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Abstract— Buildings served by multiple rooftop units (RTUs)
are widely prevalent in retail and food industries. Till date,
most of such buildings utilize plain feedback or heuristic
strategies to determine the RTU operations. We present a
switched dynamic programming based approach for scheduling
rooftop unit operations in an optimal manner. Using a mid-
size restaurant served by multiple RTUs as an example, a
switched affine dynamic system model is first presented. The
RTU coordination control problem is then formulated as a
switched optimal control problem with nontrivial switching
cost. A dynamical programming based method is proposed for
the solution of the switched optimal control problem, which has
reasonable computational complexity and can be implemented
either as a one-shot solution or as part of a model predictive
control algorithm. The proposed method is evaluated through
simulations, and its strengths and limitations are discussed.

I. INTRODUCTION

Rooftop Units (RTUs) are packaged air handling units that
regulate the temperature and circulate air as part of a Heating,
Ventilation and Air-Conditioning system (HVAC). Rooftop
Units are among the most prevalent HVAC systems in
commercial buildings in the United States. Most commercial
buildings in the retail and food-processing industries are
served by several individually controlled RTUs. In a majority
of such buildings, each RTU’s operation is controlled via a
temperature setpoint manually adjustable at a corresponding
thermostat location; and the RTUs are cycled on and off
to attain the temperature setpoint in different zones of the
building. Heuristic control strategies of individual RTUs
without considering their coordination could lead to wasteful
scenarios during the operating hours where different RTUs
compete (by simultaneous heating and cooling) to maintain
their respective temperature setpoints, resulting in higher
energy expenditure.

A building with multiple RTU units operating in on/off
fashion can be modeled as a switched affine system (SAS).
SASs are a class of hybrid dynamical systems comprising
of multiple affine dynamical subsystems whose control is
specified by a (discrete) switching sequence in addition to
a continuous control input. A building with multiple RTUs
operates in a number of distinct modes, one corresponding
to an ON/OFF configuration of the RTUs. In each mode,
the building thermal dynamics can be modeled by an affine
dynamics obtained from, e.g., a RC network approximation.
The mode sequence over any given time horizon specifies the
operating schedule of the RTUs. An optimal control problem
can then be formulated to find the operation schedule (and
the continuous control, if applicable) that minimizes the
energy cost of the RTUs while maintaining comfort for
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building occupants. Another cost that needs to be considered
is the loss in lifetime of the RTUs due to their frequent
turning on and off, which can be modeled as switching cost
in the SAS optimal control problem formulation.

Dynamic programming has been one of the primary meth-
ods for solving optimal control problems, including those for
switched and hybrid systems [1]. For a switched optimal
control problem such as the RTU coordination problem
under consideration, a key challenge lies in its combinatorial
nature: the number of operation schedules that need to be
considered increases exponentially with the prediction time
horizon. Thus, straightforward application of dynamic pro-
gramming results in exponential complexity growth, making
the problem intractable for long time horizons [2]. Miti-
gations in the form of relaxation [1] and tree pruning [3]
have been proposed to reduce the growth of complexity. An
application of relaxed dynamic programming with stability
analysis to the Model-based Predictive Control (MPC) of
switched linear systems was presented in [4]. Nevertheless,
practical applications of these methods remain few to date.

In this paper, a model-based predictive control algorithm
is proposed for the coordination of multiple RTUs with
varying efficiency in a multi-zone building. MPC algorithms
have increasingly become attractive options in building con-
trol [5], [6] due to their ability to utilize real-time weather
and occupant information to minimize energy consumption.
In the proposed solution, the RTU coordination problem
over a given time horizon is formulated as a discrete-time
switched affine quadratic regulation (SAQR) problem with
mode-dependent switching costs and solved by the dynamic
programming method with complexity reduction techniques.
Simulation results show that the proposed approach can lead
to reduced energy expenditure of RTUs through a better
coordination among them.

This paper is organized as follows. In Section II, we
describe a building that will serve as a motivating example
of this study. The general model framework and optimal
control problem formulation are presented in Section III and
Section IV, respectively. In Section V, the proposed dynamic
programming solution method is summarized. Controller
implementation using dynamic programming methods are
discussed in Section VI. Simulation results are presented and
discussed in Section VII. Finally, Section VIII contains some
concluding remarks.

II. CASE STUDY BUILDING

In this section, we describe a building that will serve as
the motivating example and the testing case for the proposed



method. The building under consideration, the Harvest Grill
Restaurant, is a medium-size restaurant in the Philadelphia
area that is served by 4 RTUs of varying capacity and
efficiency. Fig. 1 depicts the internal layout of the restaurant,
with the numbers indicating the locations of the thermostats
for the RTUs. RTU 1 feeding the main dining area is the
largest and the most efficient unit while RTU 2,3 and 4
are identical smaller units serving the smaller zones. The
capacity and efficiency (COP) of these RTUs are summarized
in Table 1.

Fig. 1: Layout of Harvest Grill Restaurant.

RTU Rated Cooling | Energy consumption | COP
RTU 1 52.74 kW 15.06 kW 35
RTU 2 14.60 kW 5.65 kW 2.58
RTU 3 14.60 kW 5.65 kW 2.58
RTU 4 14.60 kW 5.65 kW 2.58

TABLE I: RTU Specifications of Harvest Grill Restaurant.

In the existing configuration of the restaurant on site, air
temperature is sensed at each of the four thermostat locations,
and the corresponding RTU cycles its compressor ON or
OFF based on the deviation of the measured temperature
from a user specified setpoint without coordinating with other
RTUs. All the RTU fans are constantly operational; thus
each RTU can be controlled only via its ON/OFF status.
In this study, it is assumed that each RTU provides cool
air at a given supply air temperature when they are ON
and air at ambient temperature when OFF'. This assumption
can simplify significantly the effect of the RTU operation
sequence on the building thermal dynamics.

A high-fidelity Computational Fluid Dynamics (CFD)
coupled model of the restaurant’s building envelope was
developed and validated based on the approach presented
in [7]. However, the resulting model had a high state dimen-
sion for controller design purposes. Based on this model, a
four-dimensional linear system model (inverse model) was

IStrictly speaking, this assumption is not true due to the dependence
of the supply air temperature on the ambient condition. However, for the
relatively small simulation time horizon in this study, the errors incurred
will be small.

developed using the subspace identification (n4sid) method,
where the training data was obtained by simulating a typical
control strategy for a one-week period designed to keep
the zone temperatures (as sensed by the thermostats) at a
comfortable level between 21°C' and 26°C'. Such input data
is representative of the data available on-site. The TMY3
weather profile for June 2014 was used to model the ambient
conditions, while a typical occupancy profile was assumed
in the training process. The resulting inverse model was
validated by using one week of the July 2014 weather
profile. When compared to the CFD coupled model, the
trained linear model had an RMSE of 3°C' across all zones
over the week. When restricted to the occupancy period the
RMSE decreased to 1.1°C. Figure 2 depicts the dining area
temperature measurement during the validation period. In the
next section, we describe how the obtained inverse model can
be formulated as a switched affine system.
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Fig. 2: Temperature trajectory during model validation
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III. SWITCHED AFFINE SYSTEM MODEL

We begin by describing a general state space model of
the building envelope. Distinguishing between controllable
inputs and exogenous inputs, the building thermal dynamics
can be modeled by

x(t +1) = Ax(t) + Bug) + Fw(t), (1)
y(t)=Cz(t), t=0,1,....

Here, the state x(t) € R™ is a vector consisting of the
temperatures of the relevant wall and air nodes in the CFD
model. In the inverse model, z(t) is a lower-dimensional
linear transform of such temperatures. The operation sched-
ule {o(¢)}1=0,1.... is sequence of variables with a finite set
Y of possible values, one corresponding to each possible
combined ON/OFF status of all the RTUs. For the case study
building with four RTUs, X consists of a total of 16 possible
values (or modes). The uncontrollable input w(t) € R™»
models external heat gains from solar radiation, as well as
internal gains from lighting and occupants. The controllable
input u, ;) € R™ is a vector of zeros and ones with each
element corresponding to the ON/OFF status of an RTU
for the mode o(t) € X at time ¢. The output variable
y(t) € RP contains the air temperature measurements at
the thermostat locations. A, B, F, C are constant matrices of
proper dimensions.



The above model can be simplified to

x(t+1) = Ax(t) + by(r) + Fw(t), (2)
y(t) =Cz(t), t=0,1,....

Here, b3y = Bug(;y € R™ denotes the contribution of all
the RTUs to the envelope dynamics, whose values depend
on the current RTU ON/OFF configuration o(t). Due to the
presence of the Fw(t) term and the mode sequence {o(¢)}
as the control input, this is an instance of the switched affine
systems (SASs).

To facilitate the study of the ensuing temperature tracking
problem with possibly time-varying setpoint offsets, the
above SAS model can be reduced to a simpler Switched
Linear System (SLS) model through a standard homogeniza-
tion procedure, if the exogenous input w(t) is assumed to be
known or predictable within the given time horizon. To this
end, assume that zs.(t) is a setpoint (reference) trajectory of
the state and yset(t) = Czget(t) the corresponding setpoint
output trajectory. Define the augmented and offset state and
the offset output as

i) = |07 g0 =90 -, @)

respectively. Then (2) can be written as

Bt +1) = A (1)&(1), )
g(t) = Ca(t),
where A, (t) € RvtDx(n+1) and ¢ e RP* (D) gre

A boy + Fw(t) + Azger(t) — oer(t + 1)
0 1

c=[C 0.

Note that the system in (4) is now a homogeneous switched
linear system. By assumptions, Ag(t) is known or pre-
dictable with values dependent on the mode sequence o (t)
within the given time horizon.

Aﬂ (t) =

IV. PROBLEM FORMULATION

For the building system described in the previous section,
the optimal RTU coordination problem to be formulated in
this section is an optimal control problem of the SAS (2) or
the SLS (4) whose objective is to minimize the operational
cost while maintaining occupant comfort during a given time
horizon. For simplicity, we assume in this section that the
current time is ¢ = 0 and the given time horizon is ¢t =
0,1,...,k. We first discuss in the following three factors
that contribute to the cost function over this time period.

a) Energy Cost.: For a building with » RTUs, each
mode o0 € X can be represented by a binary string
o102 ---0, where 0; = 0 and 1 represents the OFF and
ON status of RTU j € {1,...,r}, respectively. Assume that
the power consumed by RTU j is p; when it is ON and 0
when it is off. Then the total energy consumed by the RTUs
during the period t = 0,1,...,k is given by

k
Je(k) = Z At)po) A,

t=0

where \(t) is the (predicted) utility price at time ¢, A is the
sampling time, and p, ;) is the total power consumed by the
RTUs in mode o(t):

Do(t) = Z oj(t)p;.
j=1

b) Comfort Penalty.: Another factor the needs to be
considered in the cost function is the occupant comfort.
There are various existing metrics to measure occupant
(dis)comfort, e.g., Percentage of People Dissatisfied (PPD)
and Predicted Mean Vote (PMV) [8], [9]. In this paper, a
simplified approach is adopted?: we assume that a reference
trajectory of the output (i.e., setpoint temperatures at the
thermostat locations) yset(t) = Cuser(t) is given over the
time horizon ¢t € {0,...,k}; and deviation from it at any
time ¢ will incur a penalty [y(t) — ysee(t)]T H(t)[y(t) —
Yset(t)] for some positive semidefinite matrix H(¢). Thus,
the total comfort penalty cost over the time period is

E

Jc(k) = Z[y(t) - yset(t)]TH(t) [y(t) - yset(t>]'

t=0

c) Switching Cost.: In practice, an RTU has a finite
lifespan, which may be shortened by frequently turning it
on and off. In addition, turning several RTUs on at the same
time may lead to large spikes in power demand which could
result in excessive demand charges in the utility bill. Thus,
the optimal control problem formulation needs to take into
account the cost associated with the RTUs switching status
at each time step. Specifically, for each RTU j € {1,...,r},
denote by ¢, (resp. ¢},) the cost associated with it switching
from OFF to ON (resp. from ON to OFF) at each time step.
Let o(t) and o(t + 1) be two consecutive modes. Then the
cost of switching from o(t) to o(t 4 1) is

— - J
Co(t),o(t+1) *= Cos(t),05(t+1)"
j=1
More general switching costs can be introduced, e.g., to
penalize multiple RTUs turning on at the same time, which
are omitted here. Thus, the total switching cost during the
time period ¢t € {0,...,k} is
k
Js(k) = an(t),a(t-H)
t=0

where for notational simplicity later on we have assumed
that o(k+1) = o(k), i.e., there is no switching after the last
time step.

Remark 1: Another formulation of the switching cost is
Jo(k) = Zf:o Co(t—1),0(t)» Which includes the switching
cost from o(—1) to ¢(0). Using this formulation, the cost
will differ only slightly from Js(k) when time horizon is
long; however, the value function of the RTU coordination
problem to be defined later on will have a much higher

2In our previous work [10] we have shown that the simplified metric
gives a good approximation of the PPD and PMV within a certain range of
the thermal conditions



complexity as it depends on both current state and previous
mode.

d) Optimal Control Problem Formulation.: With the
costs defined above, the optimal RTU coordination problem
can be formulated as the following optimal control problem:

minimize J(k) = J.(k) + J.(k) + Js(k)
subject to system dynamics (2) for t =0,1,...,k.

Note that the optimal control to be solved is the RTU
operation schedule o (t) over the horizon t € {0, ..., k} with
the understanding that o(k + 1) = o(k).

By using the augmented and offset state and output defined
in (3), the SAS dynamics (2) is simplified to the SLS
dynamics (4); the cost function J(k) is also reduced to a
quadratic one,

k

J(k) = &) H()#(t),
=0
where H(t) € R+HDX(n+1) g defined as
o~ CTH()C 0
H(t) = .
" [ 0 ABPo() A+ Coe),e+1)

As a result, the optimal RTU coordination problem can be
equivalently formulated as

k
minimize J(k) = &(t)" H(t)i(t) (5)
t=0
subject to & (t 4+ 1) = A, (t)2(t),
§(t) = Ci(t), t=0,1,...,k.

Note that problem (5) above can be considered as a gen-
eralized version of the switched linear quadratic regulation
(SLQR) problem studied in [2] in that the quadratic matrix
H(t) for the cost at time ¢ depends not only on the current
mode o(t) but also on the next mode o (¢ + 1).

V. DYNAMIC PROGRAMMING SOLUTION

The optimal control problem (5) formulated in the pre-
vious section can be solved using a dynamic programming
method to be presented in this section, which is a (slight)
generalization of the algorithm proposed in [3]. Denote by
V(%) the value function (cost-to-go) of the problem (5) over
the time horizon {s,s +1,...,k}:

k
(0 A< {Zf(t)Tff (H)2(t) | 2(s) = ac}

., k+1}. Then V(%) satisfies

Vi(#) =

for # € R"*! and s € {0, 1, ..
the Bellman equation
V() = min

o(s)ex
for all # € R"™! and s € {0,1,...,k}, with zero terminal
cost Vi+1(+) = 0 due to our assumption that o(k+1) = o (k).
Note that, in (6), both terms in the bragket depenAd on the
decision variable o(s) as both matrices H(s) and A, (s) are
o(s)-dependent.

(a0 + Vs (As(2)2) ) ©

It should ‘p\e pointed out that, in the Bellman equation (6),
the matrix H(s) also depends on o*(s + 1), which is the
optimal mode when starting from the state (s 4+ 1) :=
Ay(s)d at the next time step s + 1:

o*(s+ 1) = argmin {a}(s + DT H(s + Da(s + 1)+
o(s+1)ex

Vars (Ao(s + Dis + 1))} ()

for s € {0,1,...,k —1}. Note that o*(s+ 1) itself depends
on o(s). When s =k, o*(k + 1) = o(k).

To sum up, the special structure of the H (t) matrix in the
optimal RTU coordination problem renders the iteration (6)
a less straightforward process than the conventional Bellman
iterations in that the control decision o (s) affects the running
cost &7 H(t)# in a complicated way through the dependency
of H(t) on 0*(s+ 1) and hence ultimately on A, (s)z.

Carrying out the iteration (6) for s =k, k—1,...,0 with
the terminal conditions Vi41(-) =0 and o*(k + 1) = o(k),
we can obtain all the value functions Vi(-), in particular,
Vo(-). The optimal cost for problem (5) is then Vy(Zo)
where o = [x(O)T 1] . The optimal mode sequence
{o*(t) }+=0,...  resulting in the optimal cost can be recov-
ered by a forward iteration, yielding the optimal operation
schedule for all the RTUs.

A. Representation of Value Functions

For SLQR problems without switching cost, it was shown
in [2] that their value functions are the pointwise minimum
of finite families of quadratic functions, hence piecewise
quadratic in themselves. For the RTU coordination prob-
lem (5) with switching cost, such a property still holds.

Proposition 1: For each s € {0,1,...,k}, the value
function V;(-) can be represented as

Vi(#) = min 2"Q2 ©)
QEQs
for some finite set Qg of positive semidefinite matrices in
R(n+1)><(n+l).

Proof: Only a sketch of the proof is given below.
For a fixed operation schedule, the dynamics (4) becomes
a linear time-varying system, and all the quadratic matrices
H(t) are fixed, resulting in quadratic costs-to-go. For the
switched optimal control problem (5), each value function is
the minimal of such costs-to-go over all possible operation
schedules. This proves the desired result. [ ]
Using the representation (8), the value function itera-
tions (6) then reduce to iterative procedures for obtaining

the sets O, Qr_1, ..., Qo as follows

Qs = p%(Qerl)a

with the terminal condition Qi1 = {0}. Here, p$, is the
switched Riccati mapping at time s defined by

s=k,k—1,...,0.

p(Qurt) i {Pi,a/(Q)

0,00 €x, Qc Qs+1}7 &)



while pj , for 0,0’ € X is the Riccati mapping so that
P (Q) = As(5)"QAs(s) + H(s) € ROFDX(HD (10)

for any @ € R("+1D*("+1) Note that in (10), A, (s) depends
on o while H(s) depends on the mode pair (o,0").

Remark 2: In the case there is no switching cost, H(s)
depends only on the current mode o(s); hence ¢’ can be
dropped from both of the definitions (9) and (10).

The switched Riccati mapping (9) provides a way of
computing the sets Q, hence the value functions V(-),
iteratively. However, the complexity of the representation (8)
as measured by the cardinality of the set O, grows exponen-
tially with the iterations. Several complexity reduction tech-
niques were proposed in [3], including pruning at each step
redundant matrices that do not contribute to the minimum
in (8), and relaxed dynamical programming methods that
remove almost redundant matrices at the expense of accuracy.
These techniques after slight modification can be applied to
reduce the computational complexity of the iteration (9). For
more details, the interested readers can refer to [3].

VI. CONTROL IMPLEMENTATIONS

The dynamic programming algorithm proposed in Sec-
tion V can be implemented in several different ways, depend-
ing on the (conflicting) demands of real-time computation
and solution sub-optimality.

A. MPC Implementation

Model Predictive Control incorporates estimates of the
exogenous inputs to solve the optimal control problem (5)
at every time instant and implements only the first step
of the obtained optimal control. By updating the state
and exogenous input estimates at each time step, MPC
implementation yields solutions that can adapt quickly to
changes in inside/outside conditions and are more robust
to errors in prediction of exogenous inputs, a desirable
feature in building applications as these inputs are usually
stochastic in nature. Another benefit is that the time horizon
of the MPC algorithm can be chosen properly to achieve a
balance between computation complexity and solution sub-
optimality: a shorter time horizon can significantly reduce
the complexity of the dynamic programming algorithms
proposed in Section V, though at the expense of yielding
relatively short-sighted solutions with subpar performance in
the long term; and vice versa.

B. One-Shot Implementation

If accurate prediction of the exogenous inputs w(k) is
available over a long time horizon, the optimal control
problem (5) can be solved only once, with the resulting
optimal RTU operating schedule implemented during the
whole lookahead horizon (rather than just its first step as in
the MPC case). This approach will generally lead to a better
performance compared to moving-horizon type controllers
with a shorter prediction horizon, though at the expense
of a longer computation time. On the other hand, as the
problem becomes a finite-horizon switched discrete-time

LQR problem that needs to be solved only infrequently,
its solution can be carried out offline at non-critical times
such as at night when the optimal control is straightforward,
leading to real-time implementation.

C. Quantized Control

At the other extreme, a complete lack of forecast makes
it feasible to use only the current measurements of the
exogenous inputs. In such cases, the cost function can only
reflect the temperature regulation and power consumption
over a very short time horizon. Due to the emphasis on
the temperature regulation, the problem becomes a discrete
optimization problem of load matching, which can be for-
mulated and solved as an instance of the optimal quantized
control problem [11]. Generally speaking, the resulting RTU
operations will likely be suboptimal over a long period of
time.

VII. SIMULATION RESULTS

In this section, the performance of the proposed algorithms
will be tested on the Harvest Grill Restaurant model. The
savings in power cost and temperature regulation behaviors
for the different implementations of the proposed algorithm
will be compared.

The three control implementations discussed in Section VI
were simulated using the 4-dimensional black-box model
of the Harvest Grill Restaurant described in Section II.
The inverse model was used for both control design and
plant emulation. A look ahead horizon of 6 hours (k = 36
sampling instants with a sampling time of 10 minutes) was
used with perfect prediction of the exogenous inputs. The
comfort penality quadratic matrix H(-) was chosen to be
71,, where I, denotes the 4-dimensional identity matrix.
The temperature setpoint ys.; was chosen to be 23°C' for
all zones. Each RTU was assigned a switching cost corre-
sponding to 15% of its power consumption. This reflects a
higher penalty in cycling the largest RTU on and off, thus
implicitly modeling a demand charge based scenario where
consumers are billed on the maximum power usage.

Simulations were performed to obtain the power consump-
tions of the three control implementations during a one-week
period. Performance in maintaining comfort is quantified in
terms of the RMSE deviation of the zone temperatures from
the setpoints during the occupancy hours, averaged across
the four zones. A simple feedback based algorithm, where
the RTUs are cycled based on the temperature measurement
at the corresponding thermostats was also simulated to serve
as the baseline. A deadband of £0.5°C' was included in the
control logic to prevent chattering. Tree pruning with a relax-
ation parameter of le~2 was used to keep the computation
feasible in real time for the dynamic programming algorithm.
All controllers were designed to operate from 6 : 00 am till
midnight with the temperature being allowed to float during
the remaining times.

Figure 3 and 4 show the performance of the controllers
in terms of maintaining comfort and the corresponding
RTU operations. As can be seen the controllers are able to
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Fig. 3: Temperature variations under different control imple-
mentations.

maintaining thermal comfort to an extent. The one-shot and
the MPC controllers offer some precooling in anticipation of
the upcoming internal gains at the start of the working hours.
The conventional bang-bang controller slightly outperforms
the other controllers in temperature regulation by virtue of
focusing on temperature tracking alone.

During the occupancy period, the quantized controller is
observed to exhibit less cycling compared to the look-ahead
based controllers. This is due to the choice of the switching
cost. Longer look-ahead controllers amortize the switching
costs over a longer horizon by saving power costs. The quan-
tized controller is reactive and the relatively high switching
costs force it to avoid frequent cycling. The look ahead based
controllers turn on the more efficient RTU#1 earlier and
run it longer which is reflected in the power savings. The
conventional bang-bang controller exhibits more a longer
run times across all RTUs. The included deadband helps
minimizing short cycling and can be adjusted as necessary.

Table II summarizes the mean energy consumption per
day and the temperature regulation across all the zones. The
one-shot controller offers the most savings (8%) compared to
the baseline bang-bang control. The 6-hour lookahead MPC
comes close to matching the savings (7%). The quantized
control offers a savings of (3.45%) while avoiding frequent
cycling as well. All the three controllers perform reasonably
well in thermal regulation with the average deviation being
less than 1.5°C' though the bang-bang controller provides
much tighter thermal regulation.

Controller Avg. Energy Usage RMSE Temp. Devia-
tion

One-Shot 6hr looka- | 286.13 kWh/day 1.45°C

head

MPC 6hr lookahead 289.17 kWh/day 1.29°C

Quantized control 300.43 kWh/day 1.3°C

Bang-Bang control 311.14 kWh/day 0.9°C

TABLE II: Summary of various controllers’ performance.

Solution Complexity: Due to the combinatorial nature of
the optimization problem, the number of matrices required to
represent the value function in (5) grows exponentially with
the time horizon. For the current simulation, we mitigate

this complexity growth by pruning and relaxing the value
function computation [2]. Using a relaxation threshold of
e = le~2 yields approximately 850 matrices in the repre-
sentation of the value function after 36 iterations (6 hour
lookahead with a sampling time of 10 minutes) compared
to the theoretical upperbound of 163¢ matrices. On a 2.4Ghz
Intel Core i3 processor based PC, the maximum computation
time to solve the MPC problem at any sampling instant was
8.8 minutes which points to real time feasibility considering
the 10 minute sampling interval.

VIII. CONCLUSIONS

Applying techniques from optimization of switched linear
systems to building control enables us to formulate and solve
the problem of optimal RTU coordination over sufficiently
long lookahead horizons with nontrivial switching cost. Sim-
ulation results indicate energy savings while being real time
feasible.

One limitation of the proposed strategy is the total cost
combines several costs related whose weights can signif-
icantly affect the optimal solution. The choices of their
weight, currently by trial and error, need to be studied
formally. In addition, as with all dynamic programming
based algorithms, the proposed algorithm also suffers from
the curse of dimensionality. However, this may be alleviated
by employing model order reduction techniques and efficient
LMI based solvers.
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(c) Quantized control with no lookahead

Fig. 4: Typical RTU operation
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(d) Baseline Bang-Bang control




