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Abstract—The goal of this paper is to study potential by using fixed design parameters cannot reflect changes of
applicability and performance of approximate dynamic pro-  the parameters themselves. Such cases arise in many appli-
gramming (ADP) for building control problems. Itis knownthat — cationg For example, stochastic systems with disturlsance

occupants’ stochastic behavior affects the thermal dynamicsfo . . .
building spaces. We consider an occupant stochastic behavior modelled by Markov chains were considered in [16], [17]

model which depends on environmental variables and apply for hybrid electric vehicle powertrain management prokdem
ADP with illustrative scenarios of occupant-building interac- where transition probabilities of the Markov chain depend o

tions. Through simulations, we demonstrate the validity of the state of the dynamic system. One possible approach to

ADP-based control designs for building control problems with solve optimal control problems for the complicated stoehas

occupants. tic systems is to use approximate dynamic programming
. INTRODUCTION (ADP) [18]-[20] (or reinforcement learning [20] from the

The main goal of building control problems is to balancénachine learning context). For instance, [16] uses infinite
between the energy consumption and occupants’ comfort {iprizon ADP, while [17] applies finite-horizon ADP. Another
building spaces. There has been a great amount of reseaf@mple arises in building control problems that consider
interests in energy consumption and comfort managemepgcupant interactions with the building systems. The rdle o
in buildings [1], [2]. Model predictive control (MPC) is a occupants is significant in the thermal dynamics of building
popular optimal control scheme in the presence of variofaces [21]-[23]. Occupant models based on Markov chains
constraints and objectives. For this reason, it has beeelyvid have been studied in [23], [24] for building control probem
used for building control problems [3], [4]. However, mpc Noting that the thermal preferences induce occupant ation
uses predictions of system’s future output trajectorigsicy  that perturb the thermal dynamics of building spaces, a
are computed by using a mathematical model of the systeRpilding space with occupants is a stochastic system whose
Therefore, its performance is sensitive to unpredictaide d Probabilistic behavior depends on the state variables.
turbances and uncertainties. In this respect, one of thea mai The goal of this paper is to study an application of
difficulties in building control problems is the presence of*DP to building control problems with occupant interacgon
stochastic uncertainties and disturbances, such as weatMgrsions of the ADP are sometimes called reinforcement
and occupant interactions, that cannot be exactly pratiictéearning (RL) from the machine learning context when it
in general. is used with a model-free or simulation-based methods. RL

To resolve this problem, robust MPC [5] and stochastiés @ family of unsupervised learning schemes for agents
MPC [6], [7] can be used. The stochastic MPC has bedAteracting with unknown environment, and has been widely
widely studied for building controls problems [2], [8]-[10 Studied in [19], [25]-[28]. Model-free RL for building con-
Many stochastic MPC approaches assume that the systéﬁﬁ' problems has been studied in several researches, for
disturbances are Gaussian. To meet more practical neetf$tance [29]-[34], to find a balance among energy savings,
scenario-based (or sample-based) MPC [11]-[15] can tgh comfort, and indoor air quality. However, the previous
applied to cope with generic non-Gaussian stochastic distudies do not consider occupant interactions in the mgldi
turbances. There are still more challenging practicalasitu thermal dynamics. In this paper, we assume that a stochastic
tions for which the scenario-based MPC is not applicablénodel of occupant behavior is given. Based on the model,
An example is a stochastic system with stochastic distuf? approximate optimal control policy is designed by using
bances/uncertainties whose probability distributionpesiel Simulation-based Q-learning [35], which is a class of ADPs.
on environmental factors such as the current state vasaiile A contribution of this paper is the presentation of illusitra
the control system. As a result, the probability dependsien t Scenarios where ADP can be applied to building control
control policy and the corresponding design parameters &¥stems with occupant interactions, assessing potertial o

well. In this case, realizations of state trajectories gateel ADP in those cases. In addition, we present the convergence
of dynamic programming with exit probabilities of the state
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Euclidean spaceR™*™: set of alln x m real matrices A’
transpose of matrixd; S™ (resp.S', S’} , ). set of symmetric
(resp. positive semi-definite, positive definite) » matrices;
|S|: cardinality of finite sefS; E[-]: expectation operatoP-]:
probability of event.

In this paper, we consider the discrete-time stochastic

system

x(k+1) = f(x(k), u(k), w(k), z(k)), x(0) =z € )((17)

z(k+1) ~ p(x(k)),  2(0) ~p,
wherek € N is the time stepx(k) € X is the stateX C R”

is a compact state spaca(k) € U is the control input,
U C R™= is a compact control spacey(k) € R™» is a

random variable representing disturbances and unceesint
and eachw(k) is independent of other random variables
and (z(k))2,, is a stochastic process with finite states

S:={1,2,..., 15|} z(0) ~ pu implies P[z(0) = i] = u,,
andz(k + 1) ~ p(x(k))
z(k),k € Ny, evolves according t®[z(k + 1) = i|x(k) =
z(k)] = pi(z(k)) with the transition probability(z(k)) :=
[p1(z(k)) p‘5|(x(k))}T, andz(k) is a realization of

x(k). In other words, the transition probability depends o

the current state:(k) of (1).

We note thai(z(k)):° , is a special case of Markov chain,
and the first convergence result of dynamic programmin
(DP) in this paper holds for the general Markov chain casg,
Note that () is a Markov decision process (MDP) [18],

where the continuous and discrete state-spaces coexist
interact with each other.

Ill. DYNAMIC PROGRAMMING

For a given nonnegative Lebesgue measurable stage cost

function, g : R™ x R™ x S — R, and control input space

implies that the stochastic process

an?f

For any bounded functionJ such that J(zo,20)
0, V(zo,20) € X¢ x S, define the operator

(T'J)(xo, 20)
= Ix (z0) inf Bz [9(w0, u, 20) + @ (x(1),2(1))]

El
g(x0,u,20) + @Y p;(x0)E[I(f(x0, u, w, ), 5)]

j=1
3

The optimal costJ* satisfiesTJ* = J*, called Bell-
man’s equation, and the sequenté,;), generated by
the dynamic programming (DP) algorithm (value iteration),
Jrr1 = TJx, Jo = 0, converges uniformly ta/* under
Assumption 1

Theorem 1:The sequenc¢Jy ), generated by the DP
algorithm

Jit1(xo, 20) = (T'Jk)(x0, 20),

with Jy = 0 converges taJ*.
Proof: See AppendiX [ ]
Remark 1:Note that (z(k))7°, is a special case of
Markov chains, andrheorem 1can be directly applied to
the more general case whefg(k))52, is a Markov chain.

= Hx(w)u

(1‘0, Zo) eX xS

)y convergence result of DP for MDP, where continuous and

discrete state-spaces coexist and interact with each, ether

addressed in [16, Theorem 2,Theorem 3]. However, the proof
[16] cannot be directly applied to our case because for

e system in %), the MDP has stochastic disturbances in
continuous spaces.
J* is known, then the optimal state-feedback control
policy can be computed as

u*(xg, z0) := argglemo,zO [9(zo, u, z0) + aJ*(x(1),2z(1))]
ue
(4)

U C R™, the cost associated with a given admissible statgrovided that the infimum is attained. Moreover, Q-

feedback control policyr : X x S — U and initial states
r0€ X,20€ 8, is

S (20, 20) 7= Ix (20)Bag, 2 [ ((x(k), 2(K))7Z0)]

where

)

(o, z0;m)—1 4
Y afg(x(i)uli), 2(i)),
=0
u(z) m(x(i),z(7)), o € [0,1) is called the discount
factor, Iy is the indicator functions(zg, zo;7) is the first
time instant the trajectory (k) exits X given x(0) =
xo, z(0) = zp, and E,, ,,[] is a shorthand notation for

PT((x(2), 2(1))iZ0) :

E[-|x(0) = =g, z(0) = z9]. The set of all admissible state-

feedback control policies is denoted bl In addition, we
make the following assumption.

Assumption 1:The cost per stagesatisfiedg(z, u, 7)| <
M for all (z, u, i) € X x U x S, whereM is some scalar.
Under Assumption 1 the quantity 2) is always finite, and
hence well defined. The optimal cost is

J*(zo, 20) == ﬂl_IelfHJ (x0, 20)-

factor [35] is defined as
Q" (z0, 20, u)
= HX (xO)E:vo,zo [g(xm u, ZO) + &J*(X(l), Z(l))] . (5)

By comparing this definition with4), the optimal policy
can be expressed a$(xo, zo) := arginf,,c;Q* (2o, 20, ).
In addition, one has7*(zo, 20) inf,cv Q*(xo, 20, u).
Similarly to 7', if we define the operatoF’

(FQ)(:L‘(), 20, u)

Ix(20)Ezq 2 |9(z0,u,20) + aﬂireng(x(l),z(l), a)l,

then, 6) can be written a€)* = FQ*, which is equivalent
to the Bellman equation. The Q-value iteratiaR;,; =
FQr, Qo = 0, generates sequenc®y,);>, that converges
to Q* under the same condition as in the DP.

In the building control problem of our interesg(k)
describes occupant thermal preferences. Therefore, it p
tical to assume that(k) is not available in real time.

Assumption 2:x(k) is measured in real time, but(k)
cannot be measured.



To design an optimal control policy undekssump- IV. BUILDING CONTROL WITH OCCUPANT

tion 2, (2) is modified as INTERACTIONS
(wosm)—1 A. Building Model
J™(x0) == Ix (20)Bg, | Y oFg(x(k),u(k),z(k))| In this paper, we consider3m x 3m private office space
k=0 with a 2.5m? south facing window, and its RC (resistor-

capacitor) circuit analogy is given Rigure 2 To reduce the
order of the model, we use one node for air in the room and
another node collecting all the thermal mass in the room,

where 7(xg; 7) is the first time instant the trajectony(k)
exits X givenx(0) = z. Consider the optimal cost

J*(2) = inf J"(z). (6)  whereT, is the air temperature°(), 7, is the outdoor air
In this case, the operatadd)(and the Bellman equation cannot AMA
be well formed because the next state evolution cannot be R,

entirely determined based on the current state information
i.e., the Markov property does not hold. However, we can

construct an augmented system that satisfies the Markov ‘

property. In particularfFigure 1shows a graph which de-

scribes the dependencies of random variables. From the @
figure, it is cIear that the augmented state vectok) = e l
[x(k) x(k+ 1)] has enough information to determine the L
distributions ofx(k +2). Definew (k) := w(k+1), z(k) :=

R R

Fig. 2. RC circuit analogy

=(0) =] “(2) %) temperature °C), T, is the temperature of the aggregated

mass node°(C), gsolar IS the solar radiationW), ¢internal
\<z> X(3) is the internal heati{’), quvac is the heating/cooling rate
/ / / of the HVAC system {'). We assume that the room is
) conditioned by a VAV system so that;vac directly affects
" w® ") "0 T,. Since we use low order model, we assume that the
k air node includes some portion of surfaces in the room
which absorb radiative heat and release the heat quickly to
Fig. 1. Graph describing dependencies of random variables.  the ajr. To determine appropriate values of the parameters
of the circuit, we conducted a building energy simulation
with EnergyPlus 8.7.0 in [36], and estimated the parameters
minimizing the root-mean-square error between the air tem-
peratures calculated by the EnergyPlus simulation and the
low order model. The values of parameters are summarized

z(k+1), u(k) := u(k+1), k € {0, 1, 2,...}, and define the
corresponding stage cost such thigk(k), u(k), z(k)) =
gx(k+1),u(k+1),z(k+1)), k€ {0,1,2,...}. Then,
the augmented state satisfies

x(k+1) = f(x(k), u(k), w(k), z2(k)) in Table L The dynamic system model is given as
x(k+1) _ TABLE |
fx(k+1), u(k+ 1), w(k + 1), z(k + 1)) VALUES OF THE PARAMETERS OF THE CIRCUIT INFIGURE 2
Define the corresponding cost function Paramaier Valie Orit
(&0;m)—1 Ry 0.0084197 °C/W
S - . _ . R 0.044014 °C/W
T (%) = Ixux(Z0)Bz, | >, oFgx(k),u(k), 2(k)) |, Ra 4.38 "C?W
k=0 Cy 9861100  J/°C
- . Ca 128560 J/ec
wherezy € X x X, and J*(z¢) := in%J”(an). If the a 0.55 -
TE
distribution ofz(k + 1) depends only on partial coordinates
of x(k), i.e., Px(k) where P is a projection matrix that T
. . . . o(t) — Ta(t Tw(t) — Tu(t
projects onto the partial coordinates, then the augmented’s7,(t) = ( )R ®) + ( )R ®)
2 1

state can be replaced with(k) = [Px(k) x(k+1)]T

and the augmented system can be defined as + (1 = a)gsotar(t) + quvac(t) + Ginternal (1),

Ta(t) — Tw(t) n To(t) — Tw(t)

%(k+1) = f(x(k), a(k), w(k), 3(k)) CiT(t) = Rl 7 + agsolar (t)-
Px(k+1) _ A discrete time representation can be obtained by using
fx(k+1), u(k+1), w(k+1), z2(k + 1)) the Euler discretization with a sampling time At
Now, we obtain a system of the formi)( and the result At

Ta(k + 1) - Ta(k) = (To(k) - Ta(k))

in Theorem 1can be directly applied. Cy Ry



+ CQAI; (T (k) — Ta(k)) + %;a)qmm(k) 0.5. In particular, the map/(z(k)) € {—1,0,1} is given by
At o At i w(k), ifz(k)=1
+ EqHVAC( )+ aqlmemal( ), M(z(k)) = 40, ifz(k)=comfort |,
At _ : _
Tk + 1) = Tu(h) = 5o (Ta(k) = T () w8, el =3
At ' Ata where
+ oir, o) = Tw(k)) + 5= dsorar (k), (k) = |0 with probability 0.5
1 with probability 0.5

where & € N is the discrete time step. In this paper, weye assume that the temperature set point varies within the
considerAt = 10min sampling time. In the building control rangel5 < Ti¢(k) < 30. The internal heat due to electronic
literature, the time step is usually chosen to/be= 30min.  gppliances and occupant's body is given B¥eornal (k) =
The reason we consider fi_ner time steps is for quickeyys (W). In summary, one obtains a state-space modek-
responses to occupant’s actions. 1) = Az(k) + Bu(k) + Dw(k) with  u(k) = quvac(k),

Now, we assume that there is an occupant in the room, q

and the occupant’s stochastic behavior affects the sysfem d Ta(k) Gsolar (K + 1)

. . . . Ta(k + 1) qinternal(k + 1)
namics. In particular, define the stochastic prodes$s));° x(k) = To(k+1) | w(k) = To(k+ 1) )
with the state spacé& = {1, 2, 3}, which represents the TW (k+ 1) M(Oz(k'Jr 1)
occupant’s feeling of cold, comfort, and hot, respectivily ref -
probability depends on the current indoor temperafin@), and
and its probability density functiop,(z;T,) is obtained by 0 1 0 0]
the Bayesian modelling approach in [37]. The values of the _ |0 1- %ﬁi - cfztél ﬁ 0
probability for different values of, are depicted ifFigure 3 0 o ey Tty U
Consider some probability spat@, 7, P). Let.A be a space L0 0 0 1]

0] 0 0 0 0
2 e
B=|C2 , D = 2@ 2 i 2
1 0 TE0 gR 0
09 | 0 0 0 0 1

o
©
T

The stage cost function is set to hgx(k), u(k)) =
(Tin(k+1) — Trer(k +1))% +0.0001u(k)?. In addition, we
consider the space spat&, (k) € [10, 30], Tin(k + 1) €
[10, 30], Ty (k + 1) € [10, 30], Trer(k + 1) € [10, 30], and
the control space is(k) € {—1000, 0, 1000}.

o o
(2] ~
d

o o ¢
w b
T T T

Probability density function
o
Gl

o
N

B. Approximate dynamic programming
Consider the Q-factof(x, u) = Quri(x, u) + Q(x, u; 0),
W12 14 1w 1w 2 o ® = whereQy11 is the Q-factor obtained based on the LTI system
dcoratemperatue (A, B), andQ(z,u; 0) is an additive term to be determined
in order to compensate the first term. Note ®atr;(z, u) is
Fig. 3. The probability density functiom,(1:Ts) (blue), p(2;7»)  fxed and can be exactly computed by using classical LQR re-
(black), p, (3; Tn) (red) for differentTs, sults. We apply ADP with the linear function approximation
Q(x,u; 0) = ¢(z, u)T0 (see [19] for details) with vectors
¢(z,u) € RT andd € R, g € Ny, defined as follows:
Each element of the vectop(z, u) is called a feature;
¢:(x, u) denotes the value of featuidor state-control input

I
=

of occupant’s actions, and I&t be some information space.
The information spac€ is a set of variables that affect

occupant actions. For _e>§ample, the_ valueg(@f) can be an gair (z.u). The feature functions : X x U — RY maps
element ofZ because it is used to induce occupant actions. . ) )
each state-control input pair to a vector of feature values;

The occupant's actions are modelled as a MAPT x £} — f € R? is the weight vector specifying the contribution of

A. We consider one possible scenario of occupant’s actions . ) .
. each feature across all state-control input pairs. We gl u
described below.

o _ Gaussian radial basis functions as feature functions of the
Occupant’s overriding on current temperature set POINg_factor, i.e.

The occupant can use a control panel to increase, decrease,

or maintain the current temperature. The reference signal z 17
has the dynamic equatich.¢(k + 1) = Trer (k) + M (z(k)), ¢j(@, u) = exp | — { u } =G
where T,.¢(k) is the current reference signal afd(z(k))

is occupant’s control input. For example, 4{k) = 1 or with centersc; manually placed in the state-control input
z(k) = 3, the occupant changes the set point with probabilitgpace. The number of feature functions used is 2700. To

2
/215 |




solve the optimal control problem, we apply the trajectory- CONCLUSION
based value iteration (TBVI) [19], which is a simulation-

based fast ADP algorithm for large-scale problems. Simut; I_Ir:j_thls pape:, weblhave s'_[uhdled |nf|n|te_-hor|zo_n AD;ifor
lation results are given ifrigure 4 where the first figure uilding control problems with occupant interactions. cain

depictsT;n (k) (black solid line) andT,.; (k) (blue dashed occupant thermal prefer_en_ces and actions are _depe_nde_nt on
line), the second figure is a realizationzff), and the third state variables of the building model, so are their proligbil

one is the control input history(k). Histograms of costs of density functions as well. In this case, existing stockasti

the two methods are compared filgure 5with total 1000 MPQ approachgs including .scenario—based MPC are not
simulations. The average cost of the proposed contrtfigs applicable. ADP is one possible approach to solve optimal

while 245 for the LQR control. The cost saving is due to thec@ntrol problems for these systems. Through simulation

occupant behaviors, which are considered by the propos@H‘dies’ we have demonstrated that the ADP is suitable for

ADP method but not by the LQR control building control problems with occupant interactions.
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APPENDIX |
PROOF OFTHEOREM 1

We first find another characterization of,(zg, z0) in
terms of a sum of stage cost functions.

“Energyplustm 8.7.0 documentation,”

By conditioning on the exit time(zo, zo; ), the expectation
in the last equation is expressed as

]E-?szo [g($0’u(0)520)| T(gj()? ZO;T") = 1]
x Pl (zo, z0;m) = 1]

+Eaoz [ X | T(20, 2057) > 2] P[7 (w0, 20;7) > 2], (8)
where
X = g(zo,u(0), z0)
min{7(x(1),z(1);7)—1,k—2}+1 4
+ Z alg(x(i),u(i)7 Z(i))7
i=1
and the second term is obtained by the induction

hypothesis 7). In the second
min{r(x(1), z(1);7) -

term, the quantity
1, k — 2} + 1 is rewritten as

min{7(x(1), z(1);7) — 1, k — 2} +1

= min{7(x(1), z(1);7), k— 1}

= min{7(xg, zo;7) — 1, k — 1}.
Therefore, 8) is identical to

min{7(zo, z0;7)—

D

=0

1,k—1}
B,z a'g(x(i),u(i), 2(i)) | ,

and the desired result follows.
Proof of Theorem 1


https://energyplus.net/documentation

For any fixedr € II, define

I (20, 20) 7= Ix (20)Eay, 2 [UF (x(2), 2(i))iZ0)]-
For anyk > 1 and sample patiw (i), z(i)):2,, we have

min{7(zo, z0;7)—1, k—1}

97 ((2(4), 2(1))iZ0)| < > a'M
=0
SMiaingia (9)

Therefore, JJ (z9, z0) is bounded. SinceJ] (zo, zo) is
non-decreasing i, the point-wise limitimy,_, o J7 (xo, 20)
exists. Choose a-suboptimal control policyr® € II such
that J™° (1‘0, Zo) < J*(l‘o, ZO) + e. Sincelimy_s o ¢2 =
™ pointwise and §) holds, by the dominated convergence
theorem, we have

lim J (0, 20)
k—o0

= T T (20)Eag, 2 [0F ((x(0), 2(0))2)]
= T (20) ey, o [ Jim 97 ((x(1), 2(1))Z)]

= Lx (20)Eag, o [¥™ ((x(3), 2(i))30)]
= Jﬂ—a ({E(), Z()). (10)

SinceJi(zo, 20) = Ix (o) infrem JT (20, 20) by Lemma 1
we haveJ(zo, 20) < JJ (w0, 20). Combining it with (LO)
leads to

lim Jy(zo, 20) < lim JF (20, 20)
k— o0 k—r 00
= Jﬂ-s(.ﬁo, 2’0) < J*(Z‘(), Zo) + €.

Sincee > 0 is arbitrary, we havdimy_, . Ji(zo, 20) <
J*(xo, 2z0). To prove the reversed direction, note that

J*(wo, Zo) S Jk(a}o, Zo)
7(@o, z0;m)—1 ‘
+ Lx (20)Eay, 20 > a'g(x(i), u(i), 2(4)) | ,
i=min{7(zg, 2z0;m)—1, k—1}+1
where 7w € II is arbitrary. Taking the limitc — oo on
the right-hand side yield$*(xo, z0) < limg— oo Jk (20, 20)-
This completes the proof.
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