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Abstract— In this work, we study dynamic programming
(DP) algorithms for partially observable Markov decision
processes with jointly continuous and discrete state-spaces.
We consider a class of stochastic systems which have coupled
discrete and continuous systems, where only the continuous
state is observable. Such a family of systems includes many real-
world systems, for example, Markovian jump linear systems
and physical systems interacting with humans. A finite history
of observations is used as a new information state, and the
convergence of the corresponding DP algorithms is proved. In
particular, we prove that the DP iterations converge to a certain
bounded set around an optimal solution. Although deterministic
DP algorithms are studied in this paper, it is expected that this
fundamental work lays foundations for advanced studies on
reinforcement learning algorithms under the same family of
systems.

I. INTRODUCTION

The goal of this paper is to study optimal control prob-
lems for partially observable Markov decision processes
(POMDPs) with jointly continuous and discrete state-spaces.
Optimal control designs for stochastic systems have been a
fundamental research field for a long time [1]. Classical and
popular approaches include, for example, the linear quadratic
Gaussian control and stochastic model predictive control,
where the stochastic model predictive control computes a
suboptimal control policy with predictions of finite future
trajectories. In this paper, we focus on stochastic systems
with a special structure where the continuous state-space
and discrete state-space coexist and interact with each other.
The state in the discrete state-space evolves according to
a Markov chain which depends on the state of the control
system with the continuous state-space. The overall system
can be viewed as a Markov decision process (MDP) [1] with
coupled continuous and discrete state spaces. Such classes
of systems arise in several stochastic control applications
including
• vehicle path-planning [2], [3];
• Markovian jump linear systems with examples of

macroeconomic model [4] and economic models of
government expenditure [5];

• vehicle controls with driver’s behavior models [6], [7];
• building climate control with human interactions [8]–

[11];
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• hybrid electric vehicle powertrain management [12],
[13];

to name just a few.
The main contribution of this paper is the first formal study

of dynamic programming formulation and its convergence
results for the systems mentioned above with an additional
assumption of the partial state observability, i.e., the discrete
state is unobservable. An example includes control systems
with human interactions, where unobservable human cogni-
tion and behaviors are modelled as discrete Markov chains
or Markov decision processes. In particular, this class of
systems arises in building management problems with hu-
man interactions [11]. To improve the control performance,
a finite observation history is considered for the output-
feedback control policy with its performance analysis. The
use of finite observation histories for POMDPs is a common
practice in the reinforcement learning literature [14], [15].
However, to our knowledge, there exists no attempt to
analyze its sub-optimality so far. The proposed results build
upon the previous work [11], [12]. Although deterministic
DP algorithms are studied in this paper, this fundamental
work lays foundations for advanced studies on reinforcement
learning algorithms under the same family of systems.

A. Related Work

As long as a sufficient number of random samples of
states can be obtained, the scenario-based (or sample-based)
approximation approach, e.g., [2], [3], [16]–[19], can design
a control policy for complex stochastic systems with generic
probability distributions of uncertainties. It was successfully
applied to robot path-planning problems in [2], [3] and
aircraft conflict detection in [16]. In the scenario-based ap-
proach, the process related to uncertainties and the evolution
of the control system trajectories are not fully coupled.
For instance, in [2], [3], the uncertainties of the continuous
system are affected by the discrete system’s state, while the
latter does not depend on the continuous system’s state.

Fully coupled systems similar to those in this paper were
studied in [12], [13] for hybrid electric vehicle power-
train management problems. They are fully coupled in the
sense that both continuous and discrete system states affect
each other. They considered approximate dynamic program-
ming [20] (or reinforcement learning [21] from the machine
learning context). Compared to [12], the control systems in
this paper have additional continuous stochastic disturbances,
while [12] only addresses discrete stochastic disturbances
that depend on the discrete state of the Markov chain. Re-
inforcement learning algorithms were adopted in [10], [11]



for building management systems with occupant interactions.
Compared to [11], we consider more general Markov chain
models for the discrete state-space evolution.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Noataion

Throughout the paper, the following notations will be
used: N and N+: sets of nonnegative and positive integers,
respectively; R: set of real numbers; Rn: n-dimensional
Euclidean space; Rn×m: set of all n×m real matrices; AT :
transpose of matrix A; Sn (resp. Sn+, Sn++): set of symmetric
(resp. positive semi-definite, positive definite) n×n matrices;
|S|: cardinality of a finite set S; E[·]: expectation operator;
P[·]: probability of an event; diam(C): diameter of a set
C in Rn, i.e., diam(C) := sup{‖s − s′‖2 : s, s′ ∈ C};
for any vector x, [x]i is its i-th element; for any matrix
P , [P ]ij indicates its element in i-th row and j-th column;
matrix P ∈ Rn×n is called a (row) stochastic matrix if its
row sums are one; x ∈ Rn is called a stochastic vector if
its column sum is one; if z is a discrete random variable
which has n values and µ ∈ Rn is a stochastic vector, then
z ∼ µ stands for P[z = i] = [µ]i for all i ∈ {1, . . . , n}; if
z is a continuous random variable with the density function
ρ(·), we denote z ∼ ρ(·); ∆k with k ∈ N+: unit simplex
defined as ∆k := {(α1, . . . , αk) : α1 + · · · + αk = 1, αi ≥
0,∀i ∈ {1, . . . , k}}; w.r.t: abbreviation for “with respect to.”
Throughout the paper, random variables will be highlighted
by boldface fonts, while the corresponding realizations will
be written by plain fonts.

B. Markov Decision Process

In this paper, we consider a discrete-time Markov
decision process (MDP) [20] defined as a tuple
〈X,S,U, px, ps, pr, r, γ〉, where X is a continuous compact
state-space, S is a discrete finite state-space, U is a
continuous or discrete action-space, px(x′|x, s, u) defines a
continuous state transition probability density function from
the current state x ∈ X to the next state x′ ∈ X under the
action u ∈ U , and s ∈ S, ps(s′|s, x) defines the discrete
state transition probability mass function from the current
state s ∈ S to the next state s′ ∈ S under the current
continuous state x, r : X×S×U → R is a stochastic reward
function with its expectation E[r(x, s, u)] = R(x, s, u) and
density function pr(r|x, s, u) given (x, s, u), and γ ∈ [0, 1)
is called the discount factor. We assume that the expected
reward is bounded. For simplicity, we only consider the
reward function r : X × U → R which depends on the
continuous state x and action u.

Assumption 1: The expected reward R satisfies R(x, s) ∈
[0,M ] for all (x, s) ∈ X × U , where M ∈ R++.

The overall system can be expressed as{
x(k + 1) ∼ px(·|x(k), s(k),u(k)), x(0) ∼ ρx(·)
s(k + 1) ∼ ps(·|s(k),x(k)), s(0) ∼ ρs(·)

(1)

where k ∈ N is the time step, x(k) ∈ X is the continuous
state at time k, u(k) ∈ U is the control input, and s(k) ∈ S

is the discrete state, ρx is the initial distribution of x(0),
and ρs is the initial distribution of s(0). In this paper,
the discrete state transition ps(s

′|s, x) is represented by a
Markov chain with and the state transition matrix P (x)
parameterized by x ∈ X . A visual description of the system
is given in Figure 1. If we define the augmented state

Fig. 1. Overall MDP structure.

z(k) :=
[
x(k)T s(k)T

]T
, then (1) can be formulated by

the single Markov decision process (MDP) with the transition
probability density pz(z′|z, u)

z(k + 1) ∼ pz(·|z(k),u(k)), z(0) ∼ ρz(·) (2)

where the continuous and discrete state-spaces coexist and
interact with each other.

C. Information State

Fig. 2. An example of information state

In real applications, the full-state information is usually
not available. In this paper, we adopt the following assump-
tion.

Assumption 2: x(k) is measured in real time, while s(k)
cannot be measured.

When the state is partially observable, the observation
x(k) loses the Markov property [22, pp. 63] in general, i.e.,
its transition usually depends on all past history of x(k) and
the current action u(k). We formally define this property.

Definition 1 (Markov property): The process
(I(k),u(k))∞k=1 is said to satisfy the Markov property if

I(k + 1) ∼ P[I(k + 1) = ·|I(k) = I(k),u(k) = u(k)]

= P[I(k + 1) = ·|I(i) = I(i), i = 0, . . . , k,u(k) = u(k)].

Define the space of information I and let I(k) ∈ I be an
available information at time k, called the information state.



In other words, I(k) is a general form of the observation
and can include artificially crafted information from the
pure observation x(k). For example, the information is the
current continuous state x(k), then the information space is
X . Another example of the information state is the finite
memory information state.

Definition 2 (Finite memory information state): The fi-
nite memory information state at time k is defined as

I(k) =: (x(k),x(k − 1), . . . ,x(k − L)) ∈ I = XL+1.

Figure 2 illustrates its concept and how to implement it
in practice. It is known that the finite memory information
structure in Definition 2 can alleviate the problem related
to the POMDP [14]. In particular, roughly speaking, it can
reduce the sensitivity of the next state’s distribution with
respect to the current state.

D. Output-Feedback Policy

A deterministic control policy π : I → U is a map from
the information space I to the control space U . In this paper,
the set of all admissible control policies is denoted by Π. In
addition, the sequence of control policies (π0, π1, . . .) ∈ Π∞

is denoted by π̄. If π0 = π1 = . . . = π, then π̄ or π is called
a stationary control policy. In this case, π̄ will be simply
denoted by π if there exists no confusion. For the MDP, the
episode is defined as a single realization of the state-action-
reward trajectory.

Definition 3 (Episode): An episode of the MDP (1)
under any policy π̄ is defined as the process
(x(k), s(k),u(k), r(x(k),u(k)))τk=0, where τ is the
random stopping time.

In Definition 3, τ may be finite or not. In this paper, the
stopping time is defined as the final time step before the first
time instant that continuous state exists X .

Assumption 3 (Stopping time): The stopping time τ is de-
fined as the first time step such that x(τ + 1) /∈ X .

Assumption 3 is useful when we consider X which is a
strict subset of Rn, where n is the dimension of X . This
is the case if we use a linear function approximation [23]
which locally approximates the value function or consider a
compact X to guarantee the stability of approximate dynamic
programming algorithms. Since the stopping time depends on
the initial state I(0) and the policy π̄, it will be denoted by
τ(I(0); π̄) throughout the paper, while for brevity, τ will be
used when it is clear from the context. When x(0) /∈ X , we
set τ = −1.

E. Problem Statement

For I ∈ I, the value associated with a given π̄ ∈ Π∞ is
defined as

J π̄(I) := E

 τ(I(0);π̄)∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I

 , (3)

where τ(I(0); π̄) is the stopping time given I(0) and π̄, and
the expectation is taken with respect to the episode. The
optimal control design problem is stated as follows.

Problem 1 (Optimal Decision): Consider the finite mem-
ory information state in Definition 2. Find π such that

π∗(I) := arg infπ∈Π J
π(I),

for all I ∈ I.

In this paper, the optimal cost will be denoted by J∗(I) :=
Jπ
∗
(I).

III. DYNAMIC PROGRAMMING WITH MARKOV
PROPERTY

In this section, we study dynamic programming (DP) ap-
proaches to find the optimal cost function and its correspond-
ing stationary control policy under the Markov assumption.
In this section, we consider the finite memory information
state in Definition 2.

Assumption 4: The process (I(k),u(k))τk=0 satisfies the
Markov property.

In other words, (I(k),u(k))τk=0 is determined based on an
MDP with the transition density function pI(I ′|I, u) from the
current information I to I ′ given u. Under Assumption 1, the
quantity (3) is always finite, and hence well defined. The first
property of J∗ is its boundedness on I.

Proposition 1: J∗ ≤M/(1− γ) on I.
Proof: By using the definition (3) and Assumption 1,

we have J∗(I) ≤
∑∞
i=0 γ

iM = M/(1− γ).
Typical DP approaches [20] convert Definition 3 into

a fixed point problem of a mapping called the Bellman
operator. For a given π ∈ Π, we also define the following
Bellman operator:

(TπJ0)(I) := R(x(0), π(I))

+ γE[IX(x(1))J0(I(1))|I(0) = I,u(0) = π(I)], (4)

where IX : X → {0, 1} is the indicator function,

IX(x) =

{
1 if x ∈ X
0 otherwise

and

I(0) = (x(0),x(−1), . . . ,x(−L)),

I(1) = (x(1),x(0), . . . ,x(−L+ 1)),

I = (x(0), x(−1), . . . , x(−L)),

I ′ = (x(1), x(0), . . . , x(−L+ 1)).

In (4), the indicator function is included to take into
account the exit event. Then, the value function Jπ in (3)
corresponding to π satisfies Jπ = TπJ

π , which is called the
Bellman equation.

Theorem 1: Jπ = TπJ
π holds.

Similarly, for any bounded function J0 : I → R+, we can
define the static operator

(TJ0)(I)

:= inf
u∈U
{R(x(0), u)

+ γE[IX(x(1))J0(I(1))|I(0) = I,u(0) = u]},



:= inf
u∈U

{
R(x(0), u) + γ

∫
x(1)∈X

J0(I ′)px(x(1)|I, u)dx(1)

}
,

(5)

Define the space of bounded functions J : I → R+ as
M := {J : I → R+ : J < ∞}. It can be proved that
(M, d) is a complete metric space [24, pp. 301] with the
metric

d(J, J ′) := sup
I∈I
|J(I)− J ′(I)|.

In the following, we prove that the optimal cost J∗ uniquely
satisfies TJ∗ = J∗ called the Bellman’s equation, and
the sequence, (Jk)∞k=0, generated by the DP algorithm,
Jk+1 = TJk, J0 ≡ 0 (called value iteration), converges
to J∗ under Assumption 1. We note that all proofs of this
paper are contained in Appendix of the online supplemental
material [25].

Theorem 2 (Convergence): The sequence (Jk)∞k=0 gener-
ated by the DP algorithm, Jk+1(I) = (TJk)(I), I ∈ I
with J0 ≡ 0 uniformly converges to J∗ w.r.t. the metric
d.

Remark 1: For MDPs where continuous and discrete
state-spaces coexist and are coupled, a convergence result
of the DP was addressed in [12, Theorem 2,Theorem 3].
However, the proof in [12] cannot be directly applied to our
case as the MDP has continuous stochastic disturbances for
the system in (1).

If J∗ is known, then the optimal control policy can be
recovered by using

π∗(I) := inf
u∈U
{R(x(0), u)

+ γE[IX(x(1))J∗(I(1))|I(0) = I,u(0) = u]} (6)

provided that the infimum is attained, and this is the case
when U is a discrete and finite set or when U is compact. A
disadvantage of the policy recovery form (6) lies in the fact
that it relies on the model knowledge. A way to overcome
this difficulty is to use the so-called action-value function or
Q-function [1, pp. 192], [26]. In particular, for a given policy
π and corresponding Jπ , the Q-function, Qπ : I×U → R+,
is defined as

Qπ(I, u)

:= R(x(0), u) + γE[IX(x(1))Jπ(I(1))|I(0) = I,u(0) = u].

Since Jπ = TπJ
π , comparing the above equation with (4),

one can prove Jπ(I) = Qπ(I, π(I)) and

Qπ(I, u) = R(x(0), u)

+ γE[IX(x(1))Qπ(I(1), π(I(1)))|I(0) = I,u(0) = u].

Similarly, the optimal Q-function is defined as

Q∗(I, u)

:= R(x(0), u) + γE[IX(x(1))J∗(I(1))|I(0) = I,u(0) = u].
(7)

By comparing this definition with (6), the optimal policy can
be expressed as π∗(I) := arg infu′∈U Q

∗(I, u′). In addition,

by using the definition of Q-function and J∗ = TJ∗, the op-
timal cost can be represented by J∗(I) = infu∈U Q

∗(I, u).
Plugging it into (7) yields

Q∗(I, u) = R(x(0), u)

+ γE[IX(x(1)) inf
u′∈U

Q∗(I(1), u′)|I(0) = I,u(0)u]

=: (FQ∗)(I, u) (8)

where the expectation is with respect to I(1). Then, (7) can
be written as the Q-Bellman equation Q∗ = FQ∗, which is
equivalent to the Bellman equation J∗ = TJ∗. The Q-value
iteration, Qk+1 = FQk with Q0 ≡ 0, generates sequence
(Qk)∞k=0 that converges to Q∗ under the same condition as
in the DP.

Corollary 1 (Convergence): The sequence, (Qk)∞k=0, gen-
erated by the DP algorithm, Qk+1(I, u) = (FQk)(I, u),
I ∈ I, u ∈ U , with Q0 ≡ 0 uniformly converges to Q∗

w.r.t. the metric d.
An advantage of the Q-value iteration is that once found,

the control policy can be recovered without the model
knowledge.

Remark 2: In practice, the value function or Q-function
can be represented by universal function approximators [20],
for example, a deep neural network or radial basis functions.
With such an approximator, the convergence proof should be
modified for the specific approximator. However, this topic
is out of the scope of this paper. Moreover, to implement DP
algorithms in this paper, one needs to integrate over the entire
information space in the definition of the Bellman operators,
for instance, F in (5). In practice, reinforcement learning
algorithms [21] can be applied to approximate the Bellman
operators by their stochastic approximations, and perform the
DP algorithms using the stochastic estimations.

IV. DYNAMIC PROGRAMMING WITHOUT MARKOV
PROPERTY

If we consider the POMDP, then the operators in (5)
and (4) are not well defined. In [27], the authors considered a
behavior policy πb and the corresponding limiting stationary
distribution of the MDP (1)

lim
k→∞

px(·|x(k), s(k), πb(I(k))) = ξx(·;πb),

lim
k→∞

ps(·|s(k),x(k)) = ξs(·;πb),

where ξx(·;πb) is the stationary distribution of the contin-
uous state and ξs(·;πb) is the stationary distribution of the
discrete space under the behavior policy πb provided that
they exist.

Then, the probability density of the next continuous state
x(k + 1) given current state x(k) = x and action u(k) = u
is

P[x(k + 1) = ·|x(k) = x,u(k) = u]

=
∑
s∈S

px(·|x, s, u)ξs(s;πb).



Therefore, an information state transition density function
pI(I

′|I, u;πb) is well defined, and the operator correspond-
ing to (8) can be defined in this setting. The DP solution
under this condition is similar to how the standard Q-learning
operates with POMDPs (see [27, Theorem 2]).

To consider a more generic scenario, a different approach
is adopted in this paper. For the analysis, the concept of the
belief state is introduced first. The belief state [28], b(k) ∈
∆|S|, at time k is defined as the probability distribution of
z(k) at time k.

Definition 4 (Belief state): Consider the MDP (1). The
belief state, (b(k))τk=0, is defined by the recursion

b(k + 1) = P (x(k))Tb(k), b(0) = ρd.

Note that (b(k))τk=0 is also a stochastic process due to the
randomness of x(k). In particular, each b(k) is defined on
the probability space (Ω,F , v) such that Ω = ∆|S|, v(F ) =
P[b(k) ∈ F ],∀F ∈ F , and F is a σ-algebra on ∆|S|. The
sequence (b(k))τk=0 corresponds to a single realization of
(x(k))τk=0 under a fixed policy π.

When the model and the current state are exactly known,
then the next belief state can be computed at every time step
in a deterministic fashion based on the current belief state.
With the deterministic belief state propagation, a new DP is
introduced in the next subsection.

A. Known Belief State

Assuming that the belief state is known, we consider the
particular information structure in this subsection

Î(k) =: (x(k),b(k)) ∈ Î = X ×∆|S|.

Then, (̂I(k))τk=0 is an MDP, i.e., its evolution can be ex-
pressed as Î(k + 1) ∼ P[̂I(k + 1) = Î(k + 1)|̂I(k) =
Î(k),u(k) = u] as illustrated in Figure 3. Therefore, by The-

Fig. 3. MDP with belief state.

orem 2, the DP

Q̂k+1(Î , u) = (F̂ Q̂k)(Î , u), Q̂0(Î , u) ≡ 0, (9)

converges to Q̂∗(Î , u), where

(F̂ Q̂0)(Î , u) = R(x, u)

+ γ

∫
x′∈X

inf
u′∈U

Q0(Î ′, u′)
∑
s∈S

[b]spx(x′|x, s, u)dx′, (10)

Î = (x, b), Î ′ = (x′, b′), [b]s is the sth element of b,
b′ = P (x)T b, and x′ is the next state corresponding to

Î ′. The optimal solution of the DP (9) may give better
performance compared to a DP solution, if exists, without the
belief state information. In the next subsection, we introduce
a DP-like algorithm without the belief state information,
which may not have a fixed point solution. However, we
establish a convergence of the algorithm to a set around the
optimal solution Q̂∗.

B. Unknown Belief State

In this subsection, we consider the case that the belief state
is unknown. In this case, we define a sequence of operators
(F(k))τk=0 associated with a sequence of the belief states
(b(k))τk=0.

Assumption 5: (b(k))τk=0 is a sequence belief states cor-
responding to a single realization of the episode under a
fixed (behavior) policy π.

Definition 5: For any bounded Q0 : I×U → R+, define
a sequence of operators (F(k))τk=0 associated with the
sequence of belief states, (b(k))τk=0 in Assumption 5, as

(F(k)Q0)(I, u) = R(x, u)

+ γ

∫
x′∈X

inf
u′∈U

Q0(I ′, u′)

×
∑
s∈S

[b(k)]spx(x(1)|x(0), s, u)dx(1), (11)

where

I(0) = (x(0),x(−1), . . . ,x(−L)),

I(1) = (x(1),x(0), . . . ,x(−L+ 1)),

I = (x(0), x(−1), . . . , x(−L)),

I ′ = (x(1), x(0), . . . , x(−L+ 1)).

Note that the sequence of operators, (F(k))τk=0, is stochas-
tic as each F(k) depends on b(k), and the DP

Qk+1 = F(k)Qk, Q0 ≡ 0 (12)

may not converge in general as F(k) is time-varying. How-
ever, under certain conditions, we can obtain a bounded set
around Q̂∗ to which (Qk)τk=0 converges as τ → ∞. For
convenience, new notations are adopted. Define

β(I, b) := P[s(0) = ·|I(0) = I,b(−L) = b]

= P (x(0))T × · · · × P (x(−L))T b. (13)

In (13), b ∈ ∆|S| represents the belief state at time −L,
and β(I, b) implies the belief state at time 0 given I(0) = I
and b(−L) = b. The following result establishes the fact that
(Qk)τk=0 converges to a bounded set around Q̂∗ as τ →∞.

Theorem 3: We assume that τ = ∞. For any L > 0, let
lL ∈ R+ be a Lipschtz constant such that

‖β(I, b)− β(I, b′)‖∞ ≤ lL‖b− b′‖∞,
∀b, b′ ∈ ∆|S|, I ∈ XL+1. (14)

Let l∗L be the infimum over all such constants lL. More-
over, let (Qk)∞k=0 be the sequence generated by the DP (12).



Let Q̂∗ be the optimal solution generated by the DP (9). For
all k ≥ 0, the worst error bound is given by

sup
u∈U,I∈XL+1,b∈∆|S|

|Qk(I, u)− Q̂∗((x(0), β(I, b)), u)|

≤ γ(1− γk)M |S|2

(1− γ)2
l∗L +

γkM

1− γ

with probability one, where x(0) is the first element of the
tuple I , b corresponds to the belief state at time −L. In the
limit k →∞, we obtain

lim sup
k→∞

sup
u∈U,I∈XL+1,b∈∆|S|

|Qk(I, u)− Q̂∗((x(0), β(I, b)), u)|

≤ Mγ|S|2

(1− γ)2
l∗L

with probability one.
In practice, the discount factor γ ∈ [0, 1) is close to one;

thus the error bound may be large. However, lL is often small
as in many applications [11]. Then, under some conditions,
we have limL→∞ l∗L = 0. As a simple example, assume
that P (x) is a constant matrix P and that the Markov chain
has a unique stationary distribution µ such that µTP = µT .
This implies that limL→∞(PL)T b = limL→∞(PL)T b′ =
µ for any b, b′ ∈ ∆|S|. Therefore, limL→∞ ‖(PL)T b −
(PL)T b′‖2 = 0, meaning that limL→∞ l∗L = 0.

CONCLUSION

In this paper, we have studied a DP framework for
POMDPs with jointly continuous and discrete state-spaces.
A finite observation history has been used as an information
structure of an output-feedback control policy. We have
established a convergence of the DP algorithm to a set round
an optimal solution. Developments of reinforcement learning
algorithms based on the current analysis can be potential
future research directions.
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APPENDIX

Throughout this section, we use the notation

I(0) = (x(0),x(−1), . . . ,x(−L)),

I(1) = (x(1),x(0), . . . ,x(−L+ 1)),

I = (x(0), x(−1), . . . , x(−L)),

I ′ = (x(1), x(0), . . . , x(−L+ 1)).

A. Proof of Theorem 1

By the definition, we have

Jπ(I) := E

 τ(I(0);π)∑
i=0

γir(x(i), π(I(i)))

∣∣∣∣∣∣ I(0) = I


= E

r(x(0), π(I(0))) +

τ(I(0);π)∑
i=1

γir(x(i), π(I(i)))

∣∣∣∣∣∣ I(0) = I


= R(x(0), π(I)) + γE

 IX(x(1))

τ(I(0);π)∑
i=1

γi−1r(x(i), π(I(i)))

∣∣∣∣∣∣ I(0) = I


= R(x(0), π(I)) + γE

 IX(x(1))

τ(I(1);π)+1∑
i=1

γi−1r(x(i), π(I(i)))

∣∣∣∣∣∣ I(0) = I


= R(x(0), π(I)) + γE

 IX(x(1))

τ(I(1);π)∑
i=0

γir(x(i+ 1), π(I(i+ 1)))

∣∣∣∣∣∣ I(0) = I


= R(x(0), π(I)) + γE[ IX(x(1))Jπ(I(1))| I(0) = I]

= TπJ
π(I).

B. Proof of Theorem 2

To prove Theorem 2, one needs to first prove that Jk ∈M for all k ∈ N and that T is a contraction map.

Proposition 2: Assume J0 ≡ 0. The following statements hold true:
1) Jk ∈M for all k ∈ N. Especially, Jk ≤M/(1− γ);
2) T is a map from M to M;
3) T is a contraction map.

Proof: To prove 1), note that J1 ≤ M by Assumption 1. Moreover, by the definition of T , J2 ≤ M + γM , and
repeating it yields Jk ≤M

∑k−1
i=0 γ

i ≤M
∑∞
i=0 γ

i = M
1−γ , implying Jk ∈ M for all k ∈ N. 2) is proved directly from 1).

To prove 3), consider any J, J ′ ∈M. Then, we have d(TJ, TJ ′) = supI∈I |TJ(I)−TJ ′(I)| ≤ supI∈I,u∈U γ|E[J(I(1))−
J ′(I(1))|I(0) = I,u(0) = u]| ≤ γd(J, J ′). Therefore, T is a contraction map.

Proposition 3: Assume J0 ≡ 0. The following statements hold true:
1) T is monotone, i.e., if J ≥ J ′, then TJ ≥ TJ ′;
2) For any given π ∈ Π, Tπ is monotone;
3) (Jk)∞k=0 is a monotonically non-decreasing sequence;
4) (Jk)∞k=0 uniformly converges to a unique fixed point J∞ ∈M, i.e., TJ∞ = J∞, w.r.t. the metric d.

Proof: To prove 1), assume J ≥ J ′ and recall the definition in (5)

(TJ0)(I) := inf
u∈U
{R(x(0), u) + γE[IX(x(1))J0(I(1))|I(0) = I,u(0) = u]},

:= inf
u∈U

{
R(x(0), u) + γ

∫
x(1)∈X

J0(I ′)px(x(1)|I, u)dx(1)

}
,

Then, for any I ∈ I, we have

(TJ)(I)− (TJ ′)(I)



≥ inf
u∈U

{
R(x(0), u) + γ

∫
x(1)∈X

J(I ′)px(x(1)|I, u)dx(1)−R(x(0), u)− γ
∫
x(1)∈X

J ′(I ′)px(x(1)|I, u)dx(1)

}

= γ inf
u∈U

{∫
x(1)∈X

(J(I ′)− J ′(I ′))px(x(1)|I, u)dx(1)

}
≥ 0,

where the last inequality follows from the hypothesis J ≥ J ′. This completes the proof of 1). The statement 2) can
be proved in a similar way, so omitted. The proof of 3) is completed by an induction argument. Since J0 ≡ 0 and
J1(I) = (TJ0)(I) := infu∈U R(x(0), u) ≥ 0 by Assumption 1, J1 ≥ J0 holds. By the monotonicity of the operator T
in 1), we have T iJ1 ≥ T iJ0,∀i ∈ N+, meaning Jk+1 ≥ Jk,∀i ∈ N, which concludes the proof of 3). By Proposition 2,
T : M → M is a contraction map on the complete metric space (M, d). By the Banach fixed point theorem [24,
Theorem 5.6.1], (Jk)∞k=0 converges to a unique fixed point J∞ ∈M, i.e., J∞ = TJ∞, w.r.t. the metric d. The convergence
is uniform w.r.t. the metric d, which is proved directly from the definition of the convergence in the metric space as discussed
in [24, pp. 301].

The last step for the proof of Theorem 2 is to prove J∞ = J∗, where J∞ := limk→∞ Jk and the sequence (Jk)∞k=0 is
generated by the DP algorithm, Jk+1 = (TJk) with J0 ≡ 0. To this end, we need to prove that for any given π̄ ∈ Π∞, we
have limk→∞ Tπ0

Tπ1
· · ·Tπk

J0 = J π̄ , which will be proved using two intermediate lemmas below.

Lemma 1: Assume J0 ≡ 0. For any given π̄ ∈ Π∞ and k ≥ 1, Tπ0Tπ1 · · ·Tπk
J0 is described as

Tπ0Tπ1 · · ·Tπk
J0(I) = E

min{τ(I(0);π̄),k}∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I

 (15)

for any I ∈ I.

Proof: The claim will be proved by an induction argument. Let k = 0. Since J0 ≡ 0, by the definition in (4), Tπ0
J0(I)

is given by

Tπ0
J0(I) = E[r(x(0), π0(I(0)))|I(0) = I] = E

min{τ(I(0);π̄),0}∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I

 ,
where we use the fact that τ(I(0); π̄) ≥ 0 as I ∈ I and x(0) ∈ X .

Now, for an induction argument, suppose for k ≥ 1

Tπ0
Tπ1
· · ·Tπk−1

J0(I) = E

min{τ(I(0);π̄),k−1}∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I


holds. Then, shifting the time index of the control policy by one in the above equation yields

Tπ1
Tπ2
· · ·Tπk

J0(I) = E

min{τ(I(0);π̄1:∞),k−1}∑
i=0

γir(x(i), πi+1(I(i))

∣∣∣∣∣∣ I(0) = I

 , (16)

where π̄1:∞ := (π1, π2, . . .). We apply the operator Tπ0 to (16) to have

Tπ0
Tπ1
· · ·Tπk

J0(I) = E [r(x(0), π0(I)) + γE[IX(x(1))Tπ1
· · ·Tπk

J0(I(1))]| I(0) = I]

= E

r(x(0), π0(I)) + IX(x(1)) ×
min{τ(I(1);π̄1:∞),k−1}∑

i=0

γi+1r(x(i+ 1), πi+1(I(i+ 1)))

∣∣∣∣∣∣ I(0) = I

 ,
(17)

where the second equation is obtained by (16) and τ(I(1); π̄1:∞) ≥ −1 is the first time instant the trajectory x(k) starting
from x(1) exits X given I(1) and π̄1:∞.

Note that x(1) is a random variable and τ(I(1); π̄1:∞) = −1 when x(1) /∈ X . In this case, we define
∑−1
i=1 · = 0. By

conditioning on the stopping time τ(I(0); π̄), the expectation in (17) is expressed as

E[r(x(0), π0(I))| τ(I; π̄) = 0]P[τ(I; π̄) = 0]

+ E

r(x(0), π0(I)) +

min{τ(I(1);π̄1:∞),k−1}∑
i=0

γi+1r(x(i+ 1), πi+1(I(i+ 1))) |I(0) = I, τ(I; π̄) ≥ 1

P[τ(I; π̄) ≥ 1]. (18)



In the second expectation, τ(I; π̄) ≥ 1 implies τ(I(1); π̄1:∞) ≥ 0. Noting that P[τ(I(0); π̄) = j] = P[τ(I(1); π̄1:∞) = j− 1]
for all j ≥ 1, the quantity min{τ(I(1); π̄1:∞), k − 1} can be rewritten as

min{τ(I(1), π̄1:∞), k − 1} = min{τ(I(0), π̄)− 1, k − 1}.

Plugging it into the original formulation in (18) results in

E[r(x(0), π0(I))| τ(I; π̄) = 0]P[τ(I; π̄) = 0]

+ E

r(x(0), π0(I)) +

min{τ(I(0);π̄1:∞)−1,k−1}∑
i=0

γi+1r(x(i+ 1), πi+1(I(i+ 1)))

∣∣∣∣∣∣ I(0) = I, τ(I; π̄) ≥ 1

P[τ(I; π̄) ≥ 1]

= E[r(x(0), π0(I))| τ(I; π̄) = 0]P[τ(I; π̄) = 0]

+ E

r(x(0), π0(I)) +

min{τ(I(0);π̄1:∞),k}∑
i=1

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I, τ(I; π̄) ≥ 1

P[τ(I; π̄) ≥ 1]

= E

min{τ(I(0);π̄0:∞),k}∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I

 ,
which is the desired result.

Lemma 2: Assume J0 ≡ 0. For any given π̄ ∈ Π∞, we have limk→∞ Tπ0
Tπ1
· · ·Tπk

J0 = J π̄ .

Proof: Define Tπ0Tπ1 · · ·Tπk
J0 =: J π̄k . Using Lemma 1 and following the proof of Proposition 2, it is easy to prove

that J π̄k is bounded on I, i.e., J π̄k ≤ M/(1 − γ). Moreover, from the definition, J π̄k is non-decreasing in k. Therefore, the
point-wise limit limk→∞ J π̄k =: J π̄∞ exists. Noting that the function inside the expectation operator is bounded, we apply
the dominated convergence theorem [29, Theorem 1.5.6] to have

J π̄∞(I) = lim
k→∞

J π̄k (I) = lim
k→∞

Tπ0
Tπ1
· · ·Tπk

J0(I)

= lim
k→∞

E

min{τ(I(0);π̄),k}∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I


= E

 lim
k→∞

min{τ(I(0);π̄),k}∑
i=0

γir(x(i), πi(I(i)))

∣∣∣∣∣∣ I(0) = I


= J π̄(I)

for all I ∈ I, where the third equality is due to the dominated convergence theorem and the last equality is from the
definition of J π̄ . Therefore, J π̄ = J π̄∞, and the desired result is obtained.

Now, we are in position to prove that J∞ = J∗ holds with J0 ≡ 0.

Proposition 4: Assume J0 ≡ 0. Then, J∞ = J∗.

Proof: We follow the proof of [20, Prop. 2.1]. Define π∞ as

π∞(I) := inf
u∈U
{R(x(k), u) + γE[J∞(I(1))|I(0) = I,u(0) = u]}.

The above quantity is well defined because J∞ ∈ M by 4) of Proposition 3 and Assumption 1. From the definition (4),
it also implies Tπ∞J0 = TJ∞ = J∞. Then, since J0 ≤ J∞ by the monotonicity in Proposition 3, we have Jπ∞ =
limk→∞ T kπ∞J0 ≤ limk→∞ T kπ∞J∞ = J∞, implying Jπ∞ ≤ J∞, where Lemma 2 is used in the first equality, the last
equality follows from Tπ∞J∞ = J∞, and the inequality comes from J0 ≤ J∞ and the monotonicity of Tπ∞ in Proposition 3.
On the other hand, by the definition and the monotonicity of T , we have that for any policy π̄ = (π0, π1, . . .), J∞ =
limk→∞ T kJ0 ≤ limk→∞ Tπ0

Tπ1
· · ·Tπk

J0 = J π̄ , meaning J∞ ≤ J π̄ for all π̄ ∈ Π∞, where the last equality follows
from Lemma 2. Combining both inequalities results in Jπ∞ ≤ J∞ ≤ J π̄,∀π̄ ∈ Π∞, yielding Jπ∞ = J∞ = J∗.
Now, Theorem 2 is directly proved by using Proposition 3 and Proposition 4.

Proof of Theorem 2: By (4) of Proposition 3, (Jk)∞k=0 uniformly converges to a unique fixed point J∞ ∈ M, i.e.,
TJ∞ = J∞, w.r.t. the metric d. By Proposition 4, J∞ = J∗, and hence, (Jk)∞k=0 uniformly converges to J∗ w.r.t. the metric
d. This completes the proof.



C. Proof of Theorem 3

To prove Theorem 3, we first introduce the following basic relation lemma.

Lemma 3 (Basic relation): Let (Qk)∞k=0 be the sequence generated by the DP

Qk+1 = F(k)Qk, Q0 ≡ 0,

where F(k) is defined in (11). Let Q̂∗ be the optimal solution of Q̂∗ = F̂ Q̂∗, where F̂ is defined in (10). Then, we have

sup
u∈U,I∈XL+1,b∈∆|S|

|Qk+1(I, u)− Q̂∗((x(0), β(I, b)), u)|

≤ γl∗LM |S|2

1− γ
+ γ sup

u∈U,I∈XL+1,b∈∆|S|

|Qk(I, u)−Q∗((x(0), β(I, b)), u)|

for all k ≥ 0 with probability one, where x(0) ∈ X is the first element of I .

Proof: Using the definitions of F(k) and F̂ , we have

Qk+1(I, u)− Q̂∗((x(0), β(I, b)), u) = (F(k)Qk)(I, u)− (F̂ Q̂∗)((x(0), β(I, b)), u)

= γ

∫
x(1)∈X

inf
u′∈U

Qk(I ′, u′)
∑
s∈S

[b(k)]spx(x(1)|x(0), s, u)dx(1)

− γ
∫
x(1)∈X

inf
u′∈U

Q̂∗((x(1), β(I ′, b′)), u′)
∑
s∈S

[β(I, b)]spx(x(1)|x(0), s, u)dx(1),

= γ

∫
x(1)∈X

inf
u′∈U

Qk(I ′, u′)
∑
s∈S

[β(I,b(k − L))]spx(x(1)|x(0), s, u)dx(1)

− γ
∫
x(1)∈X

inf
u′∈U

Q̂∗((x(1), β(I ′, b′)), u′)
∑
s∈S

[β(I, b)]spx(x(1)|x(0), s, u)dx(1),

where b′ = P (x)T b. Adding and subtracting

γ

∫
x(1)∈X

inf
u′∈U

Qk(I ′, u′)
∑
s∈S

[β(I, b)]spx(x(1)|x(0), s, u)dx(1)

to the last equation, we have

Qk+1(I, u)− Q̂∗((x, β(I, b)), u)

≤ γ|S|
∫
x(1)∈X

inf
u′∈U

Qk(I ′, u′)×
∑
s∈S
|[β(I,b(k − L))]s − [β(I, b)]s|

1

|S|
px(x(1)|x(0), s, u)dx(1)

+ γ

∫
x(1)∈X

sup
u′∈U

(|Qk(I ′, u′)− Q̂∗((x(1), β(I ′, b′)), u′))×
∑
s∈S

[β(I, b)]spx(x(1)|x(0), s, u)dx(1)

≤ γ|S|
∫
x(1)∈X

M |S|
1− γ

‖β(I,b(k − L))− β(I, b)‖∞ ×
∑
s∈S

1

|S|
px(x(1)|x(0), s, u)dx(1)

+ γ

∫
x(1)∈X

sup
u′∈U

|Qk(I ′, u′)− Q̂∗((x(1), β(I ′, b′)), u′)| ×
∑
s∈S

[β(I, b)]spx(x(1)|x(0), s, u)dx(1),

where in the second inequality, we use the definition of ‖ · ‖∞ and the bound Qk(I ′, u′) ≤ M/(1 − γ),∀I ′ ∈ I, u′ ∈ U .
Using (14), we have

Qk+1(I, u)− Q̂∗((x(0), β(I, b)), u)

≤ γM |S|2

1− γ
l∗L‖b(k − L)− b‖∞

∫
x(1)∈X

∑
s∈S

1

|S|
px(x(1)|x(0), s, u)dx(1)

+ γ sup
u′∈U,I′∈XL+1

|Qk(I ′, u′)− Q̂∗((x(1), β(I ′, b′)), u′)|

≤ γM |S|
2

1− γ
l∗L + γ sup

u′∈U,I′∈XL+1

(|Qk(I ′, u′)− Q̂∗((x(1), β(I ′, b′)), u′)|),



where in the last inequality, we use the fact that ‖b(k − L) − b‖∞ ≤ 1 for any b(k − L), b inside the unit simplex ∆|S|
and

∑
s∈S

1
|S|px(x(1)|x(0), s, u) is a probability density function. The desired result follows by taking the superimum over

I ∈ I, u ∈ U , and b ∈ ∆|S| on the left-hand side of the last inequality.
Proof of Theorem 3: Combining the inequalities in Lemma 3 for k = 0 and k = 1 yields

1

γ2
sup

u∈U,I∈XL+1,b∈∆|S|

|Q2(I, u)− Q̂∗((x(0), β(I, b)), u)|

≤ (1 + γ−1)
M |S|2

1− γ
l∗L + sup

u∈U,I∈XL+1,b∈∆|S|

|Q0(I, u)− Q̂∗((x(0), β(I, b), u)|.

Repeating this k − 2 times, one gets

sup
u∈U,I∈XL+1,b∈∆|S|

|Qk(I, u)− Q̂∗((x(0), β(I, b)), u)|

≤ γk
(
k−1∑
i=0

1

γi

)
M |S|2

1− γ
l∗L + γk sup

u∈U,I∈XL+1,b∈∆|S|

|Q0(I, u)− Q̂∗((x(0), β(I, b), u)|.

Using Q0(I, u) ≡ 0, Q̂∗((x(0), β(I, b), u) ≤M/(1− γ), and
∑k−1
i=0 (1/γi) = (1− (γ−1)k)/(1− γ−1), the first inequality

in Theorem 3 follows. The second inequality can be obtained by taking lim supk→∞ on both sides of the inequality. This
completes the proof.
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