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Abstract— The goal of this paper is to study potential
applicability and performance of approximate dynamic pro-
gramming (ADP) for building control problems. It is known that
occupants’ stochastic behavior affects the thermal dynamics of
building spaces. We consider an occupant stochastic behavior
model which depends on environmental variables and apply
ADP with illustrative scenarios of occupant-building interac-
tions. Through simulations, we demonstrate the validity of
ADP-based control designs for building control problems with
occupants.

I. I NTRODUCTION

The main goal of building control problems is to balance
between the energy consumption and occupants’ comfort in
building spaces. There has been a great amount of research
interests in energy consumption and comfort management
in buildings [1], [2]. Model predictive control (MPC) is a
popular optimal control scheme in the presence of various
constraints and objectives. For this reason, it has been widely
used for building control problems [3], [4]. However, MPC
uses predictions of system’s future output trajectories, which
are computed by using a mathematical model of the system.
Therefore, its performance is sensitive to unpredictable dis-
turbances and uncertainties. In this respect, one of the main
difficulties in building control problems is the presence of
stochastic uncertainties and disturbances, such as weather
and occupant interactions, that cannot be exactly predicted
in general.

To resolve this problem, robust MPC [5] and stochastic
MPC [6], [7] can be used. The stochastic MPC has been
widely studied for building controls problems [2], [8]–[10].
Many stochastic MPC approaches assume that the system
disturbances are Gaussian. To meet more practical needs,
scenario-based (or sample-based) MPC [11]–[15] can be
applied to cope with generic non-Gaussian stochastic dis-
turbances. There are still more challenging practical situa-
tions for which the scenario-based MPC is not applicable.
An example is a stochastic system with stochastic distur-
bances/uncertainties whose probability distributions depend
on environmental factors such as the current state variables of
the control system. As a result, the probability depends on the
control policy and the corresponding design parameters as
well. In this case, realizations of state trajectories generated
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by using fixed design parameters cannot reflect changes of
the parameters themselves. Such cases arise in many appli-
cations. For example, stochastic systems with disturbances
modelled by Markov chains were considered in [16], [17]
for hybrid electric vehicle powertrain management problems,
where transition probabilities of the Markov chain depend on
the state of the dynamic system. One possible approach to
solve optimal control problems for the complicated stochas-
tic systems is to use approximate dynamic programming
(ADP) [18]–[20] (or reinforcement learning [20] from the
machine learning context). For instance, [16] uses infinite-
horizon ADP, while [17] applies finite-horizon ADP. Another
example arises in building control problems that consider
occupant interactions with the building systems. The role of
occupants is significant in the thermal dynamics of building
spaces [21]–[23]. Occupant models based on Markov chains
have been studied in [23], [24] for building control problems.
Noting that the thermal preferences induce occupant actions
that perturb the thermal dynamics of building spaces, a
building space with occupants is a stochastic system whose
probabilistic behavior depends on the state variables.

The goal of this paper is to study an application of
ADP to building control problems with occupant interactions.
Versions of the ADP are sometimes called reinforcement
learning (RL) from the machine learning context when it
is used with a model-free or simulation-based methods. RL
is a family of unsupervised learning schemes for agents
interacting with unknown environment, and has been widely
studied in [19], [25]–[28]. Model-free RL for building con-
trol problems has been studied in several researches, for
instance [29]–[34], to find a balance among energy savings,
high comfort, and indoor air quality. However, the previous
studies do not consider occupant interactions in the building
thermal dynamics. In this paper, we assume that a stochastic
model of occupant behavior is given. Based on the model,
an approximate optimal control policy is designed by using
simulation-based Q-learning [35], which is a class of ADPs.
A contribution of this paper is the presentation of illustrative
scenarios where ADP can be applied to building control
systems with occupant interactions, assessing potential of
ADP in those cases. In addition, we present the convergence
of dynamic programming with exit probabilities of the state
space.

II. PRELIMINARIES

Throughout the paper, the following notations will be
used:N andN+: sets of nonnegative and positive integers,
respectively;R: set of real numbers;Rn: n-dimensional



Euclidean space;Rn×m: set of alln×m real matrices;AT :
transpose of matrixA; Sn (resp.Sn+, Sn++): set of symmetric
(resp. positive semi-definite, positive definite)n×n matrices;
|S|: cardinality of finite setS; E[·]: expectation operator;P[·]:
probability of event.

In this paper, we consider the discrete-time stochastic
system

x(k + 1) = f(x(k), u(k), w(k), z(k)), x(0) = x0 ∈ X,
(1)

z(k + 1) ∼ p(x(k)), z(0) ∼ µ,

wherek ∈ N is the time step,x(k) ∈ X is the state,X ⊂ R
n

is a compact state space,u(k) ∈ U is the control input,
U ⊂ R

mu is a compact control space,w(k) ∈ R
mw is a

random variable representing disturbances and uncertainties,
and eachw(k) is independent of other random variables,
and (z(k))∞k=0, is a stochastic process with finite states
S := {1, 2, . . . , |S|}. z(0) ∼ µ implies P[z(0) = i] = µi,
and z(k + 1) ∼ p(x(k)) implies that the stochastic process
z(k), k ∈ N+, evolves according toP[z(k + 1) = i|x(k) =
x(k)] = pi(x(k)) with the transition probabilityp(x(k)) :=
[

p1(x(k)) . . . p|S|(x(k))
]T

, andx(k) is a realization of
x(k). In other words, the transition probability depends on
the current statex(k) of (1).

We note that(z(k))∞k=0 is a special case of Markov chain,
and the first convergence result of dynamic programming
(DP) in this paper holds for the general Markov chain case.
Note that (1) is a Markov decision process (MDP) [18],
where the continuous and discrete state-spaces coexist and
interact with each other.

III. D YNAMIC PROGRAMMING

For a given nonnegative Lebesgue measurable stage cost
function, g : Rn × R

m × S → R+, and control input space
U ⊂ R

m, the cost associated with a given admissible state-
feedback control policyπ : X × S → U and initial states
x0 ∈ X, z0 ∈ S, is

Jπ(x0, z0) := IX(x0)Ex0, z0 [ψ
π((x(k), z(k))∞k=0)] (2)

where

ψπ((x(i), z(i))∞i=0) :=

τ(x0, z0;π)−1
∑

i=0

αig(x(i),u(i), z(i)),

u(i) = π(x(i), z(i)), α ∈ [0, 1) is called the discount
factor, IX is the indicator function,τ(x0, z0;π) is the first
time instant the trajectoryx(k) exits X given x(0) =
x0, z(0) = z0, and Ex0, z0 [·] is a shorthand notation for
E[·|x(0) = x0, z(0) = z0]. The set of all admissible state-
feedback control policies is denoted byΠ. In addition, we
make the following assumption.

Assumption 1:The cost per stageg satisfies|g(x, u, i)| ≤
M for all (x, u, i) ∈ X × U × S, whereM is some scalar.
Under Assumption 1, the quantity (2) is always finite, and
hence well defined. The optimal cost is

J∗(x0, z0) := inf
π∈Π

Jπ(x0, z0).

For any bounded functionJ such that J(x0, z0) =
0, ∀(x0, z0) ∈ Xc × S, define the operator

(TJ)(x0, z0)

:= IX(x0) inf
u∈U

Ex0,z0 [g(x0, u, z0) + αJ(x(1), z(1))]

= IX(x) inf
u∈U



g(x0, u, z0) + α

|S|
∑

j=1

pj(x0)E[J(f(x0, u, w, j), j)]



 .

(3)

The optimal costJ∗ satisfiesTJ∗ = J∗, called Bell-
man’s equation, and the sequence(Jk)∞k=0 generated by
the dynamic programming (DP) algorithm (value iteration),
Jk+1 = TJk, J0 ≡ 0, converges uniformly toJ∗ under
Assumption 1.

Theorem 1:The sequence(Jk)∞k=0 generated by the DP
algorithm

Jk+1(x0, z0) = (TJk)(x0, z0), (x0, z0) ∈ X × S

with J0 ≡ 0 converges toJ∗.
Proof: See AppendixI

Remark 1:Note that (z(k))∞k=0 is a special case of
Markov chains, andTheorem 1can be directly applied to
the more general case where(z(k))∞k=0 is a Markov chain.
A convergence result of DP for MDP, where continuous and
discrete state-spaces coexist and interact with each other, was
addressed in [16, Theorem 2,Theorem 3]. However, the proof
in [16] cannot be directly applied to our case because for
the system in (1), the MDP has stochastic disturbances in
continuous spaces.

If J∗ is known, then the optimal state-feedback control
policy can be computed as

u∗(x0, z0) := arg inf
u∈U

Ex0,z0 [g(x0, u, z0) + αJ∗(x(1), z(1))]

(4)

provided that the infimum is attained. Moreover, Q-
factor [35] is defined as

Q∗(x0, z0, u)

:= IX(x0)Ex0,z0 [g(x0, u, z0) + αJ∗(x(1), z(1))] . (5)

By comparing this definition with (4), the optimal policy
can be expressed asu∗(x0, z0) := arg infu∈UQ

∗(x0, z0, u).
In addition, one hasJ∗(x0, z0) = infu∈U Q

∗(x0, z0, u).
Similarly to T , if we define the operatorF

(FQ)(x0, z0, u)

:= IX(x0)Ex0,z0

[

g(x0, u, z0) + α inf
ū∈U

Q(x(1), z(1), ū)

]

,

then, (5) can be written asQ∗ = FQ∗, which is equivalent
to the Bellman equation. The Q-value iteration,Qk+1 =
FQk, Q0 ≡ 0, generates sequence(Qk)

∞
k=0 that converges

to Q∗ under the same condition as in the DP.
In the building control problem of our interest,z(k)

describes occupant thermal preferences. Therefore, it is prac-
tical to assume thatz(k) is not available in real time.

Assumption 2:x(k) is measured in real time, butz(k)
cannot be measured.



To design an optimal control policy underAssump-
tion 2, (2) is modified as

Jπ(x0) := IX(x0)Ex0





τ(x0;π)−1
∑

k=0

αkg(x(k),u(k), z(k))



 ,

where τ(x0;π) is the first time instant the trajectoryx(k)
exitsX given x(0) = x0. Consider the optimal cost

J∗(x) := inf
π∈Π

Jπ(x). (6)

In this case, the operator (3) and the Bellman equation cannot
be well formed because the next state evolution cannot be
entirely determined based on the current state information,
i.e., the Markov property does not hold. However, we can
construct an augmented system that satisfies the Markov
property. In particular,Figure 1 shows a graph which de-
scribes the dependencies of random variables. From the
figure, it is clear that the augmented state vectorx̃(k) =
[

x(k) x(k + 1)
]T

has enough information to determine the
distributions ofx(k+2). Definew̃(k) := w(k+1), z̃(k) :=

Fig. 1. Graph describing dependencies of random variables.

z(k+1), ũ(k) := u(k+1), k ∈ {0, 1, 2, . . .}, and define the
corresponding stage cost such thatg̃(x̃(k), ũ(k), z̃(k)) =
g(x(k + 1), u(k + 1), z(k + 1)), k ∈ {0, 1, 2, . . .}. Then,
the augmented state satisfies

x̃(k + 1) = f̃(x̃(k), ũ(k), w̃(k), z̃(k))

:=

[

x(k + 1)
f(x(k + 1), u(k + 1), w(k + 1), z(k + 1))

]

.

Define the corresponding cost function

J̃π(x̃0) := IX×X(x̃0)Ex̃0





τ(x̃0;π)−1
∑

k=0

αkg̃(x̃(k), ũ(k), z̃(k))



 ,

where x̃0 ∈ X × X, and J̃∗(x̃0) := inf
π∈Π

J̃π(x̃0). If the

distribution ofz(k + 1) depends only on partial coordinates
of x(k), i.e., Px(k) where P is a projection matrix that
projects onto the partial coordinates, then the augmented
state can be replaced with̃x(k) =

[

Px(k) x(k + 1)
]T

,
and the augmented system can be defined as

x̃(k + 1) = f̃(x̃(k), ũ(k), w̃(k), z̃(k))

:=

[

Px(k + 1)
f(x(k + 1), u(k + 1), w(k + 1), z(k + 1))

]

.

Now, we obtain a system of the form (1), and the result
in Theorem 1can be directly applied.

IV. BUILDING CONTROL WITH OCCUPANT

INTERACTIONS

A. Building Model

In this paper, we consider a3m× 3m private office space
with a 2.5m2 south facing window, and its RC (resistor-
capacitor) circuit analogy is given inFigure 2. To reduce the
order of the model, we use one node for air in the room and
another node collecting all the thermal mass in the room,
whereTa is the air temperature (◦C), To is the outdoor air

Fig. 2. RC circuit analogy

temperature (◦C), Tw is the temperature of the aggregated
mass node (◦C), qsolar is the solar radiation (W ), qinternal
is the internal heat (W ), qHVAC is the heating/cooling rate
of the HVAC system (W ). We assume that the room is
conditioned by a VAV system so thatqHVAC directly affects
Ta. Since we use low order model, we assume that the
air node includes some portion of surfaces in the room
which absorb radiative heat and release the heat quickly to
the air. To determine appropriate values of the parameters
of the circuit, we conducted a building energy simulation
with EnergyPlus 8.7.0 in [36], and estimated the parameters
minimizing the root-mean-square error between the air tem-
peratures calculated by the EnergyPlus simulation and the
low order model. The values of parameters are summarized
in Table I. The dynamic system model is given as

TABLE I

VALUES OF THE PARAMETERS OF THE CIRCUIT INFIGURE 2

Parameter Value Unit
R1 0.0084197 ◦C/W
R2 0.044014 ◦C/W
R3 4.38 ◦C/W
C1 9861100 J/◦C
C2 128560 J/◦C
a 0.55 –

C2Ṫa(t) =
To(t)− Ta(t)

R2
+
Tw(t)− Ta(t)

R1

+ (1− a)qsolar(t) + qHVAC(t) + qinternal(t),

C1Ṫw(t) =
Ta(t)− Tw(t)

R1
+
To(t)− Tw(t)

R3
+ aqsolar(t).

A discrete time representation can be obtained by using
the Euler discretization with a sampling time of∆t

Ta(k + 1)− Ta(k) =
∆t

C2R2
(To(k)− Ta(k))



+
∆t

C2R1
(Tw(k)− Ta(k)) +

∆t(1− a)

C2
qsolar(k)

+
∆t

C2
qHVAC(k) +

∆t

C2
qinternal(k),

Tw(k + 1)− Tw(k) =
∆t

C1R1
(Ta(k)− Tw(k))

+
∆t

C1R3
(To(k)− Tw(k)) +

∆ta

C1
qsolar(k),

where k ∈ N is the discrete time step. In this paper, we
consider∆t = 10min sampling time. In the building control
literature, the time step is usually chosen to be∆t = 30min.
The reason we consider finer time steps is for quicker
responses to occupant’s actions.

Now, we assume that there is an occupant in the room,
and the occupant’s stochastic behavior affects the system dy-
namics. In particular, define the stochastic process(z(k))∞k=0

with the state spaceS = {1, 2, 3}, which represents the
occupant’s feeling of cold, comfort, and hot, respectively. Its
probability depends on the current indoor temperatureTa(k),
and its probability density functionpz(z;Ta) is obtained by
the Bayesian modelling approach in [37]. The values of the
probability for different values ofTa are depicted inFigure 3.
Consider some probability space(Ω, F , P). LetA be a space
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Fig. 3. The probability density functionpz(1;Ta) (blue), pz(2;Ta)
(black),pz(3;Ta) (red) for differentTa

of occupant’s actions, and letI be some information space.
The information spaceI is a set of variables that affect
occupant actions. For example, the values ofz(k) can be an
element ofI because it is used to induce occupant actions.
The occupant’s actions are modelled as a mapM : I ×Ω →
A. We consider one possible scenario of occupant’s actions
described below.

Occupant’s overriding on current temperature set point:
The occupant can use a control panel to increase, decrease,
or maintain the current temperature. The reference signal
has the dynamic equationTref(k+1) = Tref(k)+M(z(k)),
whereTref(k) is the current reference signal andM(z(k))
is occupant’s control input. For example, ifz(k) = 1 or
z(k) = 3, the occupant changes the set point with probability

0.5. In particular, the mapM(z(k)) ∈ {−1, 0, 1} is given by

M(z(k)) =











ω(k), if z(k) = 1

0, if z(k) = comfort

−ω(k), if z(k) = 3

,

where

ω(k) =

{

0 with probability 0.5

1 with probability 0.5
.

We assume that the temperature set point varies within the
range15 ≤ Tref(k) ≤ 30. The internal heat due to electronic
appliances and occupant’s body is given byqinternal(k) =
145 (W ). In summary, one obtains a state-space modelx(k+
1) = Ax(k) +Bu(k) +Dw(k) with u(k) = qHVAC(k),

x(k) =









Ta(k)
Ta(k + 1)
Tw(k + 1)
Tref(k + 1)









, w(k) =









qsolar(k + 1)
qinternal(k + 1)
To(k + 1)

M(z(k + 1))









,

and

A =









0 1 0 0
0 1− ∆t

C2R2
−

∆t
C2R1

∆t
C2R1

0

0 ∆t
C1R1

1− ∆t
C1R3

−
∆t

C1R1
0

0 0 0 1









,

B =









0
∆t
C2

0
0









, D =









0 0 0 0
∆t(1−a)

C2

∆t
C2

∆t
C2R2

0
∆ta
C1

0 ∆t
C1R3

0
0 0 0 1









.

The stage cost function is set to beg(x(k), u(k)) =
(Tin(k+1)−Tref(k+1))2 +0.0001u(k)2. In addition, we
consider the space spaceTin(k) ∈ [10, 30], Tin(k + 1) ∈
[10, 30], Tw(k + 1) ∈ [10, 30], Tref(k + 1) ∈ [10, 30], and
the control space isu(k) ∈ {−1000, 0, 1000}.

B. Approximate dynamic programming

Consider the Q-factorQ(x, u) = QLTI(x, u)+ Q̂(x, u; θ),
whereQLTI is the Q-factor obtained based on the LTI system
(A,B), andQ̂(x, u; θ) is an additive term to be determined
in order to compensate the first term. Note thatQLTI(x, u) is
fixed and can be exactly computed by using classical LQR re-
sults. We apply ADP with the linear function approximation
Q̂(x, u; θ) = φ(x, u)T θ (see [19] for details) with vectors
φ(x, u) ∈ R

q and θ ∈ R
q, q ∈ N+, defined as follows:

Each element of the vectorφ(x, u) is called a feature;
φi(x, u) denotes the value of featurei for state-control input
pair (x, u). The feature functionφ : X × U → R

q maps
each state-control input pair to a vector of feature values;
θ ∈ R

q is the weight vector specifying the contribution of
each feature across all state-control input pairs. We will use
Gaussian radial basis functions as feature functions of the
Q-factor, i.e.,

φj(x, u) := exp



−

∥

∥

∥

∥

∥

[

x
u

]2

− cj

∥

∥

∥

∥

∥

2

/2µ2
j



 ,

with centerscj manually placed in the state-control input
space. The number of feature functions used is 2700. To



solve the optimal control problem, we apply the trajectory-
based value iteration (TBVI) [19], which is a simulation-
based fast ADP algorithm for large-scale problems. Simu-
lation results are given inFigure 4, where the first figure
depictsTin(k) (black solid line) andTref(k) (blue dashed
line), the second figure is a realization ofz(k), and the third
one is the control input historyu(k). Histograms of costs of
the two methods are compared inFigure 5with total 1000
simulations. The average cost of the proposed control is168,
while 245 for the LQR control. The cost saving is due to the
occupant behaviors, which are considered by the proposed
ADP method but not by the LQR control.
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Fig. 4. Simulation results: (1)Tin(k) (black solid line) andTref(k)
(blue dashed line); (2) window open/close state; (3) realization ofz(k); (4)
control input historyuac(k)
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Fig. 5. Cost histograms of LQR and proposed control.

CONCLUSION

In this paper, we have studied infinite-horizon ADP for
building control problems with occupant interactions. Since
occupant thermal preferences and actions are dependent on
state variables of the building model, so are their probability
density functions as well. In this case, existing stochastic
MPC approaches including scenario-based MPC are not
applicable. ADP is one possible approach to solve optimal
control problems for these systems. Through simulation
studies, we have demonstrated that the ADP is suitable for
building control problems with occupant interactions.
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APPENDIX I
PROOF OFTHEOREM 1

We first find another characterization ofJk(x0, z0) in
terms of a sum of stage cost functions.

Lemma 1:For any fixedk ≥ 1, Jk is described as

Jk(x0, z0) = IX(x0) inf
π∈Π

Ex0, z0 [ψ
π
k ((x(i), z(i))

∞
i=0)],

where

ψπ
k ((x(i), z(i))

∞
i=0)

:=

min{τ(x0, z0;π)−1, k−1}
∑

i=0

αig(x(i), u(i), z(i)).

Proof: The claim will be proved by an induction
argument. SinceJ0 ≡ 0, J1(x0, z0) is given by

J1(x0, z0) = (TJ0)(x0, z0)

= IX(x0) inf
u∈U

Ex0,z0 [g(x0, u, z0)]

= IX(x0)

× inf
π∈Π

Ex0,z0





min{τ(x0, z0;π)−1, 0}
∑

i=0

α
i
g(x(i), u(i), z(i))



 .

Now, suppose fork ≥ 2

Jk−1(x0, z0)

= IX(x0)

× inf
π∈Π

Ex0,z0





min{τ(x0, z0;π)−1, k−2}
∑

i=0

α
i
g(x(i), u(i), z(i))





(7)

holds. Then,

Jk(x0, z0) = (TJk−1)(x0, z0)

= IX(x0) inf
u∈U

Ex0,z0 [g(x0, u, z0) + αJk−1(x(1), z(1))] .

By conditioning on the exit timeτ(x0, z0;π), the expectation
in the last equation is expressed as

Ex0,z0 [g(x0, u(0), z0)| τ(x0, z0;π) = 1]

× P[τ(x0, z0;π) = 1]

+ Ex0,z0

[

χ
∣

∣ τ(x0, z0;π) ≥ 2
]

P[τ(x0, z0;π) ≥ 2], (8)

where

χ := g(x0, u(0), z0)

+

min{τ(x(1), z(1);π)−1, k−2}+1
∑

i=1

αig(x(i), u(i), z(i)),

and the second term is obtained by the induction
hypothesis (7). In the second term, the quantity
min{τ(x(1), z(1);π)− 1, k − 2}+ 1 is rewritten as

min{τ(x(1), z(1);π)− 1, k − 2}+ 1

= min{τ(x(1), z(1);π), k − 1}

= min{τ(x0, z0;π)− 1, k − 1}.

Therefore, (8) is identical to

Ex0,z0





min{τ(x0, z0;π)−1, k−1}
∑

i=0

αig(x(i), u(i), z(i))



 ,

and the desired result follows.
Proof of Theorem 1:
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For any fixedπ ∈ Π, define

Jπ
k (x0, z0) := IX(x0)Ex0, z0 [ψ

π
k ((x(i), z(i))

∞
i=0)].

For anyk ≥ 1 and sample path(x(i), z(i))∞i=0, we have

|ψπ
k ((x(i), z(i))

∞
i=0)| ≤

∣

∣

∣

∣

∣

∣

min{τ(x0, z0;π)−1, k−1}
∑

i=0

αiM

∣

∣

∣

∣

∣

∣

≤M

∣

∣

∣

∣

∣

∞
∑

i=0

αi

∣

∣

∣

∣

∣

≤M
1

1− α
. (9)

Therefore,Jπ
k (x0, z0) is bounded. SinceJπ

k (x0, z0) is
non-decreasing ink, the point-wise limitlimk→∞ Jπ

k (x0, z0)
exists. Choose aε-suboptimal control policyπε ∈ Π such
that Jπε

(x0, z0) ≤ J∗(x0, z0) + ε. Since limk→∞ ψπ
k =

ψπ pointwise and (9) holds, by the dominated convergence
theorem, we have

lim
k→∞

Jπε

k (x0, z0)

= lim
k→∞

IX(x0)Ex0, z0 [ψ
πε

k ((x(i), z(i))∞i=0)]

= IX(x0)Ex0, z0 [ lim
k→∞

ψπε

k ((x(i), z(i))∞i=0)]

= IX(x0)Ex0, z0 [ψ
πε

((x(i), z(i))∞i=0)]

= Jπε

(x0, z0). (10)

SinceJk(x0, z0) = IX(x0) infπ∈Π J
π
k (x0, z0) by Lemma 1,

we haveJk(x0, z0) ≤ Jπε

k (x0, z0). Combining it with (10)
leads to

lim
k→∞

Jk(x0, z0) ≤ lim
k→∞

Jπε

k (x0, z0)

= Jπε

(x0, z0) ≤ J∗(x0, z0) + ε.

Since ε > 0 is arbitrary, we havelimk→∞ Jk(x0, z0) ≤
J∗(x0, z0). To prove the reversed direction, note that

J
∗(x0, z0) ≤ Jk(x0, z0)

+ IX(x0)Ex0, z0





τ(x0, z0;π)−1
∑

i=min{τ(x0, z0;π)−1, k−1}+1

α
i
g(x(i), u(i), z(i))



 ,

where π ∈ Π is arbitrary. Taking the limitk → ∞ on
the right-hand side yieldsJ∗(x0, z0) ≤ limk→∞ Jk(x0, z0).
This completes the proof.
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