessary and sufficient [8].

⋆ This paper was not presented at any IFAC meeting.

Email addresses: lee1923@purdue.edu (Donghwan Lee),
jianghai@purdue.edu (Jianghai Hu).

A natural way to reduce the conservatism is to search for
more general Lyapunov functions, for instance, multi-
ple Lyapunov functions [9,10], piecewise quadratic Lya-
punov functions (PWQLF) [11–16], polyhedral or poly-
topic Lyapunov functions [17], sum-of-squares polyno-
mial Lyapunov functions [18,19], convex hull Lyapunov
functions [20,21], and switched Lyapunov functions [22,
23]. Other approaches include the joint spectral radius
(JSR) [24, 25] and the generating function method [26].
In particular, the existence of some classes of Lyapunov
functions was proved to be necessary and sufficient for
the stability/stabilizability of the SLSs, for example, the
switched Lyapunov function [23], the polyhedral Lya-
punov function [17], the sum-of-squares polynomial Lya-
punov functions [19], and the PWQLF in [26] for the
stability, and the PWQLF [16] for the stabilizability.

Another progress of the classical Lyapunov method is
the so-called non-monotonic Lyapunov functions. The
value of such functions may not necessarily decrease at
each time step along the state trajectories as in the case
of classical Lyapunov functions. To the authors’ knowl-
edge, the non-monotonic Lyapunov functions were first
proposed in [27,28] for nonlinear and switching systems,
and recently generalized in [29] to the graph Lyapunov
functions (GLFs), where a finite set of non-monotonic
Lyapunov functions is used to certify the stability in
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a graph theoretic manner. A special class of the non-
monotonic Lyapunov functions is the periodic or ape-
riodic Lyapunov functions (PLF or APLF) [30–32, 50]
whose value decreases periodically or aperiodically in
time. It was proved in [30–32, 50] that the existence of
quadratic (PLF or APLF) functions is necessary and
sufficient for the stabilizability of the SLSs. It should
be pointed out that the PLF has been used earlier for
the robust stability/stabilization of linear time-invariant
(LTI) systems in [33,34], nonlinear systems [35], and pe-
riodic systems [36]. For continuous-time nonlinear sys-
tems, the notion of non-monotonic Lyapunov functions
traces back to the use of the higher order derivatives of
the Lyapunov functions developed in early work [37,38],
which was further explored in the recent papers [39–41].
In spite of the extensive literature in this area, to the au-
thors’ knowledge, the GLF method has not been applied
to the stabilization problem so far.

Motivated by this, the goal of this paper is to investi-
gate switching stabilization of discrete-time autonomous
SLSs. For this purpose, we introduce graph control Lya-
punov functions (GCLFs), which are an extension of the
GLF introduced in [29] for stability of SLSs. The GCLF
is a set of Lyapunov functions that satisfy a set of Lya-
punov inequalities associated with a weighted digraph
(directed graph). Each Lyapunov function represents a
node in the digraph, and each Lyapunov inequality cor-
responds to a subgraph consisting of the edges connect-
ing a node and its out-neighbors (a directed rooted tree
structure). Each edge represents state transitions, and
the weight of each directed edge indicates the growth
or decay rate of the Lyapunov functions along the state
transitions corresponding to the edge. The state trajec-
tories of SLSs correspond to paths in the digraph, along
which the values of Lyapunov functions decrease to zero.
Therefore, in the Lyapunov sense, GCLFs serve as cer-
tificates of stabilizability of SLSs.

The main contributions of this paper consist of the fol-
lowing: 1) The concept of GCLFs is introduced as an
extension of the GLF [29]. Based on GCLFs, we derive a
Lyapunov theorem, which provides a necessary and suf-
ficient condition for stabilizability of SLSs. Compared
to the GLF theorem in [29], our result does not require
strict descent of the Lyapunov functions along each di-
rected edge but along simple cycles in the digraph. 2)
We develop two alternative Lyapunov theorems which
are numerically more amenable but sufficient for stabi-
lizability. To this end, we construct a positive SLSs as-
sociated with the digraph of the GCLF, and prove that
the joint spectral radius (JSR) [24] of the positive SLSs
provides a measure on how fast the exponential conver-
gence of the original SLS is. 3) The proposed stabiliz-
ability conditions also provide explicit characterizations
of the exponential convergence rate of state trajecto-
ries. 4) It is proved that the GCLF unifies several previ-
ous control Lyapunov theorems in the literature, hence
providing connections among them. 5) Computational

methods based on semidefinite programming (SDP) [42]
are developed to evaluate stabilzability of SLSs. In ad-
dition, conservatism and convergence of the computa-
tional methods are studied. Lastly, a numerical example
demonstrates that the GCLF potentially improve the
existing stabilizability tests by yielding tighter approxi-
mations of the exponential convergence rate.

The paper is organized as follows. We begin in Section 2
by providing the notation, background on graph theory,
and the problem formulation. Section 3 gives a formal
definition of the GCLF, the graph control Lyapunov the-
orem, and two sufficient conditions for the existence of
the GCLF. Section 5 contains examples of the GCLF
and proves that the GCLF unifies various existing con-
trol Lyapunov functions. Section 6 suggests computa-
tional methods to compute the GCLF based on SDPs.
Lastly, Section 7 concludes the paper.

2 Preliminaries

2.1 Notation

The adopted notation is as follows: N and N+: sets of
nonnegative integers and positive integers, respectively;
R, R+, and R++: sets of real numbers, nonnegative real
numbers, and positive real numbers, respectively; Rn:
n-dimensional Euclidean space; Rn×m: set of all n ×m
real matrices; AT : transpose of matrix A; A ≻ 0 (A ≺ 0,
A � 0, andA � 0, respectively): symmetric positive def-
inite (negative definite, positive semi-definite, and neg-
ative semi-definite, respectively) matrix A; In: n × n
identity matrix; || · ||: Euclidean norm of a vector or
spectral norm of a matrix; S

n, S
n
+, and S

n
++: sets of

symmetric, positive semi-definite, and positive definite
n×nmatrices, respectively; λmin(A) and λmax(A): min-
imum and maximum eigenvalues of symmetric matrix
A, respectively; ej ∈ R

n, j ∈ {1, 2, . . . , n}, is the j-
th basis vector (all components are 0 except for the
j-th component which is 1); for a matrix A, we write
[A]ij to denote its entry on the i-th row and j-th col-
umn; diag(M1, M2, . . . , Mn): the matrix with matrices
M1, M2, . . . , Mn on the block-diagonal and zeros else-
where; ⌈x⌉: the minimum integer greater than x ∈ R; |·|:
cardinality of a set and absolute value for real numbers;
trace(A) and ρ(A): the trace and the spectral radius of
the matrix A; conv(·): the convex hull.

2.2 Graph theory

A directed graph or digraph G(V, E) is defined by the
set of the nodes V := {1, 2, . . . , m} and the set of or-
dered note pairs E ⊆ V × V which represents the set
of directed edges, where (j, i) ∈ E indicates the edge
from node j ∈ V to node i ∈ V. For a given node
j ∈ V, N−

j := {i ∈ V : (i, j) ∈ E} is called the set

of its in-neighbors, and N+
j := {i ∈ V : (j, i) ∈ E}

2



is called the set of its out-neighbors. A node which has
no in-neighbors is called a source, and a node which
has no out-neighbors is called a sink. The adjacency
matrix E ∈ R

m×m of G(V, E) is defined as the ma-
trix with [E]ij = 1 if (j, i) ∈ E and [E]ij = 0 other-
wise. A (finite) walk in a digraph G(V, E) is a finite se-
quence of nodes W = (v0, v1, . . . , vk−1) ∈ Vk such that
(vi, vi+1) ∈ E , i ∈ {0, 1, . . . , k − 2}. The length of the
walk W, denoted by |W|, is the number of edges, i.e.,
|W| = k − 1 (We note that it should not be confused
with the cardinality of W). An infinite walk will be de-
noted by W∞, i.e., W∞ = (v0, v1, . . .) ∈ V∞. A closed
walk is a walk W := (v0, v1, . . . , vk−1) ∈ Vk such that
vk−1 = v0. A path P := (v0, v1, . . . , vk−1) ∈ Vk in the
digraph G(V, E) is a walk such that v0, v1, . . . , vk−1 are
all distinct. A simple cycle C := (v0, v1, . . . , vk−1) ∈ Vk

is a path with k ≥ 2, and vk−1 = v0. A (self) loop in
G(V, E) is an edge (v1, v2) ∈ E such that v1 = v2, which
is regarded as a simple cycle in this paper. The digraph
G(V, E) is strongly connected if for every v1, v2 ∈ V,
there is a path starting at v1 and ending at v2. Given a
digraph G(V, E), define a mapping w : E → R, where
w(j, i), (j, i) ∈ E , represents the weight of the edge
(j, i) ∈ E . The weighted digraphG(V, E , α) with the pa-
rameters αj ∈ R+, j ∈ V, is defined so that w(j, i) = αi

if (j, i) ∈ E , and w(j, i) = 0 otherwise. Every notion for
the digraph can be similarly applied to the weighted di-
graph. The adjacency matrixE ∈ R

m×m of the weighted
digraph G(V, E , α) is defined as the matrix with [E]ij =
αj if (j, i) ∈ E and [E]ij = 0 otherwise. The gain g(W)
of the walkW = (v0, v1, . . . , vk−1) ∈ Vk in the weighted
digraph G(V, E , α) is defined by the product of weights

of edges along the walk, i.e., g(W) :=
∏k−2

t=0 w(vt, vt+1).
The cycle gain g(C) of the simple cycle C is defined in a
similar way.

2.3 Problem formulation

Consider the discrete-time (autonomous) SLS

x(k + 1) = Aσ(k)x(k), x(0) = z ∈ R
n, k ∈ N, (1)

where x(k) ∈ R
n is the state, σ(k) ∈ M := {1, 2, . . . , M}

is called the mode, and Aµ, µ ∈ M, are the sub-
system matrices. A switching sequence is denoted
by σ := (σ(0), σ(1), . . .) ∈ M∞. Starting from
x(0) = z ∈ R

n and under a given switching se-
quence σ, the trajectory of the SLS (1) is denoted by
x(k; z, σ), k ∈ N. In this paper, we assume that the
switching sequence σ can be determined by the designer,
i.e., σ is the control input. The following two notions of
switching stabilizability can be defined.

Definition 1 The SLS (1) is called (exponentially)
switching stabilizable with the parameters K and φ if
there exist K ∈ [0, ∞) and φ ∈ [0, 1) such that start-
ing from any initial state x(0) = z ∈ R

n, there exists a

switching sequence σ for which the trajectory x(k; z, σ)
satisfies

‖x(k; z, σ)‖ ≤ Kφk‖z‖, ∀k ∈ N. (2)

Any φ ∈ [0, 1) satisfying (2) will be called an exponential
convergence rate. The problem addressed in this paper
is stated as follows.

Problem 1 (Stabilizability problem) Determine
the stabilizability of the SLS (1).

As a byproduct of our development, we also solve the
design problem.

Problem 2 If the SLS (1) is stabilizable, then find a
state-feedback switching policy under which the SLS (1)
is stable.

If one of the subsystem matrices is Schur stable, then
the SLS (1) is trivially stabilizable. To avoid triviality,
the following assumption is made in this paper.

Assumption 1 Each subsystem matrix Aµ, µ ∈ M, is
not Schur stable.

As a result, we have

τ := max
µ∈M

‖Aµ‖ ≥ 1. (3)

Lastly, some notions in [29] will be briefly reviewed.
Hereafter, we will think of the set of subsystem matrices
A := {A1, . . . , AM} as a finite alphabet and we will refer
to a finite product of matrices from this set as a word.
The set of all words Aµk−1

· · ·Aµ1
Aµ0

of length k ∈ N is

denoted by Ak := {Aµk−1
· · ·Aµ0

}(µ0,··· , µk−1)∈Mk with

A0 := {In}; the set of all finite words is denoted by
A∗ :=

⋃

h∈N
Ah; and the set of all words with length from

k1 ∈ N to k2 ∈ N, k2 ≥ k1, is denoted by A[k1, k2] :=
⋃

h∈{k1, k1+1,..., k2}
Ah.

3 Graph control Lyapunov function

In this section, a formal definition of the graph con-
trol Lyapunov functions and the corresponding stabi-
lization theorems are presented. The graph control Lya-
punov function (GCLF) is defined as follows.

Definition 2 (GCLF) Let a weighted digraphG(V, E , α)

with the parameters α ∈ R
|V|
+ , be given. A set of non-

negative continuous functions Vi : R
n → R+, i ∈ V,

satisfying

κi‖z‖
2 ≤ Vi(z) ≤ κi‖z‖

2, ∀z ∈ R
n, (4)
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for some positive constants κi, κi ∈ R++, i ∈ V, will be
called a graph control Lyapunov function (GCLF) asso-
ciated with G(V, E , α) if

(1) there exist Aj→i ⊂ A∗, (j, i) ∈ E, such that the
inequalities

min
i∈N+

j

min
A∈Aj→i

Vi(Az) ≤ αjVj(z),

∀z ∈ R
n\{0n}, j ∈ V (5)

associated with G(V, E , α) are satisfied;
(2) all the simple cycles in G(V, E , α) (including the

loops) have the cycle gains strictly less than 1;
(3) G(V, E , α) has no sink.

When the GCLF {Vi}i∈V consists of quadratic functions,
then it will be called a quadratic GCLF (QGCLF).

Proposition 1 Let a weighted digraph G(V, E , α) with
the parameters αi ∈ [0, 1), i ∈ V, be given. The set of
functions {Vi}i∈V is a GCLF associated with G(V, E , α)
if all the conditions of Definition 2 except for the part 3)
hold.

PROOF. Straightforward. 2

Example 1 Consider the SLS (1), and suppose that
there exist nonnegative continuous functions V1, V2, V3,
V4, satisfying (4) in Definition 2, and the words
A1→2, A2→3, A2→4, A3→4, A4→1 ⊂ A∗, such that

min
A∈A1→2

V2(Az) ≤
1

2
V1(z),

min

{

min
A∈A2→3

V3(Az), min
A∈A2→3

V3(Az)

}

≤ 2V2(z),

min
A∈A3→4

V4(Az) ≤
1

2
V3(z), min

A∈A4→1

V1(Az) ≤
1

3
V4(z).

(6)

In the sense of Definition 2, the above inequalities
induce the digraph G(V, E , α) shown in Figure 1
with the node set V = {1, 2, 3, 4} and the edge set
E = {(1, 2), (2, 3), (2, 4), (3, 4), (4, 1)}. The di-
graph has two simple cycles C1 = (1, 2, 4, 1) and
C2 = (1, 2, 3, 4, 1), and the cycle gains can be calculated
as

g(C1) = α1α2α4 =
1

2
× 2×

1

3
=

1

3
< 1,

g(C2) = α1α2α3α4 =
1

2
× 2× 1×

1

3
=

1

3
< 1.

Since the digraph G(V, E , α) in Figure 1 does not have a
sink, and all the simple cycles have gains less than one,
by Definition 2, {V1, V2, V3, V4} is a GCLF.

Fig. 1. Example 1. Digraph G(V, E , α) associated with the
inequalities in (6).

Remark 1 An example of digraphs with no sink is a
strongly connected digraph. In general, the associated
digraph of a GCLF can be assumed without loss to be
strongly connected. To prove this, we introduce some no-
tions in graph theory. A subgraph G(V̄ , Ē) of G(V, E)
is a strongly connected component (SCC) of G(V, E)
if G(V̄ , Ē) is strongly connected and no other strongly
connected subgraph contains G(V̄ , Ē) as a subgraph. For
any digraph G(V, E), a SCC G(V̄ , Ē) with no outgo-
ing edges from the nodes of G(V̄ , Ē) is called a termi-
nal SCC. From [43, pp. 17], for any digraph G(V, E),
there exists a terminal SCC. Therefore, if {Vi}i∈V is a
GCLF associated with the weighted digraph G(V, E , α)
and G(V̄ , Ē , α) is a terminal SCC of G(V, E , α), then it
can be easily proved that {Vi}i∈V̄ is also a GCLF asso-
ciated with G(V̄ , Ē , α) by the definition of the terminal
SCC and Definition 2.

Given a walk W = (v0, v1, . . .), define W[a, b] :=
(va, . . . , vb) for a ≤ b, a, b ∈ N. A decomposition ofW is
defined as a sequence of walks (W1, W2, . . .) such that
W1 = W[i1, i2], W2 = W[i2, i3], . . . and 0 = i1 < i2 < · · · .
The proof of the main result depends on the following
lemma, which establishes the fact that the gain of a
walk can be expressed as the product of the gains of
simple cycles and a path in the given digraph.

Lemma 1 Suppose that W = (v0, v1, . . . , vt−1) is a
walk in G(V, E , α). Then, g(W) can be expressed as

g(W) = g(P)
h
∏

p=1

g(Cp),

where h ∈ N+, Cp, p ∈ {1, 2, . . . , h}, are simple cycles

and P is a path, such that |W| = |P|+
∑h

p=1 |Cp|.

PROOF. If W = (v0, v1, . . . , vt−1) =: W [1] is not a
path, then there exists a simple cycle C1 in W. Remove
the simple cycle C1 and get a shorter walk W [2]. For
p ∈ N+, if W

[p] is not a path, then one can remove a
simple cycle Cp and get a new walk W [p+1]. Noting that
the initial walk W is finite and by the induction argu-
ment, we obtain a decomposition of W which consists
of a finite sequence of simple cycles (including loops)
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Cp, p ∈ {1, 2, . . . , h}, and a path P. Therefore, the gain
of the walk g(W) can be expressed as a product of the
gains of the simple cycles and the path. This completes
the proof. 2

In what follows, it will be proved that the GCLF can be
used to certify stabilizability. For easy reference, we for-
mally define the state-feedback switching policy, the cor-
responding walk on the given digraph, and the switching
sequence.

Definition 3 Let a weighted digraph G(V, E , α) with

the parameters α ∈ R
|V|
+ , be given. Suppose that {Vi}i∈V

is a GCLF associated with G(V, E , α). For any x ∈ R
n

and j ∈ V, define the sets

I(j, x) := argmin
i∈N+

j

min
A∈Aj→i

Vi(Ax), ∀j ∈ V,

and

Φ(j, i, x) := argmin
A∈Aj→i

Vi(Ax), ∀j ∈ V, i ∈ N+
j .

Then, the set defined as

σ(j, i, x) := {(i0, . . . , ih−1) ∈ Mh :

Aih−1
· · ·Ai1Ai0 ∈ Φ(j, i, x), h ∈ N+} (7)

is called a state-feedback switching policy associated with
the GCLF {Vi}i∈V . For any ξ0 = z ∈ R

n and j0 ∈ V,
if the sequences {ξt}∞t=0 and {jt}∞t=0 are defined by the
inclusions

jt+1 ∈ I(jt, ξt),

(i0, . . . , ih−1) ∈ σ(jt, jt+1, ξt),

ξt+1 = Aih−1
· · ·Ai1Ai0ξt, t ∈ N, (8)

respectively, then ξt will be called the state correspond-
ing to the node jt, and the sequence of nodes W∞ =
(j0, j1, j2, . . .) represents a walk in G(V, E , α) and will
be called a walk associated with the switching policy (7).
The corresponding switching sequence is

σ(j0, z) := (σ(j0, j1, ξ0), σ(j1, j2, ξ1), σ(j2, j3, ξ2), . . .).
(9)

In the following theorem, we show that if the SLS (1)
admits a GCLF, then the switching sequence (9) expo-
nentially stabilizes the SLS (1).

Theorem 1 (Graph control Lyapunov theorem)
If {Vi}i∈V is a GCLF associated with the digraph

G(V, E , α) and the parameters α ∈ R
|V|
+ , then the

SLS (1) under the switching sequence (9) is exponen-
tially stable with the parameters

K = τL
(

δ
maxi∈V κ̄i

mini∈Vκi

)
1
2

γ− β+1
2η , φ = γ

1
2ηL , (10)

where τ := maxµ∈M ‖Aµ‖, L := max{|Aj→i| : (j, i) ∈
E}, η and γ are the maximum length and gain of simple
cycles, β and δ are the maximum length and gain of paths,
respectively. In particular, if αi ∈ [0, 1), i ∈ V, then
the SLS (1) under (9) is exponentially stable with the
parameters

K = τL
(

maxi∈V κi

(mini∈Vκi)(maxi∈Vαi)

)1/2

, φ =

(

max
i∈V

αi

)1/2L

.

PROOF. Let j0 ∈ V and ξ0 ∈ R
n be arbitrary. Define

the walkW = (j0, j1, . . . , jt), and the sequence of times
{kt}

∞
t=0 by k0 = 0, and kt+1 = kt + |Φ(jt, jt+1, ξt)|

for t ∈ N+, where {ξt}
∞
t=0 is the subsequence of the

states defined in (8) so that ξt = x(kt; z, σ), ∀t ∈ N.
Then, by the definition of the switching policy in (7), the
inequalities in (5) are satisfied for all z = ξt, t ∈ N+, and
the Lyapunov function value long the trajectory {ξt}

∞
t=0

satisfies Vjt(ξt) ≤ g(W)Vj0(ξ0), ∀t ∈ N+. By Lemma 1,
there exists simple cycles Cp, p ∈ {1, 2, . . . , h}, h ∈ N+,

and a path P such that g(W) = g(P)
∏h

p=1 g(Cp) and

|W| = |P|+
∑h

p=1 |Cp|. Thus, we have

Vjt(ξt) ≤ g(P)

h
∏

p=1

g(Cp)Vj0(ξ0) ≤ δγhVj0(ξ0),

where γ is the maximum gain of simple cycles, and δ is
the maximum gain of paths.

Noting that Vj0(ξ0) ≤ κ̄j0‖ξ0‖
2 and Vjt(ξt) ≥ mini∈V κi‖ξt‖

2

and combining them, we have

‖ξt‖
2 ≤ δ

maxi∈V κ̄i

mini∈V κi

γh‖ξ0‖
2.

Since h ≥ t−β
η and γ < 1, it follows that

‖ξt‖
2 ≤ δ

maxi∈V κ̄i

mini∈V κi

γ− β
η γ

t
η ‖ξ0‖

2,

which gives ‖ξt‖ ≤ rct‖z‖, where

r =

(

δ
maxi∈V κ̄i

mini∈V κi

)
1
2

γ− β
2η , c = γ

1
2η .
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To obtain an exponential convergence rate of the SLS,
for any k ∈ N, select t ∈ N such that k ∈ [kt, kt+1).
Then, we have

‖x(k; z, σ)‖ = ‖x(kt + k − kt; z, σ)‖

≤ τ (k−kt)‖x(kt; z, σ)‖

≤ τL‖ξt‖ ≤ τLrct‖z‖,

where we have used τ ≥ 1 in (3). Again, as t ≥ (k/L)−1
and c < 1, we obtain

‖x(k; z, σ)‖ ≤ τLrc(
k
L
−1)‖z‖ =

τLr

c
ck/L‖z‖.

Therefore, the SLS (1) under the switching sequence (9)
is exponentially stable with the parameters in (10). The
proof for the case αi ∈ [0, 1), i ∈ V, is similar, so omitted
for brevity. 2

The result proves that the existence of the GCLF is suf-
ficient condition for the stabilizability of the SLS (1).
Next, we prove that it is also a necessary condition.

Theorem 2 (Converse GCLF theorem) Suppose
that the SLS (1) is exponentially switching stabilizable.
Let a digraph G(V, E) with no sink and the positive
definite matrices Pi ≻ 0, i ∈ {1, 2, . . . , |V|}, be ar-
bitrarily given. Then, the set of quadratic functions
Vi(x) = xTPix, i ∈ V, is a QGCLF associated with
G(V, E , α) with some parameters αi ∈ R+, i ∈ V. In
other words, there exist Aj→i ⊂ A∗, (j, i) ∈ E, such
that the inequalities (5) associated with G(V, E , α) is
satisfied, and all the simple cycles of G(V, E , α) have
the cycle gains less than one.

PROOF. Consider the set of words Aj→i = Ahj with
hj ∈ N+ for all (j, i) ∈ E . Since the SLS (1) is exponen-
tially stabilizable, there exist K ∈ [0, ∞) and φ ∈ [0, 1)
such that (2) holds. Thus, we have

min
i∈N+

j

min
(µ0,··· , µhj−1)∈Mhj

Vi(Aµhj−1
· · ·Aµ0

z)

≤ min
i∈N+

j

min
(µ0,··· , µhj−1)∈Mhj

‖Aµhj−1
· · ·Aµ0

z‖2λmax(Pi)

≤ min
i∈N+

j

λmax(Pi)K
2φ2hj‖z‖2

≤ αjVj(z), ∀j ∈ V,

where

αj =
mini∈N+

j
λmax(Pi)

λmin(Pj)
K2φ2hj .

By increasing hj , we can make αj < 1 for all j ∈ V.
Therefore, {Vi}i∈V is a QGCLF. 2

4 Alternative Sufficient Conditions

Theorem 1 and Definition 3 provide the answers to both
Problem 1 and Problem 2. From a computational point
of view, to find the gains of all the simple cycles, one
needs to enumerate all the simple cycles in G(V, E , α).
For small-scale digraphs, some algorithms are available
to enumerate all the simple cycles, for example, those
in [44] and the CIRCUIT-FINDING ALGORITHM in
[45], whose complexity grows rapidly with the size of
the digraphs. For large-scale digraphs, we will develop in
the next section a sufficient test based on the JSR the-
ory [24] for postivie SLSs to check the stabilizability
without enumerating all the simple cycles of the digraph.
The JSR is a natural extension of the spectral radius of
the LTI systems, and characterizes the maximum expo-
nential growth rate of the SLSs under arbitrary switch-
ing [24]. To this end, we formally define a positive SLS
(PSLS) associated with a weighted digraph.

Definition 4 Consider the weighted digraphG(V, E , α)

with the parameters α ∈ R
|V|
+ , and let

G(V, E1, α), . . . , G(V, EQ, α)

be subgraphs of G(V, E , α) whose edge sets are dis-
joint and E = E1 ∪ · · · ∪ EQ. Assume that the matrices

E1, . . . , EQ ∈ R
|V|×|V| are the adjacency matrices of

G(V, E1, α), . . . , G(V, EQ, α), respectively. A discrete-
time positive switched linear system (PSLS) associated
with the adjacency matrices is defined as

v(t+ 1) = Eθ(t)v(t), v(0) = s ∈ R
|V|
+ , (11)

where t ∈ N, v(t) ∈ R
|V|
+ , is the state and θ(t) ∈ Q :=

{1, 2, . . . , Q} is the mode of the PSLS (11).

Example 2 Consider the GCLF in Example 1 again
with the associated digraph G(V, E , α) in Figure 1. The
corresponding adjacency matrix is

E =















0 0 0 α4

α1 0 0 0

0 α2 0 0

0 α2 α3 0















=















0 0 0 1
3

1
2 0 0 0

0 2 0 0

0 2 1 0















. (12)

There are several ways to construct the subsystem
matrices of the PSLS (11). For example, the edge
set E = {(1, 2), (2, 3), (2, 4), (3, 4), (4, 1)} can be
partitioned into E1 = {(1, 2), (2, 3), (2, 4)} and
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E2 = {(3, 4), (4, 1)}, and the adjacency matrices of the
digraphs G(V, E1, α), G(V, E2, α) are

E1 =
∑

(j, i)∈E1

αjeie
T
j =















0 0 0 0

α1 0 0 0

0 α2 0 0

0 α2 0 0















, (13)

E2 =
∑

(j, i)∈E2

αjeie
T
j =















0 0 0 α4

0 0 0 0

0 0 0 0

0 0 α3 0















. (14)

The two adjacency matrices form two subsystemmatrices
of the PSLS (11). For different partitions of the edge set
E, different PSLSs are obtained.

Definition 5 (JSR [24]) The joint spectral radius
(JSR) of the set of matrices Σ := {E1, E2, . . . , EQ} is

defined by ρ(Σ) := limk→∞ maxA∈Σk ‖A‖1/k.

It is known that if the matrix norm ‖ · ‖ is submulti-
plicative, i.e., ‖AB‖ ≤ ‖A‖‖B‖, ∀A, B ∈ R

n×n, then
the limit in Definition 5 exists [24, Lemma 1.2] and the
limiting value does not depend on the norm used. For
further details on the JSR, the reader is referred to [24].
In the following theorem, we provide a sufficient condi-
tion based on the JSR of the PSLS (11) for the GCLF.

Theorem 3 For the digraphG(V, E , α) in Definition 4,
if

(1) G(V, E , α) has no sink;
(2) there exist Aj→i ⊂ A∗, (j, i) ∈ E, and the set of

functions Vi : R
n → R+, i ∈ V, such that the in-

equalities in (5) associated with G(V, E , α) is sat-
isfied;

(3) ρ(Σ) < 1,

then {Vi}i∈V is a GCLF associated with G(V, E , α).
Moreover, the SLS (1) is exponentially stabilizable with
the parameters

K =

√

τLρ(Σ)−T max

{

τT−1,
maxi∈V κ̄i

mini∈V κi

}

, φ = ρ(Σ)
1
2L .

PROOF. See Appendix A. 2

Example 3 Consider the GCLF in Example 1 and Ex-
ample 2 again, and assume L = 3. Different exponen-
tial convergence rate ρ can be obtained by using differ-
ent PSLSs. For instance, if we consider the PSLS (11)

with the single subsystem matrix (12), then the JSR re-
duces to the spectral radius, and we have ρ(Σ) = 0.8910
with Σ = {E}. By Theorem 3, the exponential con-
vergence rate is φ = ρ(Σ)1/L = 0.9810. On the other
hand, if we consider the PSLS with the subsystem ma-
trices (14), then an upper bound on the JSR can be ob-
tained through the numerical method in [25, Theorem 3]
as ρ(Σ) = 0.7114, and the exponential convergence rate
is computed as φ = ρ(Σ)1/L = 0.9448. Finally, the expo-
nential convergence rate obtained by using Theorem 1 is
φ = 0.8327.

From Theorem 3, the JSR of the PSLS (11) gives a
measure on how fast the exponential convergence of the
SLS (1). In addition, Theorem 3 is a sufficient condition
for a given functions {Vi}i∈V to be a GCLF, and may not
be necessary in general. A question that arises is about
how conservative the condition is. In the following re-
sult, it is proved that with the rank one selection of the
PSLS (11), it is also necessary. For the proof, we follow
the result [46, Theorem 2.2].

Proposition 2 Suppose that {Vi}i∈V is a GCLF associ-

ated withG(V, E , α) and the parameters α ∈ R
|V|
+ . Then,

for the PSLS (11) with {E1, . . . , EQ} = {αjeie
T
j }(j, i)∈E ,

ρ(Σ) ≤ γ1/η < 1 holds, where γ ∈ R+ and η ∈ N+ are
the maximum gain and the maximum length of the simple
cycles in G(V, E , α), respectively.

PROOF. Definition 5 gives

ρ(Σ) = lim sup
k→∞

max
A∈Σk

‖A‖1/k∞ = lim sup
k→∞

max
A∈Σk

‖A1‖1/k∞

= lim sup
k→∞

max
W∈Vk+1

g(W)1/k,

where W a walk of length k in G(V, E , α), and 1 ∈ R
|V|

is the vector whose entries are ones. By Lemma 1, for
each k ∈ N+, there exist a path P [k] and simple cycles

C
[k]
l , l ∈ {1, 2, . . . , h[k]}, h[k] ∈ N+ in G(V, E , α) such

that g(W) = g(P [k])
∏h[k]

l=1 g(C
[k]
l ). Therefore, we have

lim sup
k→∞

max
W∈Vk+1

g(W)1/k

≤ lim sup
k→∞

(δγh[k])1/k

≤ lim sup
k→∞

(

δγ(k−β)/η
)1/k

= lim
k→∞

(

δγ−β/η
)1/k

γ1/η

= γ1/η < 1,

where β ∈ N+ is the maximum length of the paths,
δ ∈ R+ is the maximum gain of the paths, and the third
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line follows from h[k] ≥ k−β
η . Thus, the proof is con-

cluded. 2

The JSR of the PSLS (11) gives a measure on how
fast the exponential convergence of the SLS (1). Un-
fortunately, the problem of determining if ρ(Σ) < 1 is
NP-hard [24, Section 2.2], [47]. Nevertheless, there exist
many over approximation procedures, for instance, the
Kronecker lifting [25, Theorem 3] for the positive SLSs
and the generating function approach [26] for general
SLSs. In the following result, we can compute the expo-
nential convergence rate using the Lyapunov method for
the PSLS (11), for instance, [48, Theorem 1], [49].

Proposition 3 Let a weighted digraph G(V, E , α) with

the parameters α ∈ R
|V|
+ be given, G(V, E1, α), . . .,

G(V, EQ, α) be any disjoint subgraphs of G(V, E , α)
such that E = E1 ∪ · · · ∪ EQ, and E1, E2, . . . , EQ be the
corresponding adjacency matrices, respectively. If

(1) G(V, E , α) has no sink;
(2) there exist Aj→i ⊂ A∗, (j, i) ∈ E, and the set of

functions Vi : R
n → R+, i ∈ V, such that the

GCLI (5) associated with G(V, E , α) is satisfied;
(3) there exist vectors λi, i ∈ V, scalers β1 ∈ R++, β2 ∈

R++ and ϕ ∈ [0, 1) such that

β11 � λp � β21, ET
i λj � ϕλi,

(j, i) ∈ {1, 2, . . . , Q}2, (15)

where 1 ∈ R
|V| is the vector whose entries are ones,

then {Vi}i∈V is a GCLF associated with G(V, E , α).
Moreover, the SLS (1) is exponentially stabilizable with
the parameters

K =

(

τL

ϕ

β2

β1

maxi∈V κ̄i

mini∈Vκ
i

)1/2

, φ = ϕ
1
2L .

PROOF. Consider the PSLS (11) associated with any
set of subgraphs G(V, E1, α), . . ., G(V, EQ, α) defined
in Definition 4, and denote by v(t; θ, s) the state tra-
jectory of the PSLS (11) under the arbitrarily switch-
ing sequence θ := (θ(0), θ(1), . . .) and the initial state

s ∈ R
|V|
+ . By the stability condition of the PSLS in [48,

Theorem 1], [49], (15) implies that the Lyapunov func-
tion Fi(v) := vTλi satisfies the Lyapunov inequality

β1‖v‖1 ≤ Fi(v) ≤ β2‖v‖1, (16)

Fj(E
T
i v) ≤ ϕFi(v), ∀(i, j) ∈ {1, 2, . . . , Q}2,

for all v ∈ R
|V|
+ , where ‖v‖1 :=

∑|V|
i=1 |vi| is the 1-norm.

Therefore, Fθ(t)(v(t; θ, s)) ≤ ϕtFθ(0)(v(0; θ, s)) holds.

Combining this inequality with (16), one has

‖v(t; θ, s)‖1 ≤
β2

β1
ϕt‖v(0; θ, s)‖1

⇔
‖Eθ(t−1) · · ·Eθ(0)s‖1

‖s‖1
≤

β2

β1
ϕt, ∀s ∈ R

|V|
+ ,

which implies ‖Eθ(t−1) · · ·Eθ(0)‖1 ≤ β2

β1
ϕt, where ‖·‖1 is

the induced matrix 1-norm. Since (θ(0), θ(1), . . . , θ(t−
1)) ∈ Qt is arbitrary, by the definition of the JSR, we
have

ρ(Σ) = lim
t→∞

max
A∈Σt

‖A‖
1/t
1 ≤ lim

t→∞

(

β2

β1

)1/t

ϕ = ϕ < 1,

where Σ = {E1, E2, . . . , EQ}. By Theorem 3, the SLS
is stabilizable, and an exponential convergence rate is

given by ϕ
1
2L . The parameter K =

(

τL

ϕ
β2

β1

maxi∈V κ̄i

mini∈V κ
i

)1/2

can be obtained following similar lines as in the proof of
Theorem 3, thus omitted here. 2

5 Examples of GCLFs

The GCLF includes several control Lyapunov functions
including the quadratic control Lyapunov function and
PWQCLFs [11–14, 16]. In this subsection, by studying
connections between the GCLF and other Lyapunov
functions, we unify the classical Lyapunov theorems.

Periodically and aperiodically quadratic con-
trol Lyapunov function: First of all, the peri-
odically quadratic control Lyapunov function (PQ-
CLF) [30–32, 50] is the quadratic function V1(x) :=
xTP1x, P1 ∈ S

n
++, such that

min
A∈Ah

V1(Az) ≤ αV1(z), ∀z ∈ R
n\{0n} (17)

for some α ∈ [0, 1). The inequality (17) corresponds to
the inequalities in (5) associated with G(V, E), where
G(V, E) is a digraph with one node V = {1} and one
edge E = {(1, 1)}. Since the edge is a loop, the digraph
has no sink. Therefore, V1(z) is a GCLF of the SLS (1).
If A1→1 = Ah is replaced with A1→1 = A[1, h], i.e.,

min
A∈A[1, h]

V1(Az) ≤ αV1(z), ∀z ∈ R
n\{0n}, (18)

then, V1 called the aperiodic control Lyapunov function
(APCLF) [30–32, 32, 51]. An example of the APCLF is
given below.

Piecewise quadratic control Lyapunov function:
For the quadratic functions Vi(z) := zTPiz, Pi ∈
S
n
++, i ∈ V, the piecewise quadratic function of the form
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Vmin(z) := mini∈V Vi(z) is called piecewise quadratic
control Lyapunov function (PWQCLF) [13, 16] if

min
A∈A1

Vmin(Az) ≤ αVmin(z), ∀z ∈ R
n\{0n} (19)

is satisfied for some α ∈ [0, 1). It can be easily proved
that if Vmin(z) is a PWQCLF, then {Vi}i∈V is a QGCLF
associated with G(V, E), where E = V × V (complete
digraph). There is another class of PWQCLFs in [14],
which satisfy

Vmin(Ajz) ≤ αVj(z), ∀z ∈ R
n\{0n}, j ∈ V. (20)

It can be proved that the PWQCLF satisfying (20) corre-
sponds to a QGCLF associated withG(V, E), E = V×V
because the inequality (20) can be viewed as a special
case of the inequalties in (5) with Aj→i = {Aj}, (j, i) ∈
E . In addition, it can be proved that the PWQCLF
Vmin(z) satisfying (20) also satisfies (19). If A1 is re-
placed by Ah or A[1, h] in (19), then Vmin(z) is called the
periodically or aperiodically piecewise quadratic con-
trol Lyapunov function (PPWQCLF or APPWQCLF).
It can be prove that if Vmin(z) is a PPWQCLF, then
{Vi}i∈V is a QGCLF associated with G(V, E), E = V ×
V.

Multiple control Lyapunov function: With modi-
fications of the Lyapunov inequalities in (5) and The-
orem 1, the multiple Lyapunov function [9, 10] for the
discrete-time SLSs can be interpreted as a GCLF as
well. Roughly speaking, the multiple Lyapunov func-
tion defined in [10, Definition 1, Theorem 1] is a GCLF
associated with G(V, E), which satisfies the Lyapunov
inequalities defined in Equation (5) for a partition of
the state-space, where G(V, E) is complete and all the
nodes have loops, Aj→i = A1, ∀(j, i) ∈ E , j = i, and
Aj→i = A0, ∀(j, i) ∈ E , j 6= i.

6 Numerical computation

This section describes a computational method to find

the parameters α ∈ R
|V|
+ in Theorem 1. Consider the

digraph G(V, E), the set of matrices {Pi}i∈V ⊂ S
n
++,

and the set of quadratic functions {Vi}i∈V with Vi(z) :=
zTPiz, i ∈ V. Define

αmin, j := minα (21)

subject to

min
i∈N+

j

min
A∈Aj→i

zTATPiAz ≤ αzTPjz, ∀z ∈ R
n.

To compute an over approximation of (21), we consider
the following problem.

Problem 3 (SDP approximation) Let G(V, E),
{Pi}i∈V ⊂ S

n
++, and Aj→i ⊂ A∗, (j, i) ∈ E, be given.

For j ∈ V, solve the semidefinite programming (SDP)
problem associated with G(V, E)

αSDP, j := min
λ(A, i, j)∈R, αj∈R

αj subject to

∑

A∈Aj→i, i∈N+
j

λ(A, j, i)A
TPiA � αjPj ,

∑

A∈Aj→i, i∈N+
j

λ(A, i, j) = 1,

λ(A, i, j) ≥ 0, ∀A ∈ Aj→i, i ∈ N+
j , (22)

where λ(A, i, j) is a scalar indexed by (A, i, j) ∈ Aj→i ×

N+
j × V.

Proposition 4 αmin, j ≤ αSDP, j for all j ∈ V.

PROOF. The proof is easily completed by noting that
the minimum of quadratic functions is always over es-
timated by any average value of the quadratic func-
tions. 2

Remark 2 The sufficient SDP test is an extension of the
existing SDP tests for different control Lyapunov func-
tions, for example, those in [14, Theorem 3], [16, Corol-
lary 1], [12,13].

The following two results prove some properties of the
SDP test in Problem 3. The first result is regarding the
conservatism entailed in Problem 3.

Proposition 5 Given a SLS for which det(Ai) ≥ 1 for
all i ∈ M. Then, for any G(V, E), Pi ∈ S

n
++, i ∈ V,

and Aj→i ⊂ A∗, (j, i) ∈ E, there exists j ∈ V such that
αSDP, j ≥ 1.

PROOF. See Appendix B. 2

See [26, section IV] for an example of switching stabiliz-
able SLSs for which each subsystem matrix has deter-
minant no less than one. For these SLSs, there always
exists j ∈ V such that αmin, j ≥ 1. Therefore, Propo-
sition 1 cannot be used to identify the stabilizability.
Moreover, if the SLS (1) is stabilizable, det(Ai) ≥ 1
for all i ∈ M, and if one tries to find a PQCLF us-
ing the SDP (22) (E = {(1, 1)} and V = {1}), the gain
of the simple cycle in G(V, E , w) with the parameters
αSDP, j ∈ R+, ∀j ∈ V, is always larger than or equal
to one for any P1 ∈ S

n
++. This means that the conser-

vatism of the SDP (22) will not be entirely vanished
when the PQCLF or APQCLF is considered. For the
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PQCLF/APQCLF case, can we give an explicit condi-
tion on the SLS such that for some P1 ∈ S

n
++, the gain

of the simple cycle is less than one? A clear answer was
given in [32, Theorem 22]. Before presenting the result,
we introduce the notion of the periodic open-loop stabi-
lizability of the SLS (1).

Definition 6 (Periodic open-loop stabilizability)
The SLS (1) is called periodic open-loop stabilizable if
there exists A ∈ A∗ such that ρ(A) < 1.

Lemma 2 ( [32, Theorem 22]) For the SDP (22) as-
sociated with G(V, E), V = {1}, E = {(1, 1)}, we have
αSDP, 1 < 1 for some h ∈ N+, P1 ∈ S

n
++, and A1→1 ⊂

A∗ if and only if the SLS (1) is periodic open-loop stabi-
lizable.

Lemma 2 proves an inherent restriction of the SDP
test (22) using the PQCLF or the APQCLF. A question
is whether or not the same conclusion can be drawn for
the fully generalized digraphs. It is natural to expect
that since only one of αSDP, j , j ∈ V, is enforced to
be larger than or equal to one by Proposition 5 when
det(Ai) ≥ 1 for all i ∈ M, there is still a chance that
the gains of all the simple cycles of G(V, E , α) with the
parameters αSDP, j , j ∈ V, are strictly less than one so
that we can identify the stabilizability. It will be proved
later that the answer is negative: the same conclusion as
in Lemma 2 holds for the arbitrarily general digraphs.
To prove this, we first establish the following result,
which proves a convergence property of Problem 3 as
the size of the sets of the words increases.

Proposition 6 Suppose that

(1) a given digraph G(V, E) has no sink;
(2) there exist the matrices Pi = P ∗

i ∈ S
n
++, i ∈ V, the

words Aj→i = A∗
j→i ⊂ A[1, h], ∀(j, i) ∈ E, and the

scalars λ(A, i, j) = λ∗
(A, i, j)∀A ∈ A∗

j→i, (j, i) ∈ E,

αj = α∗
j ∈ R+, ∀j ∈ V, such that the constraints of

the SDP (22) associated with G(V, E) are satisfied;
(3) the weighted digraphG(V, E , α)with the parameters

αj = α∗
j ∈ R+, ∀j ∈ V, has simple cycles whose

gains are all less than one.

Then, for arbitrary Pi = P̃i ∈ S
n
++, i ∈ V,

(1) there exists a digraph G(V, Ẽ) with no sink;

(2) there exist the words Aj→i, ∀(j, i) ∈ Ẽ, and αj =
α̃j ∈ R+, ∀j ∈ V, satisfying the constraints of the

SDP (22) associated with G(V, Ẽ);
(3) the weighted digraphG(V, Ẽ , α)with the parameters

α̃j ∈ R+, ∀j ∈ V, has simple cycles whose gains are
all less than one.

PROOF. See Appendix C. 2

In the following result, we prove that the limitation of
the SDP test (22) when the PQCLF or the APQCLF is
considered cannot be overcome by the use of the general
QGCLF.

Proposition 7 There exist a digraph G(V, E), Pi ∈
S
n
++, i ∈ V, and Aj→i ⊂ A∗, (j, i) ∈ E, such that

(1) G(V, E) has no sink;
(2) the gains of all the simple cycles in G(V, E , α) with

the parameters αSDP, j, ∀j ∈ V is less than one,

if and only if the SLS (1) is periodic open-loop stabiliz-
able.

PROOF. See Appendix D. 2

Example 4 Consider the SLS (1) with

A1 =









0.5923 0.5283 0.7565

1.5375 0.7170 1.0567

0.9333 0.2953 −0.0096









,

A2 =









−0.1003 0.0578 0.2078

1.1190 −0.6934 0.6320

1.3056 0.0255 −3.2854









.

The goal is to determine the stabilizability of the SLS. We
generate the quadratic functions Vi(z) = zTPiz, i ∈ V,
where the matrices Pi i ∈ V, are randomly chosen from
the set of matrices H4 obtained by the iteration H0 :=
{In} and Hk := {AT

p HAp + In : H ∈ Hk−1, p ∈ M}
for k ∈ {1, 2, . . . , 4}. Note that the construction of the
matrix set H4 is motivated from the generating function
method in [26]. We also randomly generate a digraph
G(V, E) with the adjacency matrix

E =































0 1 1 1 0 1 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

1 0 0 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0































.

With Aj→i = A[1, 6], ∀(q, p) ∈ E, we obtain αSDP, 1 =
1.9758, αSDP, 2 = 0.7905, αSDP, 3 = 0.7904, αSDP, 4 =
0.4389, αSDP, 5 = 1.7832, αSDP, 6 = 0.4415, and
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αSDP, 7 = 0.3820. The adjacency matrix of the weighted
digraph G(V, E , α) is obtained as

E =































0 0.7905 0.7904 0.4389 0 0.4415 0.3820

0 0 0 0 0 0 0.3820

0 0 0 0 0 0 0

1.9758 0 0 0 1.7832 0 0.3820

0 0 0 0 0 0 0

0 0 0 0 1.7832 0 0

1.9758 0 0 0 0 0 0































.

The digraph has the simple cycles C1 = (1, 7, 2, 1), C2 =
(1, 4, 1), C3 = (1, 7, 4, 1), C4 = (1, 7, 1), and the corre-
sponding cycle gains are g(C1) = 0.5967, g(C2) = 0.8671,
g(C3) = 0.3313, g(C4) = 0.7548, respectively. Since all
the cycle gains are less than one, by Theorem 1, the SLS is
stabilizable, and the exponential convergence rate is φ =
0.9960. Proposition 3 gives an alternative way to estimate
the exponential convergence rate without considering the
cycle gains. To investigate the possibility that Proposi-
tion 3 can also give a valid result, consider the subgraphs
G(V, E1, α), . . . , G(V, E5, α) of G(V, E , α) with the ad-
jacency matrices E1 = eT1 e1E, E2 = eT2 e2E, E3 =
(eT3 e3 + eT4 e4)E, E4 = (eT5 e5 + eT6 e6)E, E5 = eT7 e7E,
respectively. Applying Proposition 3 yields the exponen-
tial convergence rate φ = 0.9845. On the other hand, the
APQCLF with V1(z) = xTx and A1→1 = A[1, 6] can-
not certify the stabilizability, while the APQCLF with
V1(z) = xTx and A1→1 = A[1, 7] gives φ = 0.9714.

Remark 3 To find matrices Pi, i ∈ V, simultaneously
in Problem 3, it can be extended to a bilinear (or biaffine)
matrix inequality (BMI) optimization problem, which has
BMI constraints. There are several algorithms to find its
local minimums or stationary points, for example, the
path-following method [52], the subgradient method [53],
the interior point method [54], and the DC (difference
of two convex functions) programming [55]. Even though
there is no general guideline for deciding digraphs, one
can use a simple digraph, for instance, a digraph with two
nodes V = {1, 2} and two edges E = {((1, 2), (2, 1)}, and
combined with one of the aforementioned methods e.g.,
the path-following method [52], effective algorithms can
be developed.

7 Conclusion

In this paper, we have extended the work in [29] to
deal with the stabilization of the SLSs. The GCLF has
been proposed, and it has been proved that the exis-
tence of the GCLF is a necessary and sufficient condition
for the stabilizability of the SLSs. Moreover it has been

proved that the GCLF unifies various Lyapunov func-
tions, for instance, the periodic, aperiodic, and piecewise
quadratic control Lyapunov functions. Computational
methods to search for the GCLF have been developed
based on the SDP and the BMIs. A numerical example
has been given to illustrate the proposed algorithm and
demonstrate the potential advantage of the GCLF ap-
proach. The problem of searching the GCLF has a struc-
ture that can be computationally parallelized by the ex-
isting multi-agent optimization techniques, for example,
the distributed optimization in [56], and this can be a
possible subject of the future research.

A Proof of Theorem 3

As the JSR does not depend on the matrix norm
used [24], in this proof, it is convenient to use
the induced matrix ∞-norm defined by ‖A‖∞ :=

max1≤i≤|V|(
∑|V|

j=1 |Aij |). First, we will prove that if the
JSR is less than one, then so are the gains of all the
simple cycles. Consider an arbitrary walk of length t,
Wt+1 = (v0, v1, . . . , vt), in G(V, E , α). If E ∈ R

|V|×|V|

is the adjacency matrix of G(V, E , α), then the gain of
Wt+1 can be written as

g(Wt+1) =

t−1
∏

k=0

g((vk, vk+1))

=

t−1
∏

k=0

eTvk+1
Eevk

=

∥

∥

∥

∥

∥

evt

t−1
∏

k=0

eTvk+1
Eevk

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

(

t−1
∏

k=0

evk+1
eTvk+1

E

)

ev0

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

(

t−1
∏

k=0

evk+1
eTvk+1

Eevk
eTvk

)

ev0

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

(

t−1
∏

k=0

αvk
evk+1

eTvk

)

ev0

∥

∥

∥

∥

∥

∞

.

Note that each adjacency matrix Ep of the subgraph
G(V, Ep, α) can be expressed as Ep =

∑

(j, i)∈Ep
αjeie

T
j .

Therefore, if θ(k) ∈ M is chosen so that (vk, vk+1) ∈
Eθ(k) for all k ∈ {0, 1, . . . , t − 1}, then since all the
elements of Ep are positive, we have

∥

∥

∥

∥

∥

(

t−1
∏

k=0

αvk
evk+1

eTvk

)

ev0

∥

∥

∥

∥

∥

∞

≤

∥

∥

∥

∥

∥

t−1
∏

k=0

Eθ(k)ev0

∥

∥

∥

∥

∥

∞

.

Combining the last two results, we have

g(Wt+1) ≤

∥

∥

∥

∥

∥

t−1
∏

k=0

Eθ(k)ev0

∥

∥

∥

∥

∥

∞

≤ max
A∈Σt

‖Aev0
‖∞, (A.1)
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where Σ := {E1, E2, . . . , EQ}.

On the other hand, for any j ∈ V, the definition of the
JSR gives

ρ(Σ) = lim
k→∞

max
A∈Σk

‖A‖1/k∞ ≥ lim
k→∞

max
A∈Σk

‖Aej‖
1/k
∞ ,

where ej ∈ R
|V|, j ∈ V, is the j-th unit vector. This

implies that there exists T ∈ N+ such that

ρ(Σ) ≥ max
A∈Σt

‖Aej‖
1/t
∞ , ∀t ≥ T. (A.2)

Combining (A.1) with (A.2), we have

g(Wt+1) ≤ ρ(Σ)t, ∀t ≥ T. (A.3)

Using the last inequality, we will prove that the gains of
all simple cycles are less than one. Assume by contra-
diction that there exists a simple cycle C in G(V, E , α)
with g(C) ≥ 1, define a walk W∞ = (v0, v1, . . .) which
circles around C infinitely many times, and Wt+1 =
(v0, v1, . . . , vt) is a closed walk which is a truncation of
W∞. Then, the left-hand side of (A.3) should be always
larger than or equal to one. Since ρ(Σ)t → 0 as t → ∞,
there exists a sufficiently large t ∈ N+ such that the right
hand side of the last inequality is strictly less than one.
This gives us a contradiction. Thus,G(V, E , α) does not
have a simple cycle with its cycle gain larger than or
equal to one. By Definition 2, {Vi}i∈V is a GCLF asso-
ciated with G(V, E , α).

To estimate the exponential convergent rate of the
SLS (1), define the sequence generated by k0 = 0, and
kt+1 = kt + |Φ(jt, jt+1, ξt)| for t ∈ N+, where {ξt}

∞
t=0

is the subsequence of the states defined in (8) so that
ξt = x(kt; z, σ), ∀t ∈ N. If Wt+1 = (v0, v1, . . . , vt) is
a walk associated with the policy (7), then Vvt

(ξt) ≤
g(Wt+1)Vv0

(ξ0), and using (A.3), we have

Vvt
(ξt) ≤ ρ(Σ)tVv0

(ξ0), ∀t ≥ T.

Combining the last inequality with (4) leads to

‖ξt‖
2 ≤

maxi∈V κ̄i

mini∈V κi

ρ(Σ)t‖ξ0‖
2, ∀t ≥ T. (A.4)

Since ‖ξt‖
2 ≤ τT−1‖ξ0‖

2, ∀t ∈ [0, T − 1], where τ :=
maxµ∈M ‖Aµ‖, it is easy to prove that

ρ(Σ)−T+1 max

{

τT−1,
maxi∈V κ̄i

mini∈V κi

}

ρ(Σ)t‖ξ0‖
2.

is an upper bound on τT−1‖ξ0‖
2 for all t ∈ [0, T − 1]

and an upper bound on the right-hand side of (A.4) for
all t ≥ T . Therefore, the following holds for all t ∈ N:

‖ξt‖
2 ≤ ρ(Σ)−T+1 max

{

τT−1,
maxi∈V κ̄i

mini∈V κi

}

ρ(Σ)t‖ξ0‖
2.

For any k ∈ N, choose t ∈ N such that kt+1 ≥ k ≥ kt.
Noting k = kt + (k − kt) ≤ kt + L and t ≥ k/L− 1, we
have

‖x(k; z, σ)‖2 = ‖x(kt + k − kt; z, σ)‖
2

≤ τk−kt‖x(kt; z, σ)‖
2 ≤ τL‖ξt‖

2

≤ τLρ(Σ)−T+1 max

{

τT−1,
maxi∈V κ̄i

mini∈V κi

}

ρ(Σ)k/L−1‖z‖2,

and the desired result follows.

B Proof of Proposition 5

Using the inequality of arithmetic and geometric means,
for any H ∈ S

n
+, we have (1/n)trace(H) ≥ n

√

det(H).

Therefore, for any Pj ∈ S
n
++, Pi ∈ S

n
++, i ∈ N+

j , and

A ∈ Aj→i, (j, i) ∈ E ,

trace(In − P
−1/2
j ATPiAP

−1/2
j )

≤ n− n[det(P−1
j ATPiAP

−1
j )]1/n

= n− n

[

det(Pi)

det(Pj)
det(A)2

]1/n

≤ n− n

[

mini∈N+
j
det(Pi)

det(Pj)
det(A)2

]1/n

≤ n− n

[

mini∈N+
j
det(Pi)

det(Pj)

]1/n

where the last inequality follows from the assumption
that det(Aµ) ≥ 1 for all µ ∈ M. Therefore, if j∗ :=
argminj∈V det(Pj), then

trace(In − P
−1/2
j∗ ATPiAP

−1/2
j∗ )

≤ n− n

[

mini∈N+
j∗

det(Pi)

det(Pj∗)

]1/n

≤ 0.

This implies that the convex hull of the set In −

P
−1/2
j∗ ATPiAP

−1/2
j∗ for A ∈ Aj∗→i, i ∈ N+

j∗ does not
intersect Sn++ as matrices in the latter set have positive
trace. This in turn implies that the convex hull of the
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set Pj∗ −ATPiA for A ∈ Aj∗→i, i ∈ N+
j∗ does not inter-

sect S
n
++, either. By the definition of αSDP, j , we have

αSDP, j ≥ 1.

C Proof of Proposition 6

For any j ∈ V, define by T (k, j) ⊂ Vk+1 the set
of all walks of length k, Wk+1 = (v0, v1, . . . , vk), in
G(V, E , α) with the initial node v0 = j. For any j ∈ V,
the LMI constraint of the SDP (22) corresponds to
a subgraph of which consists of the node j, its out-
neighbors, and the directed edges from the node j to
its out-neighbors. Now, let j = j0 ∈ V. By plugging the
right-hand side of the LMIs in (22) for all j ∈ V into the
left-hand side of the LMI in (22) for j = j0 ∈ V, we can
obtain

∑

A0∈A∗

j0→j1
, j1∈N+

j0

A1∈A∗

j1→j2
, j2∈N+

j1

1

α∗
j1

1

α∗
j0

λ∗
(A1, j2)

λ∗
(A0, j1)

AT
0 A

T
1 P

∗
j2A1A0

� P ∗
j0 ,

which corresponds to a digraph which consists of the
node j0, its second order out-neighbors, and the directed
edges from the node j0 to its second order out-neighbors,
where k-th order out-neighbors of a node j ∈ V are
defined as all nodes which can be reached from the node
j in exactly k hops. Repeating this procedure k−2 times
more, it can be proved that Φ � P ∗

j holds for some
Φ ∈ conv(C∗(1, j)), where

C∗(k, j)

:=















1
g(Wk+1)

(Xk−1 · · ·X0)
TP ∗

vk
(Xk−1 · · ·X0) :

Xt ∈ A∗
vt→vt+1

, t ∈ {0, 1, . . . , k − 1},

Wk+1 = (v0, v1, . . . , vk) ∈ T (k, j)















.

By direct manipulations, it can be proved that the last
inequality can be rewritten by Φ � α̃jP̃j for some Φ ∈

conv(C̃(1, j)), where

α̃j = min
Wk+1∈T (k, q)

g(Wk+1)
λmax(P

∗
j )

λmin(P̃j)
,

C̃(k, j)

:=















(Xk−1 · · ·X0)
T P̃vk

(Xk−1 · · ·X0) :

Xt ∈ A∗
vt→vt+1

, t ∈ {0, 1, . . . , k − 1},

(v0, v1, . . . , vk) ∈ T (k, j)















.

Following similar lines as in the proof of Theorem 1, it
can be proved that limWk+1∈T (k, j), k→∞ g(Wk+1) = 0,

and hence, for a sufficiently large k = kj ∈ N+, we
can make α̃j arbitrarily small. On the other hand, con-

sider another weighted digraph G(V, Ẽ , α) with the pa-

rameters α̃j , ∀j ∈ V, where the edge set Ẽ ⊆ V × V
is constructed in such a way that each node j ∈ V in
G(V, Ẽ , α) has out-neighbors which are the kj-th order
out-neighbors of the node j ∈ V in G(V, E). It is clear
that the digraph G(V, Ẽ) has no sink if G(V, E) so does.

Suppose that exists a simple cycle C in G(V, Ẽ , α) such
that g(C) ≥ 1. If the edge (j, i) ∈ Ẽ is included in C,
then by choosing kj ∈ N+ large enough, we can make
g(C) < 1. This completes the proof.

D Proof of Proposition 7

To prove the sufficiency, suppose that the SLS (1) is pe-
riodic open-loop stabilizable. Then, by Lemma 2, there
exist P1 ∈ S

n
++ and h ∈ N+ such that αSDP, 1 < 1 for

G(V, E), V = {1}, E = {(1, 1)} and A1→1 ⊂ Ah. Thus,
the statements 1) and 2) are satisfied. This proves the
sufficiency.

For the necessity part, suppose that there exist a digraph
G(V, E), Pi ∈ S

n
++, i ∈ V, and Aj→i ⊂ A∗, (j, i) ∈ E

such that the statements 1) and 2) hold. By Proposi-
tion 6, we have Φ � βj, kIn for some Φ ∈ conv(C(1, j)),
where

βj, k = min
Wk+1∈T (k, j)

g(Wk+1)λmax(Pj)

C(k, j)

:=















(Xk−1 · · ·X0)
T (Xk−1 · · ·X0) :

Xt ∈ Avt→vt+1
, t ∈ {0, 1, . . . , k − 1},

(v0, v1, . . . , vk) ∈ T (k, j)















.

Since limWk+1∈T (k, j), k→∞ g(Wk+1) = 0, for a suf-

ficiently large k = k̄ ∈ N+, we get βj, k̄ < 1,
implying that for the SDP (22) associated with
G(V, E), V = {1}, E = {(1, 1)}, αSDP, 1 < 1 holds for
P1 = In and some A1→1 ⊂ A∗. By Lemma 2, this en-
sures that the SLS (1) is periodic open-loop stabilizable.
This completes the proof.
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