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Abstract— The paper presents an evaluation procedure for
a few promising Model Predictive Control (MPC) based ap-
proaches in supervisory control of building heating, ventila-
tion and air-conditioning (HVAC) systems. A case study is
established and control trajectories are generated using the
proposed solvers. The resulting trajectories are evaluated in
terms of benchmark metrics taking energy costs and occupant
discomfort into account. A direct approach to incorporate
occupant discomfort in the cost function is also proposed.
Results indicate potential savings using MPC solvers when
compared to the baseline.

I. INTRODUCTION

Model predictive control (MPC) is increasingly being
viewed as a practical solution for building heating, ven-
tilation and air-conditioning (HVAC) systems control [1],
[2]. The ability to incorporate information such as weather
forecasts and occupancy profiles in real time decision making
makes MPC approaches highly attractive in this regard.
However, the complexity of building models can make such
approaches infeasible for all but the smallest buildings.
Hence, some simplifying assumptions are usually made when
formulating the MPC problem for building controls.

The different assumptions and simplifying techniques lead
to different control strategies or solvers. If the underlying
assumptions are too different, comparison of the performance
of the solvers is no longer straightforward. Hence there is
a need for a common benchmark applicable to all solvers
that can rank solvers based on their “optimality”. Such a
benchmark would be ideally be a critical part of a tool
chain for designing implementable optimal control solutions
in buildings. Additionally, such a benchmark can also help
evaluating the benefits of retrofitting buildings.

In this paper, we establish a simple case study to study
the performance of a few promising model predictive control
strategies. Benchmark metrics corresponding to energy costs
and losses due to thermal discomfort are also formulated. The
benchmark metrics themselves are utilized in formulating
the optimization problems for the MPC based solvers. In
particular, we propose an approach to quantify losses due
to thermal discomfort that can be incorporated into cost
functions. Using the benchmark metrics, the performance
of the solvers are quantified and compared. A conventional

1Vamsi Putta, Guangwei Zhu and Jianghai Hu are with the School
of Electrical and Computer Engineering, Purdue University, West
Lafayette, IN 47906, USA. {vputta, guangwei, jianghai} at
purdue.edu

2Donghun Kim and James Braun are with the School of Mechan-
ical Engineering,Purdue University, West Lafayette, IN 47906, USA.
{kim1077, jbraun} at purdue.edu

control profile is used as the baseline from which the savings
gained by the use of MPC are evaluated. Computational
complexity and implementation issues of the solvers are also
discussed.

The paper is organized as follows. In Section II, we
discuss the building and HVAC system models and the
assumptions used for the case study. We also formulate the
cost functions used to benchmark the different strategies. A
baseline conventional controller is discussed and simulation
results presented in Section III. We describe different MPC
strategies in Section IV. We analyze and remark on the
solver performances in Section V. Finally, we make some
concluding remarks in Section VI.

II. CASE STUDY
A. Modeling

For the purpose of this study, a simplified state-space
model of the Purdue Living Lab (facility under construction)
was used as the common test case. The model was obtained
by applying energy balances at suitably chosen points inside
the room and the walls. The non-linear model thus obtained
captured all the transients due to heat extraction and solar
radiation. Details of the modeling procedure are reported in
[3]. For application in model predictive approaches, the non-
linear model was simplified. After linearization, discretiza-
tion and appropriate model order reduction techniques, the
model may be expressed in the form [3]

T(i41) = Az + Buy + Fwy 0

yr = Cy,

where A, B, F and C' represent the system matrices of
reduced dimension obtained via model order reduction and
t denotes the discrete time instant. The state vector x;
represents a transformed vector containing information about
the temperatures of the wall and air nodes. The controllable
inputs (rate of heat extraction kW) are denoted by the vector
us. Vector w; denotes the exogenous (uncontrollable) inputs
acting on the envelope (solar radiation, ground radiation).
The output matrix C' provides the linear relation between the
states and the outputs. For the Living Lab model, two outputs
namely the zone air temperature 7, and mean radiant tem-
perature 7,.,q4 were considered available. The linear model
obtained after model order reduction was validated against
the high fidelity non-linear model with negligible error [3].

A quasi-static approach was used in modeling the Air
Handling Unit (AHU) and cooling plant supplying cool air
to the room. This was motivated by the need to reduce the



large number of controllable variables available on the plant
side. Under certain simplifying assumptions such as constant
efficiency and pressure ratios, the power consumption of
the different components (namely coils, fans and pumps)
were modeled using empirical models. The total power
consumption of the plant was generated by summing up the
individual consumptions and had the following form

P = f(mvent7 Tyent: T2, Toa, RH). 2)

Here, myen: and Te,: denote the flow rate and the tem-
perature of the air supplied by the AHU while T, and Tp 4
denote the room air temperature and the ambient temperature
respectively. RH stands for the relative humidity of the
ambient air. Noting that the controllable variables 17, and
Tyent together affect the room dynamics in (1) via the rate
of heat extraction u, we can relate the AHU operating power
to the heat extraction rate using a lookup table of the form

p* (’LL; Tz7 TOA, RH) :( . min TP(mventa Tz7 Tventa TOAa RH)
u=g(Myent;Llvent
3)

The lookup table P*(u;T,Toa, RH) gives the minimum
power consumption of the AHU when supplying a heat ex-
traction rate of u at zone temperature 7', ambient temperature
To 4 and RH humidity level. Using this optimal map reduces
the degrees of freedom ({riyent, Tvent} to ) available in
controlling the room dynamics. This leads to a reduction in
the search space when searching for optimal plant operation.
Also, the lookup table in effect decouples the optimal control
of the room dynamics and the problem of choosing the
plant set points. It should be noted that there is an implicit
assumption that the plant components have much smaller
time constants compared to the zone dynamics to justify the
usage of a quasi static model. Further details on the plant
modeling are given in [4].

In the following section, we motivate the necessity of
a common metric in evaluating different MPC solvers and
formulate one such metric.

B. Benchmark Metric

Optimal HVAC operation involves the twin objectives of
maintaining occupant comfort while minimizing the energy
costs. As the objectives are typically conflicting, the opti-
mization requires finding a suitable trade off. Despite the
different formulation of MPC solvers, they can be rated in
terms of their performance with respect to the two objectives.
Additionally, the computational costs of each solver must
also be taken into account.

Computing the energy costs incurred due to an optimal
trajectory is relatively straight forward. From the lookup
table P* described in section II, it is possible to compute
the power costs corresponding to a control trajectory u as
follows

Tpower = »_1iP* (w3 Te, Toa, RH);. )
t

Here 7, denotes the time-of-day price in dollars per unit
power per time step and P*(-); refers to the computed

power consumption at time ¢. We assume that the complete
information of the ambient conditions are known and the
zone temperature 7, is available from the room dynamics
as component of the output y;. Using (4) it is possible to
compute the actual energy costs incurred by the trajectory
generated by any particular solver. We ignore the peak
demand costs in this study, to simplify computation.

The choice of occupant discomfort metric is more involved
due to the hidden nature of costs incurred due to thermal
discomfort. Thermal discomfort is reflected in the decreased
productivity of the occupants, resulting in indirect losses.
Hence a reasonable performance metric of any control strat-
egy would be the losses incurred due to productivity loss.
Such losses can be quantified as the

Jdiscomfort = Z St * s (5)
t

where S; represents the average salary of the occupants in the
buildings at time ¢ and 7; denotes the productivity loss due to
thermal discomfort in percent at time ¢. During unoccupied
periods the average salary S; is set to 0 which avoids priori-
tizing comfort unnecessarily. Productivity losses are typically
obtained through regression models once thermal discomfort
is quantified [5]. Predicted Mean Vote (PMV) and the related
Predicted Percentage Dissatisfied (PPD) are two models that
calculate discomfort in terms of the prevailing conditions
accurately [6]. The PMV model uses information about the
room air temperature 7., mean radiant temperature T,.,q
along with other factors to quantify comfort on a continuous
scale ranging from —3(very cold) to 3(very hot). A PMV
value of zero corresponds to the best average thermal comfort
among occupants. The PPD scale predicts the percentage of
people dissatisfied with the thermal conditions and is related
to the PMV as follows [6]

PPD = 100 — 95¢— (003353 PMV*40.2179 PMV?) (6)
The PPD equation predicts that at least 5% of the occupants
will be dissatisfied under any thermal conditions. Produc-
tivity losses in employees was as derived as a function of
the PMV (PPD) in [5]. The variation of productivity loss
n with PMV are depicted in Fig. 1. With PMV computed
from the output trajectory vy, it is now possible to assign
a dollar cost to the losses due to discomfort. It must be
observed that the choice of the discomfort metric now allows
a direct comparison with the power cost due to the same units
(dollars). This obviates the need for scaling factors when
comparing the magnitude of savings in both metrics and
lends more insight into the trade off between the conflicting
objectives.

Traditional controllers are designed to track zone air
temperature set points. As the productivity loss (PMV/PPD)
depends upon both the zone air temperature and mean radiant
temperature, set point tracking might be suboptimal with
respect to occupant productivity. For the same reason, using a
PMV/PPD based cost metric in optimization can lead to more
savings by utilizing the energy storage inside the building
walls (reflected in the mean radiant temperature).
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Fig. 1: n (Productivity Loss %) vs. PMV

Additional factors influencing the choice of MPC strate-
gies are the computational costs involved and ease of imple-
mentation. Since computational costs vary with implementa-
tion, a direct comparison need not be accurate. However,
the computational time taken is a good measure of the
computational complexity, especially when run on similar
computing platforms.

The next section summarizes the parameters used for the
case study. All the control strategies reported were tested for
the same parameters facilitating direct comparison.

C. Case Study- Other Factors

A 12 dimensional state space model of the Purdue Living
Lab model was used for the room dynamics. The sole
controllable input © was the rate of heat addition/extraction
from the zone. The effects of the ambient environment was
captured in 16 exogenous variables w whose complete data
was assumed to be known. For simulations, this data was
extracted from Indiana TMY2 weather data (available for
every 10 min intervals) corresponding to July 2010. The state
space model was discretized with a time step of 10 minutes
assuming zero order hold. The choice of the time step was
motivated by the resolution of the weather data available.
The building was assumed to be occupied daily from 7 am
to 6 pm by 20 occupants. The average salary of the occupants
was chosen to be 70, 000 $/year (or S; = 1.92 $/10 minutes).
Utility price variation was considered with a peak price of
0.03 $/kWh (r; = 0.005 $/kW/10 minutes) daily from 10
am to 3 pm. Nominal price during off peak hours was fixed
at 0.01 $/kWh.

PMV (PPD) computation requires additional information
about occupant activity and room conditions apart from zone
and mean radiant temperature. These were assumed to be
constant for all the simulations. The occupant metabolic
activity, clothing level was fixed at 1 met and 0.5 clo which
are typical values for non-vigorous activity in summer. Air
flow velocity was assumed to be constant (0.2 m/s) for all
occupants. The ratio of surface areas of the clothed to the
nude body was fixed at the common value of 1.1. Relative

humidity inside the room was assumed to be the same as
the ambient which is justified due to the little variation in
ambient humidity during occupied periods.

Due to the choice of a summer weather profile, the AHU
was constrained to operate in a cooling mode (v < 0). The
power consumption of the AHU was neglected when no heat
was being extracted (u = 0). This assumption was not too
limiting as the coil power consumption dominated that of
the fans in the plant model. Also, peak demand charges are
ignored while calculating energy costs.

All simulations were performed on Intel Core2Duo desk-
tops using MATLAB. The reported computation times are
representative of the computational complexity of the solvers.

In the next section, we implement a conventional (non
MPC) control law for the Living Lab case study to obtain
a baseline performance metric. This will later be used to
compare and contrast MPC based solver.

III. CONVENTIONAL CONTROL

For the Living Lab model described in section II, a
setback strategy with proportional tracking was simulated.
The control involved turning off the AHU during unoccupied
periods and set-point tracking using a proportional controller
during occupied controllers. To allow for precooling, the
AHU was turned on an hour before the occupancy started.
Time-of-day prices were not taken into account. The results
of using a 26°C' set-point during occupancy are shown in
Fig. 2. The results indicate there is no necessity of precooling

30

T — ] ‘ T i f
zone | ambienttemp | \ |
D temp | J
|

5+ X\n//:)’ —= B e |

(Celcius)

’ ' \‘mean ra(‘i temp ‘ set point
21%am 6am 12pm 6pm 12am 6am 12pm 6pm 12am
0 T \ T ‘ T T ‘ ‘
2000 \ AHU injected | |
g | heat \’ ‘
T 4000 \ 1
S S~ ‘
6000 - T — ]

-8000 1 1 1 1 | 1 Il
12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

N——— T

T ]

15 productivity J
/ loss rate occupancy utility price trend

|

/trend

5L —_— “ 5 4
| \ i |

0 T I R L -

12am 6am 12pm 6pm 12am 6am 12pm 6pm 12am

£ 10k

Fig. 2: Trajectories under conventional control.

before occupancy as the room temperature when allowed
to float is lower than the setpoint of 26°C. Evaluating the
power and discomfort metrics in (4) and (5) respectively for
the resulting state and control trajectories yields a power
cost of Jpower = 0.287 $/day and a discomfort penalty of
Jaiscomfort = 0.720 $/occupant/day. These results quantify
the baseline metrics which can be improved in some aspects
by using MPC based approaches. The conventional control



strategy has negligible computational complexity as there is
no optimization involved at any time.

IV. MODEL PREDICTIVE CONTROL STRATEGIES

Model predictive control involves forecasting the system
trajectories, over a prediction horizon L, and making an
optimal decision based on the prediction. The first step
of the optimal decision is applied to the system and the
process repeated with an updated forecast. Assuming com-
plete information of exogenous inputs w in (1), the pre-
dicted trajectories at time ¢ under a control input trajectory

Uglgs U1)ts - - - » UL —1|¢ are described by

Tpppy1)t = ATiqpp)e + Buppp)e + Fweppe
k=01, ... L

where the subscript k + t|t is used to denote the predicted
value at time k -+t formed by propagating the initial value at
time ¢. The model predictive control problem can be formu-
lated using the predicted trajectories to define a optimization
problem over the look ahead horizon L as follows.
L-1
u* = arg min Z Jk(xt—&-k\tv Uk-s—t\t) + JL(»”UH-L\t) (8)
k=0

)

Tt+k\t = C$t+k|t7 Tt|t = Tt,

Ji; represents the cost incurred at k steps into the future.
The optimization problem is constrained by the dynam-
ics in (7). Out of the resulting optimal input sequence
u:|t’uz+1\t""7u:‘f+L71|t’ only the first input ujlt = wuy 18
applied to the system in (1) and the trajectories are predicted
with x,41 as the initial condition. A major challenge in
applying model predictive approaches to buildings is the
computational complexity presented by optimization at every
time step. As the cost functions J;(typically representing
power and thermal comfort) need not be convex, one needs to
resort to numerical optimization. Additionally, the dimension
of the search space grows linearly with the prediction horizon
L as the length of the trajectory to be optimized grows.
Hence, some approximations are usually made to facilitate
real-time computation. We describe three different strategies
(solvers) based on the approximations made and compare the
performance in terms of the benchmark cost function when
applied to the Living Lab case study.

A. Affine Quadratic Regulator Based Solver

Model predictive control based approaches are, in general,
computationally expensive due to the necessity for numerical
optimization. However, if quadratic approximations to the
cost functions are available, a closed form solution to the
optimization problem is possible, eliminating the need for
numerical optimization routines. More specifically the cost
function Jy in (8) must be a sum of quadratic functions of
the following form

i = (Tegre — x;ifrk)TQt+k(mt+k|t - xﬁk)"’
(wernfe — wietR) " Repuje(Uegn — uity),
k=0,1,2,...,L—1 9)
Jo = (Terpe — TfﬁL)TQL(iUHL\t - fffgeiL)'
subject to (7).

Here Qi4++ (Ri4¢) are positive semidefinite (positive def-
inite) matrices for ¥ = 0,1,...,L — 1(k = 0,1,...,L)
respectively. Intuitively, the quadratic term in the state and
control inputs represent the predicted occupant discomfort
and power consumption at time ¢+ k. 2™ models a trajectory
that meets the comfort requirement while ™ can be used to
track efficient control trajectories. The problem of minimiz-
ing a quadratic cost function Jj, subject to affine dynamics of
(7) is termed an Affine Quadratic Regulator (AQR) problem.
To solve the problem, we invoke the principle of dynamic
programming and assert that that for a particular sequence
Ug|ty Ug g1t - - > UgyL—1]¢ tO be optimal over the prediction
horizon, any subsequence starting from a middle point w;x
till the end must also be optimal for the corresponding short-
ened horizon subproblem. This principle can be expressed by
the Bellman equation as,

Vt+k|t($t+k|t) =
(Typnpe — xﬁk)TQHk(ka\t — )+

mi}f‘l {(Ut+k|t - u;e-if-k)TRt-O—k(ut-&-k\t - Ufﬁk)*
Ut k|t
Viekppe(t +k+ 1)} (10)

The Bellman equation holds for all £k = 0,1,...,L — 1.
The function V;¢(+) is called the value function and has a
general quadratic form

Verkft(@egkit) = Ty g Hep k)t r)e 90 ekt Corrlts
k=0,1...,L. (11)

Noting that the constant c;yy; does not affect the mini-
mization in (10), and substituting for Vi s 1(%¢4p41)¢) the
quadratic form in (11), the optimization problem can be
converted into optimizing a quadratic form. Minimizing the
quadratic expression yields the following iterative expres-
sions for £k =0,1,...,L — 1.

Hifpe = Qeyr + Mgrk|th+kMt+k|t + S,Zrk\th+k+1\tSt+k|ta
Gt+k|t = —Qu4kTetk + Mﬁ]@‘thJrk(NtJrkﬁ_U;ik)‘i‘
Sgrk(Ht+k+1|t[Fwt+k\t + BNy skt + Gerh1)e)

*
Uiyt = My rpe@evk)e + Nevres
(12)
where

Py = Ry + BTHt+k+1|t87

_ -1 T
Mt+k\t - _Pt-Q—k:\tB Ht+k+1|tA7

Stikt = A+ BMyypy,
_ —1 ref T
Nt+k\t = PHk‘t(RtJrkUtJrk - B Gt4k+1)t —
T
B Hyykq1e Fwegpge)s

Iterating (12) backward starting with H;, p; = Q41 and
ge+r;e = 0 it is possible to compute the optimal input
sequence over the prediction horizon L.

In order to formulate the HVAC control problem in the
AQR framework, it is imperative that quadratic approxima-
tions to the power cost and discomfort penalty be obtained.
Using the lookup table P* and the functional form of



productivity loss, it is possible to obtain a family of positive
definite quadratics to approximate the power consumption as

P*(w;T,,Toa, RH) =~ (u — u™)T R(u — u™"), Vu.

Computing the matrices R that best fit the lookup table
for every value of T,,Tp4, RH yields the required family
of matrices. At any time ¢, R; in (9) is chosen from
the family of quadratics based on the current values of
T.,Toa, RH. This yields a close approximation of the actual
power consumption of the AHU at time ¢.

The discomfort penalty Jgiscomfort 1 expressed as a
quadratic in a similar manner. Here the governing equation
becomes

U(Tz,de) ~ (x — mref)TQ(x _ ;Uref),
v,‘TZ7 TT‘(Ld? Cl‘ = [TZa Trad]T'

Again (@ is parametrized in terms of any time varying
exogenous factors (RH) and substituted in (9) based on the
prevailing values. Fig. 3 show the validity of the quadratic fits
for certain fixed parameters. The AQR formulation does not
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Fig. 3: Validation of quadratic fits

allow for non-linear constraints during optimization. Hence,
the resulting control law is not guaranteed to yield u; < 0
all the time. Thus, the AQR based solver might recommend
switching between the AHU heating and cooling modes.
However, the changes in the plant dynamics between these
two modes cannot be adequately captured using a single
family of quadratics. In the present case study, we use the
heuristic of setting u = 0 when the AQR solver recommends
a positive value of u. This is equivalent to saturation in the
controller and results in suboptimal performance. However
the simulation results, presented in Fig. 4, show little per-
formance degradation. In fact, the benchmark metrics, calcu-
lated to be Jpower = 0.284 $/day and Jgiscom fort = 0.517
$/day/occupant, indicate superior performance compared to
conventional control. The existence of closed form solution
implies high computational efficiency, making AQR feasible
for real time implementation.

B. Sequential Quadratic Programming Based Solver

To formulate the MPC problem as an AQR problem
requires a quadratic cost function. Sequential Quadratic
Programming (SQP) relaxes the assumption by requiring
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solver.

the cost function to be only twice continuously differen-
tiable. SQP iteratively approximates the cost function as
a quadratic and the search direction is chosen to be the
corresponding minimizer. SQP involves multiple numerical
computations of the cost function Hessian. This can be
prohibitively expensive when the cost function evaluation is
time-consuming. This is especially true when computing the
PMV or the PPD, which involve solving a set of non-linear
algebraic equations at each step. To facilitate computing, a
cubic regression model was developed for expressing the
PPD in terms of the zone air temperature and the mean
radiant temperature. Similarly, the lookup table P* was also
represented using a global quadratic P*(u;T.,Toa, RH) =
[, T., Toa, RHTP[u,T., Toa, RH]+Py. The MPC prob-
lem at time ¢ was formulated with the cost function as

L1
min Z Jr  subject to
k=0
PPD,,,, < | 0% if occupied at time £ + .
30% otherwise,

where Jj; is the power consumption at time ¢ + k£ computed
from the global quadratic expression for P*. The constraint
on the PPD prioritizes comfort during occupied periods while
allowing for less conservative cooling requirements during
other times. The PPD threshold value (10%) was chosen
close to a PMV value of 0.5 in order to minimize productivity
loss during occupancy. The MPC problem is numerically
solved using the SQP solver with a cubic regression model
being used for PPD computation. Further details of the SQP
solver are presented in [4]. Results of the simulation of the
SQP solver for the case study are presented in Fig. 5. As
in the case of conventional controller there is no significant
precooling observed. However, the zone temperature at the
start of occupancy is too high for occupant comfort causing
a temporary productivity loss. The benchmark metrics were



calculated to be Jpower = 0.274 $/day and Juiscom fort =
1.11 $/occupant/day. A prediction horizon of L = 6 hours
was used leading to 36 degrees of freedom per optimiza-
tion. On an average, each optimization took 3.6 seconds to
compute the optimal control law over a prediction horizon,
making the method feasible in real time.

o The energy costs were calculated based on an optimized
lookup table for plant operation. This reduced the
available degrees of freedom in actual plant operation.
With judicious trade off between fan and pump power,
it should be possible to attain more energy savings in
practice than those reported.
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Fig. 5: Trajectories under sequential quadratic programming
based solver.

V. COMPARATIVE ANALYSIS

Table 1 summarizes the performance of the MPC con-
trollers along with the conventional controller. We list the
salient observations below.

o Both MPC based controllers offer savings in energy
costs when compared to conventional control. This is
expected as there is provision for taking time-of-day
pricing into account in MPC based solvers.

« The AQR based solver offers savings in discomfort costs
as well. For the case-study, it is therefore possible to
reduce operational costs using MPC based controller.
More work is required to quantify the effect of mode
switching in the AQR based solver.

o For numerical optimization based SQP solver, conver-
gence to the optimal solution is a major issue. Conver-
gence to a local minima and improper initial guess can
result in suboptimal costs. More investigation is needed
to identify the reason for the suboptimal performance
in discomfort metric.

o In all simulations, it is observed that the discomfort
cost is dominated by the spike at the beginning of
the occupancy periods (in all simulations). The effect
of sampling the discontinuous occupancy gives the
impression of high productivity loss on arrival though
the notion of productivity at the instant of arrival is
unintuitive. More realistic occupancy (and internal gain)
profiles are required to evaluate the discomfort cost
savings of the solvers.

TABLE I: Summary of solver performance

VI. CONCLUSIONS

We have described an evaluation procedure of model pre-
dictive control strategies for supervisory control of building
HVAC systems. Using a case-study to benchmark different
strategies, we conclude that there is scope for savings us-
ing model predictive control. A direct method to integrate
discomfort costs into the cost function using occupant pro-
ductivity has also been proposed. The case-study described
can be part of a preliminary toolkit to compare the efficacy of
other algorithms. Additional criteria that can be incorporated
for comparing solvers include their sensitivity to inaccurate
forecasts and models. Future directions include comparing
the strategies in multiple and more realistic scenarios.
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