
Distributed Solutions of Convex-Concave Games on Networks

Yingying Xiao, Xiaodong Hou, and Jianghai Hu

Abstract— In this paper, we study the convex-concave games
on agent networks played by two teams. Each agent has
local variables from both teams and a local payoff function
dependent on the variables from its neighbors that is convex
in the variables of one team and concave in the variables
of the other. The goal is to find a saddle point (if it exists)
of the sum of all local payoff functions. The problem can
be converted to a fixed point problem by using the saddle
differential operator. As oftentimes direct fixed point iterations
are computationally expensive, using the operator splitting
technique, we propose two general-purpose iterative algorithms
that can find the saddle points of a convex-concave payoff
function by splitting it into several parts each of which is more
amenable for computation. Applying these algorithms to the
convex-concave games on agent networks, we obtain efficient
synchronous distributed solution algorithms. Their randomized,
asynchronous implementations are also discussed. Numerical
examples are provided to illustrate the proposed algorithms.

I. INTRODUCTION

This paper studies the zero-sum games on agent networks
between two teams where the global payoff function is of the
form K =

∑m
i=1Ki with Ki being the local payoff function

of agent i. It is assumed that the decision variables from
both teams are distributed among the different agents, and
that the local payoff functions are coupled: each Ki depends
on not only its own decision variables from the two teams
but also the decisions variables of its neighboring agents. As
a special case, each agent may hold the variables of only
one team, and the games are played between two opposing
teams of agents. We focus on convex-concave games where
each Ki (hence K) is assumed to be convex in the variables
of one team and concave in the variables of the other team.
Under fairly mild conditions (see, e.g., Proposition 1), saddle
points of K exist. The objective of this paper is to design
distributed algorithms that can compute a saddle point of K.

One motivation of this study is our previous work [1]
on the distributed solutions of locally coupled optimization
problems on agent networks, where each agent tries to
solve a local optimization problem whose objective func-
tion/constraints depend on the variables of its neighboring
agents. The Lagrangian function Ki of agent i’s optimization
problem is convex-concave in the primal and dual variables;
and the global primal-dual solution is a saddle point of
K =

∑
iKi. Thus, algorithms developed in this paper can

lead to new primal-dual algorithms for solving the distributed
optimization problems in [1]. We note that the Lagrangian K
is linear in the dual variables, while in this paper we consider

The authors are with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, USA
{xiao106,hou39,jianghai}@purdue.edu

the more general convex-concave payoff functions K (e.g.,
those resulted from variational inequalities [2]).

There has been an enormous amount of existing work
on the applications of saddle point problems to constrained
optimization, zero-sum games, partial differential equations,
machine learning and so on (see the survey [3]). Methods
developed for computing saddle points include iterative
methods such as the Arrow-Hurwicz and Uzawa method [4]
and its variants, Krylov subspace methods and associ-
ated preconditioning techniques [5], Hermitian and skew-
Hermitian splitting based methods [6], to name a few classes.
Several (sub)gradient-based algorithms have been developed
that achieve O(1/k) convergence, e.g., [7] using smoothing
techniques, [8] using prox method, and [9] by approximating
the saddle point using the running average with a constant
stepsize. On the other hand, these algorithms are centralized
and not amenable for distributed implementation.

A distributed projected subgradient method is proposed
in [10] to solve the saddle point problem arising from a net-
worked optimization problem where the objective function
and constraints are separable in agents’ individual variables,
while both depend on a global decision variable. By introduc-
ing local copies of the global decision variable and the dual
variable, the problem is formulated as a saddle point problem
for the Lagrangian function. When applied to the locally
coupled networked optimization problem considered in [1],
the algorithms developed in [10] could result in excessive
communication and storage requirements.

This paper is organized as follows. Some useful facts
on convex-concave (or saddle) functions and saddle points
are reviewed in Section II. In Section III, two centralized
algorithms based on splitting methods are proposed to com-
pute the saddle points. Section IV presents the formulation
of convex-concave games on agent networks and the pro-
posed distributed solution algorithms. Simulation results of a
convex-concave games with 7 agents are given in Section V.
Finally, Section VI concludes the paper.

II. SADDLE FUNCTIONS AND SADDLE POINTS

We first review some basic facts from convex analysis. An
extended-real-valued function f : Rn → R := R ∪ {±∞}
is convex if, for all x1, x2 ∈ Rn and all λ ∈ [0, 1],
f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2) holds whenever
{f(x1), f(x2)} 6= {±∞}. For instance, for any convex

subset C ⊂ Rn, the two functions

f(x) =

{
−∞ if x ∈ C,
+∞ if x 6∈ C;

(1)

1C(x) :=

{
0 if x ∈ C,
+∞ if x 6∈ C,

(2)

are convex. A convex function f is called proper if:
(i) f(x) > −∞ for all x; and (ii) f(x) < +∞ for at least
one x. It is called closed if its epigraph {(x, t) | f(x) ≤ t}
is a closed set, or equivalently, if f is lower semicontinuous.
By these definitions, f in (1) is never proper; and it is closed
if and only if the convex set C is closed.

A. Saddle Functions

Let X and Y be two Euclidean spaces (possibly of
different dimensions) and let K : X × Y → R be an
extended-real-valued function.

Definition 1 ([11]): K : X × Y → R is called a saddle
function on X × Y if K(x, y) is a convex function of x
for each fixed y and a concave function of y for each
fixed x. The saddle function K is closed if K(x, y) is
lower semicontinuous in x for each fixed y and upper
semicontinuous in y for each fixed x. The effective domain
of K is defined as

domK := {(x, y) ∈ X × Y |K(x, y′) < +∞, ∀y′ ∈ Y
and K(x′, y) > −∞, ∀x′ ∈ X}.

K is called proper if domK 6= ∅.
Example 1: Some examples of saddle functions are given

below.
(i) K(x, y) = f(x) − g(y) + h(x, y) is a saddle function

where f ∈ R and g ∈ R are convex functions and
h(x, y) = xTAy is bilinear for some matrix A. K is
closed and proper if both f and g are CCP functions.

(ii) For the optimization problem minx∈Rn{f(x) | g(x) �
0} where f ∈ R and g ∈ Rm are convex functions, the
Lagrange function L(x, y) = f(x) + 〈y, g(x)〉 − 1D(y)
where D = {y | y � 0} is a saddle function. It is closed
and proper if both f and g are CCP functions.

(iii) Let C ⊂ X and D ⊂ Y be convex subsets. Define

µC×D(x, y) := 1C(x)− 1(C×Dc)c(x, y) (3)

=


0 if x ∈ C and y ∈ D
−∞ if x ∈ C and y 6∈ D
+∞ if x 6∈ C,

νC×D(x, y) := −1D(y) + 1(Cc×D)c(x, y) (4)

=


0 if x ∈ C and y ∈ D
+∞ if x 6∈ C and y ∈ D
−∞ if y 6∈ D.

Here, (C×Dc)c := (X×Y)\(C×(Y \D)); similarly for
(Cc×D)c. Then µC×D and νC×D are saddle functions
on X×Y with the domain C×D. Further, both of them
are closed and proper if C and D are nonempty closed

subsets. For a real-valued saddle function K, K + µ
and K+ν are two saddle functions whose values agree
with K on their domain C ×D.

B. Saddle Points

A point (x∗, y∗) ∈ X × Y is called a saddle point of the
saddle function K if

K(x∗, y) ≤ K(x∗, y∗) ≤ K(x, y∗), ∀x ∈ X, y ∈ Y. (5)

In other words, x∗ is a minimizer of K(·, y∗) and y∗

is a maximizer of K(x∗, ·). In this case, we must have
supy infxK(x, y) = infx supyK(x, y) = K(x∗, y∗). If K
is interpreted as the payoff function of a zero-sum two-player
convex-concave game, then saddles points are exactly the
Nash equilibria.

General saddle functions may have no saddle points. A
sufficient condition for the existence of saddle points based
on the Sion’s Minimax Theorem [12] is given below.

Proposition 1: ([12]) Suppose K is a real-valued closed
saddle function on X × Y . Let C ⊂ X and D ⊂ Y be two
nonempty compact convex subsets. Then

min
x∈C

max
y∈D

K(x, y) = max
y∈D

min
x∈C

K(x, y).

Moreover, (x∗, y∗) with x∗ = arg min
x∈C

max
y∈D

K(x, y) and

y∗ = arg max
y∈D

min
x∈C

K(x, y) is a saddle point of K + µC×D

(or K + νC×D).

C. Saddle Subdifferential Operator

For the saddle function K on X×Y , a set-valued operator
TK : X × Y → 2X×Y can be defined by

TK(x, y) =

[
∂xK(x, y)

∂y(−K)(x, y)

]
, ∀(x, y) ∈ X × Y.

Here, ∂xK(x, y) denotes the subdifferentials (set of sub-
gradients) of the convex function K(·, y) at the point x;
similarly for ∂y(−K)(x, y). In [13], TK is referred to as
the saddle subdifferential operator of K. The domain of TK
is defined as domTK := {(x, y) |TK(x, y) 6= ∅}.

The zero set of TK is defined as zer(TK) := {(x, y) | 0 ∈
TK(x, y)}. The condition (5) for a point (x∗, y∗) to be a
saddle point of K is equivalent to 0 ∈ ∂xK(x∗, y∗) and
0 ∈ ∂y(−K)(x∗, y∗), i.e., 0 ∈ TK(x∗, y∗). We thus have the
following result.

Proposition 2: The set of saddle points of K is zer(TK).
Recall that a set-valued operator T : Z → 2Z for Z = Rn

is called monotone if (w2−w1)T (z2−z1) ≥ 0 for all z1, z2 ∈
Z and all w1 ∈ T (z1), w2 ∈ T (z2). It is called maximally
monotone if it is monotone and its graph is not properly
contained in that of any other monotone operator. Given λ >
0, the resolvent of T is the (set-valued) operator R : Z → 2Z

defined by R = (I+λT)−1 with its domain being domR :=
{x |R(x) 6= ∅}. If T is monotone, then R is an averaged
operator: R = (I+S)/2 for some nonexpansive operator S,
and hence single-valued. If T is further maximally monotone,
then domR = Z and the set of fixed points of R, Fix(R), is
exactly the zero set of T , zer(T). See [13] for further details.

Theorem 1 ([11]): Let K be a saddle function on X×Y .
If K is proper, then TK is a monotone operator with the
domain domTK ⊂ domK. If K is proper and closed, then
TK is a maximally monotone operator.

By the above result, TK is maximally monotone for a
closed proper saddle function K. Its resolvent, denoted
by RK , is an averaged operator with the fixed point set
Fix(RK) = zer(TK) being exactly the set of saddle points of
K. The iteration (xk+1, yk+1) = RK(xk, yk) will converge
to a point in Fix(RK) and hence a saddle point of K.

We next characterize how RK can be computed. For any
(x, y) ∈ X × Y , (p, q) = RK(x, y) if and only if

(x, y) ∈ (I + λTK)(p, q)

⇔ (x, y) ∈ (p+ λ∂pK(p, q), q + λ∂q(−K)(p, q))

⇔

{
0 ∈ ∂pK(p, q) + (p− x)/λ

0 ∈ ∂q(−K)(p, q) + (q − y)/λ
(6a)

⇔

{
p = arg minp∈X K(p, q) + 1

2λ‖p− x‖
2

q = arg maxq∈Y K(p, q)− 1
2λ‖q − y‖

2
(6b)

⇔ (p, q) is a saddle point of

K(p, q) +
1

2λ

(
‖p− x‖2 − ‖q − y‖2

)
. (6c)

By letting p = x and q = y in (6c), we see that, as
expected, fixed points of RK are exactly the saddle points
of K.

The above conditions can be used to compute RK for
certain families of saddle functions.

Example 2:
(i) Suppose K(x, y) = f(x) + 〈y,Ax− b〉 is the Lagrange

function for the optimization problem of minimizing
f(x) subject to Ax = b. The corresponding TK is called
the KKT operator [13]. In particular, (6a) becomes

0 ∈ (p− x)/λ+ ∂f(p) +AT q, (q − y)/λ = Ap− b.

The second equation implies q = y+λ(Ap− b), which
when plugged into the first one yields 0 ∈ ∂f(p)+(p−
x)/λ+AT y + λAT (Ap− b). In other words,{

p = arg minz Lλ(z) + 1
2λ‖z − x‖

2

q = y + λ(Ap− b).

Here, Lλ(z) := f(z) + 〈y,Az− b〉+ λ
2 ‖Az− b‖

2 is the
augmented Lagrange function.

(ii) Consider the saddle function

K(x, y) =
1

2

[
x
y

]T [
Σ1 Σ2

ΣT2 −Σ3

] [
x
y

]
+

[
b1
b2

]T [
x
y

]
(7)

where Σ1,Σ3 � 0. Then (6a) becomes{
(p− x)/λ+ Σ1p+ Σ2q + b1 = 0

(q − y)/λ+ Σ3q − ΣT2 p− b2 = 0
(8)

⇒ RK(x, y) = (I + λΣ)
−1

[
x− λb1
y + λb2

]
, (9)

where Σ =

[
Σ1 Σ2

−ΣT2 Σ3

]
. Note that (I + λΣ)

−1 exists

since it is the resolvent of a maximally monotone
linear operator Σ whose monotonicity follows from
the fact that Σ + ΣT � 0. Fixed points of RK are
those points (x∗, y∗) satisfying Σ

[
(x∗)T (y∗)T

]T
=[

−bT1 bT2
]T

, the exact same condition for (x∗, y∗) to
be a saddle point of K. If Σ is nonsingular, there is
a unique saddle point Σ−1

[
−bT1 bT2

]T
. In the special

case of Σ1 = 0 and Σ3 = 0, the result becomes:{
p =

(
I + λ2Σ2ΣT2

)−1 (
x− λb1 − λΣ2y − λ2Σ2b2

)
q = y + λb2 + λΣT2 p.

(10)

(iii) For the function µ defined in (3), we have Rµ(x, y) =
ΠC ×ΠD(x, y) = (ΠC(x),ΠD(y)). Here, for a convex
set Ω, ΠΩ denotes the orthogonal projection onto Ω.
This follows from (6c) as the saddle points of µ(p, q)+
1

2λ (‖p − x‖2 − ‖q − y‖2) on X × Y are exactly the
saddle points of 1

2λ (‖p − x‖2 − ‖q − y‖2) on C ×D.
Similarly, for ν defined in (4), Rν is also ΠC ×ΠD.

The following result can be easily proved and will be
useful later on.

Proposition 3 (Separable K): Suppose K(x, y) =
K1(x1, y1) + · · · + Km(xm, ym) is separable. Here,
Ki(xi, yi) is a closed proper saddle function on Xi × Yi
for each i; x = (x1, . . . , xm) ∈ X = X1 × · · · × Xm;
and y = (y1, . . . , ym) ∈ Y = Y1 × · · · × Ym. Then,
(p, q) = RK(x, y) is given by p = (p1, . . . , pm) and
q = (q1, . . . , qm) where (pi, qi) = RKi(xi, yi) for each i.

III. SPLITTING METHOD

Throughout this section we assume that K is an extended-
real-valued closed proper saddle function on X × Y and it
has at least one saddle point (x∗, y∗).

Suppose K admits the decomposition K(x, y) =
K1(x, y)+ · · ·+Km(x, y) where each Ki is a closed proper
saddle function on X×Y (note that this is different from the
separable K case in Proposition 3). By Theorem 1, TK and
all TKi ’s are maximal monotone operators, whose resolvents
RK and RKi ’s are averaged maps, all well defined on X×Y .
Although K is assumed to have a saddle point, Ki’s may
have none. In other words, the set of fixed points is nonempty
for RK , but could be empty for RKi

’s.
In this section, we consider the scenario that each RKi

has
a much lower computational cost than RK . We will focus
on the two cases that m = 2 and m = 3 and derive in each
case iteration algorithms that can compute a fixed point of
RK (i.e., a saddle point of K) using the operators RKi ’s.

A. Two-Operator Splitting

Suppose K = K1 + K2 where RK1 and RK2 are much
easier to compute that RK . Several examples of such a case
are given in the following.

Example 3:
(i) Consider Example 1 (i), K(x, y) = f(x)−g(y)+xTAy,

which has TK = [∂f(x)T + yTAT ∂g(y)T − xTA]T .

Even if both f and g are differentiable, to compute
RK using (6a), one would need to solve two nonlinear
equations that are coupled due to the bilinear term. On
the other hand, we can write K as K = K1 +K2 with
K1 = f(x) + xTAy and K2 = −g(y). Then, RK1

can be computed as in Example 2 (i), while RK2
=

I × proxλg . Here, proxλg is the proximal operator of
g, proxλg(y) := arg minq g(q) + (1/2λ)‖q − y‖2, that
can often be computed very efficiently [14].

(ii) Let K = K1 + K2 where K1 is given in (7) and
K2 = µC×D for some nonempty compact convex
subsets C ⊂ X and D ⊂ Y . By Example 2 (ii) and
(iii), RK1

and RK2
can be easily computed. However,

to compute RK directly, e.g., via (6b), two coupled
constrained quadratic optimization problems need to be
solved. In particular, the solution may not satisfy (8).

(iii) Suppose K(x, y) = G0(x)+
∑m
i=1Gi(xi, y) where x =

(x1, . . . , xm) ∈ X = X1 × · · · × Xm; y ∈ Y ; G0

is a real-valued closed convex function; and Gi, i =
1, . . . ,m, are real-valued closed saddle function on Xi×
Y . By introducing duplicate variables ỹi, i = 1, . . . ,m,
of y, K can be rewritten as K(x, ỹ) = K1 +K2 where
K1 = G1(x1, ỹ1) + · · ·+Gm(xm, ỹm) is separable and
K2 = G0(x) − 1A(ỹ) with A = {ỹ = (ỹ1, . . . , ỹm) ∈
Y m | y1 = · · · = ym}. Then, RK1 can be computed
by Proposition 3 and RK2 = proxλG0

×ΠA. Note that
ΠA(ỹ) = (ȳ, . . . , ȳ) with ȳ = 1

m (y1 + · · ·+ ym).
Next we adopt the Douglas-Rachford splitting to derive

an algorithm for finding a saddle point of K using RK1
and

RK2
. By Proposition 2, the saddle points of K = K1 +K2

are exactly the points in the set zer(TK1
+TK2

). Applying the
Peaceman-Rachford method [15], a point w∗ = (x∗, y∗) in
zer(TK1 +TK2) can be obtained as w∗ = RK2(z∗) where z∗

is a fixed point of the nonexpansive map (2RK1
−I)(2RK2

−
I). Such a z∗ can be obtained by iterations using the averaged
map (1 − α)I + α(2RK1

− I)(2RK2
− I) for α ∈ (0, 1).

This leads to the well known Douglas-Rachford splitting
algorithm [16]

wk+1 = RK2(zk); (11a)

zk+1 = zk + 2α
(
RK1

(2wk+1 − zk)− wk+1
)

(11b)

for k = 0, 1, Starting from any z0, the sequence wk will
converge to a saddle point w∗ = (x∗, y∗) of K. Note that
in (11), the roles of K1 and K2 can be switched.

Example 4 (Sparse bilinear games): Let K(x, y) =
xTAy + bT1 x + bT2 y + βx‖x‖1 − βy‖y‖1 where ‖ · ‖1 is
the L1-norm and βx, βy > 0. The two norm regulation
terms are added to promote sparsity in x∗ and y∗

for the saddle points w∗ = (x∗, y∗) of K. Write
K = K1 + K2 where K1 = xTAy + bT1 x + bT2 y and
K2 = βx‖x‖1 − βy‖y‖1. Then RK1

is given in (10) and
RK2 = proxβxλ‖·‖1 ×proxβyλ‖·‖1 where proxηλ‖·‖1 for
η ∈ {βx, βy} is given by the elementwise soft thresholding
operator (sηλ(v))i := max{vi−ηλ, 0}−max{−vi−ηλ, 0}
where i indexes the entries of v and sηλ(v) (see [14]).

Consider the following simple example for x, y ∈ R3,

A =

1 3 2
6 5 4
9 8 7

 , b1 =

−30
−33
−60

 , and b2 =

−117
−126
−45

 .
It can be verified that K1 has the unique saddle point
(x∗1, y

∗
1) = (30, 124,−73,−5, 7, 7). When keeping βx = βy

and gradually increasing their value, the saddle point of
K = K1 +K2 starts from (x∗1, y

∗
1) at βx = βy = 0, becomes

(0, 0, 5.75, 0,−2.5, 0) at βx = βy = 80, and eventually
becomes all zeros when βx = βy = 130.

B. Three-Operator Splitting

When m = 3, K = K1 +K2 +K3. In this case, a solution
algorithm can be developed by using the recently derived
Davis-Yin three-operator splitting technique [17]. Suppose
K3 is differentiable; thus, the subdifferential operator TK3

is single-valued. Further assume that TK3
is Lipschitz con-

tinuous in (x, y) with the Lipschitz parameter L3. A point
w∗ = (x∗, y∗) in zer(TK1

+TK2
+TK3

), i.e., a saddle point
of K, can be obtained by w∗ = RK2

(z∗) with z∗ being a
fixed point of the operator

S := (2RK1 − I)(2RK2 − I − γTK3RK2)− γTK3RK2

for γ ∈ (0, 2/L3). Although S may not be nonexpansive
in general, 1/2I + 1/2S is an averaged operator [17]. Thus,
iterations using 1/2I+1/2S will converge to a fixed point z∗

of 1/2I+1/2S and hence of S. This results in the following
iterative algorithm:

wk+1 = RK2
(zk); (12a)

zk+1 = zk − wk+1 +RK1

(
2wk+1 − zk − γTK3

(wk+1)
)

(12b)

for k = 0, 1, Starting at any z0, the sequence wk+1

generated by (12) converges to a saddle point w∗ = (x∗, y∗)
of K. The roles of K1 and K2 in (12) can be switched.

Example 5: The following example is modified from the
multi-channel communication capacity problem in [18]. De-
note by ∆ = {w ∈ Rn |wi ≥ 0, ∀i,

∑
i wi = 1}

the standard simplex in Rn and consider x, y ∈ Rn. Let
K(x, y) =

∑n
i=1 log (1 + βiyi/(σi + xi)) + µ∆×∆(x, y) +

xTAy where βi, σi > 0 and A ∈ Rn×n. Denote the three
terms in K as K1,K2 and K3. Then RK1

can be computed
by Proposition 3 as K1 is separable; RK2

= Π∆ × Π∆;
K3 is differentiable and TK3

is Lipschitz continuous with
L3 = ‖A‖. Therefore, a saddle point of K can be computed
by the iteration (12).

IV. CONVEX-CONCAVE GAMES ON NETWORKS AND
THEIR DISTRIBUTED SOLUTION

In this section, we will formulate convex-concave games
on agent networks where the saddle function K is the sum of
local saddle functions each depending on the local variables
of an agent and some of its neighbors. Using the splitting
methods in Section III, we will propose distributed algo-
rithms that can find a saddle point of K through iterations
using only locally available information for each agent.

Consider a set of m agents indexed by [m] := {1, . . . ,m}.
Each agent i holds two local variables, xi ∈ Rňi and yi ∈
Rn̂i , as well as a local extended-real-valued saddle function
Ki that depends on not only (xi, yi) but also the variables of
its neighboring agents, specifically, xj for j ∈ Ň+

i and yl for
l ∈ N̂+

i . The two (possibly different) sets Ň+
i , N̂

+
i ⊂ [m]

are called the x-in-neighbor and y-in-neighbor sets of agent i,
respectively. As a result, the local saddle function Ki of agent
i is of the form Ki(xi, (xj)j∈Ň+

i
, yi, (yl)l∈N̂+

i
), which is

convex in (xi, (xj)j∈Ň+
i

) for each fixed (yi, (yl)l∈N̂+
i

) and
concave in (yi, (yl)l∈N̂+

i
) for each fixed (xi, (xj)j∈N+

i
).

The above dependency relation can be modeled by two di-
rected graphs both with the vertex set [m]. The x-dependency
graph has the edge set Ex ⊂ [m] × [m] such that an edge
(j, i) ∈ Ex exists if and only if agent i’s function Ki

depends on the variable xj of agent j. Thus, agent i’s x-
out-neighbor set can be defined as Ň−i = {j|(i, j) ∈ Ex}
and its x-in-neighbor set defined above can be expressed
as Ň+

i = {j|(j, i) ∈ Ex}. Similarly, we can define the y-
dependency graph ([m], Ey), the y-out-neighbor set N̂−i =
{l|(i, l) ∈ Ey} of agent i and have its y-in-neighbor set
expressed as N̂+

i = {l|(l, i) ∈ Ey}.
Denote x := (xi)i∈[m] and y := (yi)i∈[m], i.e., the

concatenated vectors of all xi’s and yi’s, respectively. The
problem we aim to solve is:

Find a saddle point of K(x, y) :=
∑
i∈[m]

Ki. (13)

Assumption 1: Assume that each Ki is closed and proper,
and that K =

∑
iKi has at least one saddle point.

We note that in the above assumption it is not necessary
that saddle points exist for any of the Ki.

Assumption 2 (Communicability): Two agents i and j can
communicate with each other whenever (i, j) ∈ Ex ∪ Ey
or (j, i) ∈ Ex ∪ Ey , i.e., each agent can communicate bi-
directionally with all of its neighbors.

Our goal is to solve the problem (13) in a distributed
iterative way that, at each iteration, each agent only uses
the variables from itself and its neighbors to update and
the iterated values in aggregate converge to a saddle point
z∗ = (x∗, y∗) of K. Towards this goal, for each agent i,
we introduce the local auxiliary variables (xij)j∈Ň+

i
and

(yil)l∈N̂+
i

representing the copies held by agent i for the x-
variables of its x-in-neighbors and the y-variables of its y-in-
neighbors, respectively. Denote by xi := (xi, (xij)j∈Ň+

i
) ∈

RŇi and yi := (yi, (yil)l∈N̂+
i

) ∈ RN̂i the augmented x-
variable and y-variable of agent i, and by x := (xi)i∈[m] ∈
RŇ and y := (yi)i∈[m] ∈ RN̂ their concatenations.

Let Ax := {x |xi = xji, ∀i ∈ [m], j ∈ Ň−i } ⊂ RŇ

and Ay := {y | yi = yli, ∀i ∈ [m], l ∈ N̂−i } ⊂ RN̂ be
the x-consensus and y-consensus subspaces for x and y,
respectively. Then, the problem (13) is equivalent to

Find a saddle point of K(x,y) + µAx×Ay (x,y). (14)

where K = K1(x1,y1) + · · · + Km(xm,ym) is separable.
Note that RK can be computed using Proposition 3 and

RµAx×Ay
= ΠAx

× ΠAy
. Here, ΠAx

(x) is the projection
of x onto the subspace Ax defined as follows. First, let

x̄i := (xi +
∑
j∈Ň−i

xji)/(1 + |Ň−i |), ∀i ∈ [m]. (15)

Then, x̄ := ΠAx
(x) is given by x̄ = (x̄i)i∈[m] where x̄i =

(x̄i, (x̄ij)j∈Ň+
i

) satisfies x̄ij = x̄j for j ∈ Ň+
i . Similarly,

we can define the projection of y onto Ay , ȳ := ΠAy
(y).

A. Synchronous Implementation
Adopting the widely used two-operator splitting method,

(generalized) Douglas-Rachford (D-R) splitting algorithm
in (11), we have the following synchronous iterations (sum-
marized in Algorithm 1) for k = 0, 1, . . .,

wk+1
i = z̄ki , i ∈ [m]; (16a)

zk+1
i = zki + 2α

(
RKi

(2wk+1
i − zki)−wk+1

i

)
, i ∈ [m].

(16b)

where α ∈ (0, 1), zi = (xi,yi), and z̄k = ΠAx
× ΠAy

(zk).
Under Assumption 2, the iterations wk generated by the
algorithm (16) will converge to a solution of problem (14).

Algorithm 1 Synchronous Douglas-Rachford Algorithm

1: Initialize z0, and let k ← 0
2: repeat
3: for i = 1, . . . ,m do
4: wk+1

i ← z̄ki
5: for i = 1, . . . ,m do
6: zk+1

i ← zki + 2α
(
RKi

(2wk+1
i − zki)−wk+1

i

)
7: k ← k + 1
8: until |zk − zk−1| is sufficiently small
9: return wk

The step (16a) requires bi-directional communications be-
tween neighboring agents: each agent i first collects variables
xji’s from its x-out-neighbors j ∈ Ň−i and variables yli’s
from its y-out-neighbors l ∈ N̂−i ; it then computes x̄i
by (15) and ȳi = (yi +

∑
l∈N̂−i

yli)/(1 + |N̂−i |); finally it
sends x̄i and ȳi back to its out-neighbors to be the updated
values of xji’s and yli’s as part of their augmented variables,
respectively. In other words, the step (16a) requires two
synchronous rounds of communications among neighboring
agents. The step (16b) does not require inter-agent commu-
nications.

In some cases the resolvent RKi
may not be easily com-

puted directly. An example is Ki = Ki,1+Ki,3 where Ki,3 is
the differential part and Ki,1 represents the nonsmooth part
(e.g., the indicator function of the local feasible set). Since∑
i∈[m]Ki,3 is separable in variables zi, i ∈ [m], by treating

it as the “K3“ in the Davis-Yin three-operator splitting, we
have the following iterations from (12): for k = 0, 1, . . .,

wk+1
i = z̄ki , i ∈ [m]; (17a)

zk+1
i = zki −wk+1

i

+RKi,1

(
2wk+1

i − zki − γ∇Ki,3(wk+1
i)

)
, i ∈ [m].

(17b)

where γ ∈ (0, 2/L3). Here L3 is the largest of the Lipschitz
constants of the derivatives of Ki,3 w.r.t. zi for i ∈ [m].
Under Assumption 2, the iterations wk generated by the
algorithm (17) will converge to a solution of problem (14).
The algorithm summary is the same as Algorithm 1 except
that Step 6 is replaced by (17b), hence it is omitted here.

B. Randomized Implementation

Here by utilizing the following theorem, we derive an
asynchronous version of the iterations above.

Theorem 2 ([19]): Let S : Rn → Rn be an α-averaged
operator with Fix(S) 6= ∅. Partition x ∈ Rn into
(x1, . . . , xm) and Sx into (S1x, . . . , Smx) where xi, Six ∈
Rni for i ∈ [m]. Consider the following iteration. At each
step k = 0, 1, . . ., first an index ik ∈ [m] is chosen randomly
and independently with the probabilities P

(
ik = i

)
= pi ≥

ε, i ∈ [m], for some positive ε; then xk is updated to xk+1

where xk+1
ik

= Sikx
k and xk+1

` = xk` for ` 6= ik. Then, xk

converges almost surely to some x∗ ∈ Fix(S) as k →∞.
Applying Theorem 2 to iterations (16), at round k, suppose

only one agent i ∈ [m] is activated with the i.i.d. probability
pi ≥ ε > 0 to perform the following update:

wk+1
i = z̄ki ; (18a)

zk+1
i = zki + 2α

(
RKi

(2wk+1
i − zki)−wk+1

i

)
. (18b)

To compute z̄ki =
(
x̄ki , ȳ

k
i , (x̄

k
j)j∈Ň+

i
, (ȳkl)l∈N̂+

i

)
in (18a),

it is required that agent i communicates between its out-
neighbors in Ň−i ∪ N̂

−
i (to compute x̄ki and ȳki and send

them back to out-neighbors), as well as all of its in-neighbors
j ∈ Ň+

i and l ∈ N̂−i (to use their x̄j and ȳl for updating
xij and yil). The latter requires agent i’s in-neighbors to
further communicate with their respective out-neighbors. To
avoid this, we can let each agent i hold two extra variables:
x̄i ∈ Rňi , which is the latest average of xi and its copies xji
held by agent i’s x-out-neighbors; and ȳi ∈ Rn̂i , which is
the latest averages of yi and its copies yli held by agent i’s
y-out-neighbors. With these modification, an asynchronous
version of the Algorithm 1 is summarized in the following
Algorithm 2.

In each round of Algorithm 2, only the activated agent i
communicates with its x- and y- in-neighbors in (i) step 7
to collect the latest averages x̄kj , ȳkl ; and (ii) steps 11-14 to
send back the differences xk+1

ij − xkij , y
k+1
il − ykil while all

the other agents remain idle. By Theorem 2, starting from
any initial z0, the sequence wk generated by Algorithm 2
converges with probability one to a solution w∗ = (x∗,y∗)
to the problem (14).

Remark 1: By carrying out the update (17b) for a ran-
domly activated agent i, the algorithm (17) can also be
implemented in a randomized way.

V. NUMERICAL EXAMPLES

In this section, we present the simulation results of a
convex-concave game with 7 agents to demonstrate the
effectiveness of the proposed Algorithms 1 and 2.

Algorithm 2 Randomized Douglas-Rachford Algorithm

1: Choose any z0, and let k ← 0
2: for i = 1, . . . ,m do
3: x̄0

i ← (x0
i +

∑
j∈Ň−i

x0
ji)/(1 + |Ň−i |)

4: ȳ0
i ← (y0

i +
∑
l∈N̂−i

y0
li)/(1 + |N̂−i |)

5: repeat
6: Pick i ∈ [m] with i.i.d. probability pi > 0

7: wk+1
i ←

(
x̄ki , ȳ

k
i , (x̄

k
j)j∈Ň+

i
, (ȳkl)l∈N̂+

i

)
8: zk+1

i ← zki + 2α
(
RKi(2w

k+1
i − zki)−wk+1

i

)
9: x̄k+1

i ← x̄ki + (xk+1
i − xki)/(|Ň−i |+ 1)

10: ȳk+1
i ← ȳki + (yk+1

i − yki)/(|N̂−i |+ 1)
11: for j ∈ Ň+

i do
12: x̄k+1

j ← x̄kj + (xk+1
ij − xkij)/(|Ň

−
j |+ 1)

13: for l ∈ N̂+
i do

14: ȳk+1
l ← ȳkl + (yk+1

il − ykil)/(|N̂
−
l |+ 1)

15: k ← k + 1
16: until k is sufficiently large
17: return wk

Fig. 1: Dependence graphs Ex∪Ey of the simulation example.

As shown in Fig. 1, each agent i holds a local variable
xi or yi (but not both), and each local saddle function
Ki depends on the variables of its neighboring agents as
depicted by the arrows and is further assumed to be a
quadratic function of the form (7) with randomly generated
parameters. Thus, the problem is a quadratic convex-concave
game played between two groups of agents with coupled
payoff functions, where the x-group {1, 2, 3, 4, 5} cooperates
to minimize the global payoff function K =

∑7
i=1Ki while

the y-group {6, 7} cooperates to maximize it.
We further assume that, each Ki associated with the agents

in the x-group is strictly convex in its own and its neighbors’
x-variables and linear in its neighbors’ y-variables; and each
Ki belonging to the agents in the y-group is strictly concave
in its own and its neighbors’ y-variables and linear in its
neighbors’ x-variables. Therefore each Ki may have no
saddle points but their sum K has a unique saddle point
(x∗, y∗).

We first apply Algorithm 1 to solve this problem with four
sets of parameters, (λ, α) = (0.01, 0.5), (1, 0.5), (1, 0.98),
(100, 0.5), respectively. As shown in Fig. 2, starting at an
arbitrary initial point z0, the iteration values (x̄k, ȳk) :=

0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations (k)

‖
(x̄

k
,
ȳ
k
)
−
(x

∗
,
y
∗
)‖

2

λ = 0.01,α = 0.5
λ = 1, α = 0.5
λ = 1, α = 0.98
λ = 100,α = 0.5

Fig. 2: Comparison of the convergence rates when applying
Algorithm 1 with different (λ, α) to solve the quadratic game
on the 7-agent network.

0 100 200 300 400 500 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations (k)

‖
(x̄

k
,ȳ

k
)
−
(x

∗
,y

∗
)‖

2

λ = 1, α = 0.5, pi ≡ 1/7

Fig. 3: Convergence of applying Algorithm 2 to solve the
same quadratic minimax problem on networks.

((x̄i)
5
i=1, (ȳi)

7
i=6) extracted from the computation of z̄

in (16a) converge to the unique solution (x∗, y∗) in all cases.
For this example, the convergence with a moderate λ = 1,
which is used to construct the resolvent operators, is faster
than that with the smaller λ (λ = 0.01) and the larger λ
(λ = 100), and the convergence rate is linear.

Next we use Algorithm 2 to solve the same problem with
agent activation probability pi = 1/7, i = 1, . . . , 7, i.e.,
each agent is activated to update at each round with i.i.d,
equal probabilities. Compared to Algorithm 1 using the same
parameters (λ, α) = (1, 0.5), Algorithm 2 requires much
more iterations to achieve the same convergence accuracy
(10−8) since at each round only one agent performs update
in contrast to 7 agents in Algorithm 1.

VI. CONCLUSIONS AND FUTURE WORKS
This paper is concerned with developing distributed so-

lutions to the convex-concave games on agent networks.

Synchronous and randomized solution algorithms are pro-
posed, both of which have low communication and storage
overheads. In future work we will quantify the proposed
algorithms’ convergence rates in terms of the local payoff
functions’ convexity/concavity and the dependency graphs’
connectivity.

REFERENCES

[1] J. Hu, Y. Xiao, and J. Liu, “Distributed algorithms for solving locally
coupled optimization problems on agent networks,” in Proc. 57th IEEE
Int. Conf. Decision and Control, 2018, to appear.

[2] G. Scutari, D. P. Palomar, F. Facchinei, and J.-s. Pang, “Convex
optimization, game theory, and variational inequality theory,” IEEE
Signal Processing Magazine, vol. 27, no. 3, pp. 35–49, 2010.

[3] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle
point problems,” Acta numerica, vol. 14, pp. 1–137, 2005.

[4] K. J. Arrow, L. Hurwicz, and H. Uzawa, “Studies in linear and non-
linear programming,” 1958.

[5] M. Rozloznı́k and V. Simoncini, “Krylov subspace methods for saddle
point problems with indefinite preconditioning,” SIAM journal on
matrix analysis and applications, vol. 24, no. 2, pp. 368–391, 2002.

[6] Z.-Z. Bai and G. H. Golub, “Accelerated hermitian and skew-hermitian
splitting iteration methods for saddle-point problems,” IMA Journal of
Numerical Analysis, vol. 27, no. 1, pp. 1–23, 2007.

[7] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math-
ematical programming, vol. 103, no. 1, pp. 127–152, 2005.

[8] A. Nemirovski, “Prox-method with rate of convergence o (1/t) for
variational inequalities with lipschitz continuous monotone operators
and smooth convex-concave saddle point problems,” SIAM Journal on
Optimization, vol. 15, no. 1, pp. 229–251, 2004.

[9] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of optimization theory and applications, vol. 142,
no. 1, pp. 205–228, 2009.

[10] D. Mateos-Núnez and J. Cortés, “Distributed saddle-point subgradient
algorithms with laplacian averaging,” IEEE Transactions on Automatic
Control, vol. 62, no. 6, pp. 2720–2735, 2017.

[11] R. T. Rockafellar, “Monotone operators associated with saddle-
functions and minimax problems,” Nonlinear functional analysis,
vol. 18, no. Part 1, pp. 397–407, 1970.

[12] M. Sion et al., “On general minimax theorems.” Pacific Journal of
mathematics, vol. 8, no. 1, pp. 171–176, 1958.

[13] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,”
Appl. Comput. Math, vol. 15, no. 1, pp. 3–43, 2016.

[14] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[15] D. W. Peaceman and H. H. Rachford, Jr, “The numerical solution of
parabolic and elliptic differential equations,” Journal of the Society for
industrial and Applied Mathematics, vol. 3, no. 1, pp. 28–41, 1955.

[16] J. Douglas and H. H. Rachford, “On the numerical solution of
heat conduction problems in two and three space variables,” Trans.
American Mathematical Society, vol. 82, no. 2, pp. 421–439, 1956.

[17] D. Davis and W. Yin, “A three-operator splitting scheme and its op-
timization applications,” Set-Valued and Variational Analysis, vol. 25,
no. 4, pp. 829–858, 2017.

[18] A. Ghosh and S. Boyd, “Minimax and convex-concave games,”
Lecture Notes for Course EE392, Stanford Univ., Stanford, CA, 2003.

[19] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2947–2957, 2016.

