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Abstract— In this paper, we propose a discrete-time dis-
tributed algorithm for network localization based on angle-
of-arrival (AOA) measurements. This algorithm can be viewed
as a special case of the averaging consensus algorithm in the
two-dimensional space. We also analyze the localization error
under inaccurate anchor positions and angles measurements
and provide approximate formulae for the error terms. The
effectiveness of our localization algorithm and error assessment
tools is demonstrated through numerical examples. The main
contribution of our paper lies in the theoretical framework for
analyzing AOA-based localization processes as well as assessing
localization error.

Index Terms— localization, angle-of-arrival (AOA), estima-
tion, stiffness matrix, optimization, distributed algorithm

I. INTRODUCTION

Localization of agents is one of the primary functionalities

for numerous multi-agent systems, such as camera net-

works [2], environmental surveillance networks [3] and many

other sensor/robot networks. These systems often require

only low resolution localization results, and consist of a

large number of wireless nodes. In order to reduce cost

and energy consumption, localization is often done through

relative measurements among the nodes instead of absolute

positioning systems such as GPS, with the exception of a few

nodes. These special nodes, which are often referred to as

anchors or beacons, can provide absolute position reference

for other nodes in the network.

Localization has long been an active research topic in

the multi-agent systems field [4]. A majority of the existing

works on the subject study the mechanisms of recovering

node positions from relative distance measurements [5], [6],

[7]. As was argued in Part I of this topic [1], it is also possible

for a node to locate itself in the network by measuring the

directions (a.k.a. angle-of-arrival, or AOA) of its neighboring

nodes. Assuming that the angle measurements are aligned

with a global orientation (e.g. define north to be 0◦) for the

network, Ash et al. [8] and Eren et al.[9] showed that given

a minimal set of anchor nodes, the network can be very

easily localized by computing the null space of the rigidity

matrix in the two-dimensional scenario. The drawback of the

direction-based methods, however, is that measuring angles

may require more costly hardware. Nevertheless, in many

environmental surveillance networks, the built-in cameras or

acoustic sensors already provide the functionality of angle
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measurement [10]. As a result, direction-based localization

via such devices becomes a natural extension.

In this paper, the AOA localization problem is formulated

and solved through a matrix-theoretic approach. Although

a similar approach was previously proposed and employed

in [8], [9] to study the AOA localization problem, in this

paper we provide an alternative solution to the AOA local-

ization problem using the concept of stiffness matrix [11].

There are at least two advantages of this approach. One

advantage is that a distributed consensus-like algorithm can

be easily derived from the stiffness matrix using a matrix

splitting technique. We show that the algorithm is very easy

to implement in a distributed manner and proven to converge.

A second advantage is that, since the stiffness matrix is

square, some closed-form expressions can be derived using

matrix calculus to quantify the localization errors caused by

inaccurate anchor node positions and/or angle measurements.

In addition to error analysis, these expressions could be use-

ful for designing optimal formations, which can be obtained

by minimizing these errors.

The organization of this paper is as follows. Some prelimi-

naries of formation graph theory are introduced in Section II.

Then in Section III, we formulate the AOA localization

problem and deduce its analytic solution. We also show

that the AOA localizability is equivalent to the infinitesimal

rigidity [12], [13]. In Section IV we propose a distributed

discrete-time algorithm to iteratively compute the solution

of the AOA localization problem and prove its convergence.

Simulation results are also provided to demonstrate its

effectiveness. In Section V, the localization error resulted

from inaccurate anchor positions or angle measurements is

analyzed, and numerical examples are given. We conclude

this paper and provide some future directions for improving

the performance of the algorithm VI.

A. Notation

For symmetric matrices A,B, we write A � 0 if A is

positive semidefinite. For v = [a b]⊤ ∈ R
2, we use the

notation ∠v to denote the principal value of argument (within

the range [0, 2π)) of the complex number a + bi in the

complex plane. We denote by v⊥ the vector v rotated by 90
degrees counterclockwise on the R

2 plane. If v is a stacked

vector consists of multiple two-dimensional subvectors, then

v⊥ denotes the rotation applied on every individual two-

dimensional subvector of v. We also define the linear rotation

operator Q : p 7→ p⊥ and p⊥ 7→ −p, where the dimensions

of the underlying spaces depend on the context.
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II. FORMATION GRAPH

In this section, we briefly introduce the notations of

formation graphs, which are a natural tool to study multi-

agent systems formation, including localization problems.

Throughout the paper we assume the underlying space to

be R
2.

Definition 1 (Formation Graph): A formation graph, de-

noted by a triple (V,p,K), consists of the following:

• V = {1, . . . , n} is the index set of n vertices (nodes)

representing agents, sensors, etc., on the plane;

• p =
[
p⊤
1 p⊤

2 · · · p⊤
n

]⊤
∈ R

2n is the (position)

configuration of the n vertices, with the assumption

pi = pj ⇔ i = j, where pi ∈ R
2 denotes the

position of vertex i;
• K = [kij ]i,j∈I ∈ R

n×n is the connectivity matrix,

where for each pair of vertices i, j ∈ I, kij is the

connectivity coefficient between them and satisfies kii =
0, kij ≥ 0, and kij = kji. Denote by K the set of all

such K.

Definition 2 (Anchored Formation Graph): A formation

graph (V,p,K) associated with a nonempty set A ⊂ V is

called an anchored formation graph, denoted by a quadruple

(V,p,K,A), where each vertex in A is called an anchor

and each vertex in F , V \ A is called a free vertex.

We use the notations pf ∈ R
2|F| and pa ∈ R

2|A| to

denote the components of p associated with free vertices

and anchors, respectively.

In what follows, we define some quantities associated with

a given (anchored) formation graph.

Definition 3: Let r(ij) ∈ R
2n be a column vector com-

posed of n two-dimensional blocks,

r(ij) =
[
0 · · · 0 e⊤ij

︸︷︷︸

i-th block

· · · e⊤ji
︸︷︷︸

j-th block

0 · · · 0
]⊤

,

where each eij , (pj − pi) /‖pj −pi‖ is the unit direction

vector pointing from pi to pj . The normalized rigidity matrix

R is defined to be the matrix whose rows are r(ij)⊤ for

i, j ∈ V such that i < j and kij > 0.

Definition 4: The (normalized) complete rigidity matrix

R+ is defined to be the matrix whose rows are r(ij)⊤ for

all i, j ∈ V such that i < j.

Definition 5 ([11]): The stiffness matrix S is defined as

S , R+⊤ΛKR+, (1)

where ΛK is the diagonal matrix whose diagonal entries are

the kij corresponding to the rows r(ij)⊤ in R+.

Proposition 1: The stiffness matrix S is positive semidef-

inite.

Proof: This can be readily seen from (1).

Proposition 2: rank(R) = rank(S).
Proof: According to Definition 5,

S = R+⊤ΛKR+ =
∑

i,j∈V

i<j

kijr
(ij)r(ij)⊤

=
∑

i,j∈V

i<j,kij>0

kijr
(ij)r(ij)⊤ = R⊤Λ̂KR,

(a) Not rigid (b) Rigid (c) Not fixable (d) Fixable

Fig. 1. Examples illustrating rigidity and fixability

where Λ̂K is the diagonal matrix whose diagonal entries are

the nonzero kij . Therefore, Λ̂K is positive definite, which

implies the conclusion.

Remark 1: The stiffness matrix S has the block structure

S = [Sij ], each Sij ∈ R
2×2 for i, j ∈ V , where

{

Sij = −kijPij , if i 6= j

Sii =
∑

j∈V\{i} kijPij ,
(2)

and Pij , eije
⊤
ij is the project matrix. Therefore, all the

diagonal blocks are positive semidefinite, while each offdi-

agonal blocks are negative semidefinite, and each block row

and block column adds up to zero. This structure resembles

that of the well-known graph Laplacian [14].

The normalized rigidity matrix R can be partitioned

as R =
[
Rf Ra

]
, where Rf contains all the block

columns associated with the free vertices, and Ra contains

all the block columns associated with the anchors. Likewise,

the complete rigidity matrix R+ can be split as R+ =
[
R+

f R+
a

]
. Moreover, according to (1), the stiffness matrix

S can be partitioned similarly as follows,

S =

[
R+⊤

f

R+⊤
a

]

ΛK

[
R+

f R+
a

]
=

[
Sff Sfa

Saf Saa

]

. (3)

Definition 6: A formation graph is called infinitesimally

rigid (or simply rigid from now on) if rank(R) = 2n −
3 [12], [13], or equivalently, rank(S) = 2n − 3, due to

Proposition 2.

Remark 2: An intuitive interpretation of the infinitesimal

rigidity is that every infinitesimal perturbation which main-

tains the distances between connected vertices will only lead

to a rigid-body motion in the three-dimensional subspace

(translations and rotation), and hence will not deform the

shape of the formation.

Definition 7 (Fixable Formation): An anchored formation

graph (V,p,K,A) is called fixable if Sff is nonsingular.

Remark 3: A fixable formation can be viewed as an

inflexible structure “pinned down” by the anchors, so that

no infinitesimal perturbation on the free vertices may move

them without violating the distance constraints.

Example 1: Some examples that illustrate the concepts

of rigidity and fixability are given in Fig. 1. The black

dots denote the anchors (which have fixed locations) and

the white dots denote the free vertices. An edge between

two vertices on the graph indicates that the connectivity

coefficient between the two vertices is strictly positive. The

unanchored formation in Fig. 1(a) is not rigid because, intu-

itively speaking, its shape can be deformed without changing

the lengths of the edges, whereas in Fig. 1(b) the formation
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has an inflexible structure and hence is rigid. Likewise, the

anchored formation in Fig. 1(c) is not fixable, because the

two free vertices on the bottom can be parallelly slided,

without altering the lengths of the edges. The anchored

formation Fig. 1(d) has all vertices locally fixed and hence

is fixable.

III. DIRECTION-BASED LOCALIZATION

In this section, the direction-based localization problem is

formulated and analyzed, which is based on the following

assumption.

Assumption 1 (Global Coordinate [9], [15]): There ex-

ists a global coordinate shared by all sensors/agents in the

network in which the angles-of-arrival are measured.

The problem of direction-based localization with global

orientation was previously formulated and studied in [8], [9]

and recently in [15]. As follows, we provide an alternative

formulation and analysis from the basis of the stiffness

matrix and fixability property, on which the results in the

next few sections depend.

Definition 8 (AOA Localization Problem): Assume that

the absolute positions of the anchors pa are known. Given

the angle measurements θij ∈ [0, 2π) for (i, j) ∈ E, the

AOA localization problem is to find solution pf such that

∠(pj − pi) = θij for all i ∈ V , j ∈ F and kij > 0.

An AOA localization problem may have no feasible so-

lution if the given angle measurements are inconsistent, as

a trivial example, |θij − θji| 6= π. However, if we generate

θij from a given formation graph, then its own configuration

must be admitted as one of possibly many solutions to the

AOA localization problem.

Definition 9: An anchored formation graph is called AOA

localizable if the AOA localization problem using θij gen-

erated from the formation graph admits only one solution,

which is its own configuration.

The key to the solution of the AOA localization problem

is that p⊥ points in the direction of simultaneous rotation of

the vertices around the origin. As a result, p⊥ ∈ null(S), or
[
Sff Sfa

Saf Saa

][
p⊥
f

p⊥
a

]

= 0.

Particularly, the following equation holds true,

Sffp
⊥
f + Sfap

⊥
a = 0. (4)

Assuming Sff is nonsingular, the solution can be obtained

by the following equation,

p⊥
f = −S−1

ff Sfap
⊥
a . (5)

We show that the above assumption is in fact necessary

and sufficient for the uniqueness of the solution to the AOA

localization problem.

Theorem 1 ([1]): An anchored formation graph is AOA

localizable if and only if it is fixable.

Remark 4: The conclusion in Theorem 1 indicates that

the solvability of a direction-based localization problem is

determined by the fixability property in the distance-based

localization framework (see Remark 3). This may shed light

on the relation between the two localization paradigms.

IV. DISCRETE-TIME DISTRIBUTED ITERATIVE

ALGORITHM FOR AOA LOCALIZATION

According to Theorem 1, Equation (5) provides a feasible

and reliable method of solving the AOA Localization Prob-

lem. However, computing S−1
ff is time-costly and technically

difficult to carry out in a distributed fashion. To overcome

this limitation, we decompose Sff into Dff − Fff , where

Dff is composed of the 2 × 2 diagonal blocks in Sff and

Fff the negated off-diagonal blocks. We first need to verify

the invertability of matrix Dff .

Proposition 3: If an anchored formation graph is fixable,

then all 2-by-2 diagonal blocks of the matrix Sff are invert-

ible.

Proof: We prove by contraposition. Suppose a 2-by-

2 diagonal block of Sff , say Sii, is singular. Recall from

(2) that Sii is the sum of the projection matrices. In the

two-dimensional case, Sii is singular if and only if all the

projection matrices share the same null space. This implies

that the null space shared by all the 2-by-2 blocks in the i-th
block column and row is nontrivial. Therefore, Sff must also

be singular.

We assume that the anchored formation graph is fixable.

By Proposition 3, Dff is invertible. Therefore, (5) can be

manipulated into the following iterative form,

p⊥
f = D−1

ff Fffp
⊥
f −D−1

ff Sfap
⊥
a . (6)

We propose as follows a damped version of (6) which

gives the same solution,

p⊥
f = (Dff + Λ)

−1
(Fff + Λ)p⊥

f − (Dff + Λ)
−1

Sfap
⊥
a ,
(7)

where Λ is assumed to be 2-by-2 block diagonal , i.e., Λ =
diag(Λii) where Λii ∈ R

2×2. According to (2), we can write

(7) in the decentralized form as below,

p⊥
i =



Λii +
∑

j∈V\{i}

kijPij





−1 

Λiip
⊥
i +

∑

j∈V\{i}

kijPijp
⊥
j





∀i ∈ F .

The above expression can be viewed as the weighted

average of the vectors pi and pj with matrix-valued weights

Λii and kijPij . Now we can design the following algorithm

to solve (7) distributedly.

Remark 5: Algorithm 1 is essentially similar to a con-

sensus process over the network. The subtle difference is

that each node will converge to its respective localized

position through the execution of the algorithm; whereas in

the classical notion of consensus, all nodes converge to the

same value over the network.

Let p̂f [k] in Algorithm 1 denote the estimated positions

of the free vertices at step k. Note that the discrete-time

dynamics of p̂f [k] can be expressed as below,

p̂⊥
f [k + 1] = (Dff + Λ)

−1
(Fff + Λ) p̂⊥

f [k]

− (Dff + Λ)
−1

Sfap
⊥
a . (8)
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Algorithm 1 Distributed AOA Localization Algorithm for

agent i at time step k

Input: Λii ∈ R
2×2, p̂⊥

i [k], p̂⊥
j [k], θij ∈ [0, 2π), (j ∈

Ni)
Output: p̂⊥

i [k + 1]
A← Λii

u← Λiip̂i[k]
for all j ∈ Ni do

e← [cos θij , sin θij ]
⊤

u← u+ ee⊤p̂⊥
j [k]

A← A+ ee⊤

end for

p̂⊥
i [k + 1]← A−1u

We hereby define the convergence of the dynamics (8),

thus equivalently, the convergence of the algorithm (that is,

Algorithm 1).

Definition 10 (Convergence): Given an anchored forma-

tion graph (V,p,K,A), if for any initial guess p̂⊥
f [0] ∈ R

2n,

the dynamics (8) always converges to the true configuration

pf , then we say that the algorithm is convergent.

It can be readily inferred from Theorem 1 that the

fixability of the underlying formation graph is necessary

for convergence. The following theorem gives a sufficient

condition for convergence.

Theorem 2 (Sufficient Condition of Convergence): The

algorithm is convergent if (V,p,K,A) is fixable and Λ is

symmetric positive definite.

Proof: Since (V,p,K,A) is fixable, the convergence

of the algorithm is implied by the stability of the discrete

time-invariant affine system (8), which is given by

ρ
(

(Dff + Λ)
−1

(Fff + Λ)
)

< 1,

where ρ(·) denotes the spectral radius. Since the ma-

trix (Dff + Λ)
− 1

2 (Fff + Λ) (Dff + Λ)
− 1

2 is symmetric and

similar to (Dff + Λ)
−1

(Fff + Λ), we can alternatively

show that

I ≻ (Dff + Λ)
− 1

2 (Fff + Λ) (Dff + Λ)
− 1

2 ≻ −I.

The first part of the inequality is easily seen given the positive

definiteness of (Dff + Λ)
− 1

2 and Dff −Fff (which is equal

to Sff and positive definite, by the assumption that the

formation is fixable).

For the second part, it suffices to show that Dff + Fff +
2Λ ≻ 0. We observe that Dff + Fff is the matrix whose

off-diagonal blocks are negated compared to Sff . Inspired

by the following relation,

Dff − Fff = Sff = R+⊤
f ΛKR+

f ,

we can see that Dff + Fff can be similarly decomposed as

follows,

Dff + Fff = R̃+⊤
f ΛKR̃+

f , (9)

(a) Inital guess (b) 5 iterations (c) 10 iterations

(d) 50 iterations (e) 100 iterations (f) Ground truth

Fig. 2. Simulation result of the algorithm

where the matrix R̃+
f consists of rows in the following form

r̃(ij) =
[
0 · · · 0 e⊤ij

︸︷︷︸
i-th block

· · · e⊤ij
︸︷︷︸
j-th block

(negated)

0 · · · 0
]⊤

.

The decomposition in (9) certifies that Dff + Fff � 0.

Consequently, we have Dff + Fff + 2Λ ≻ 0.

A. Simulation

We test our distributed AOA localization algorithm on a

multi-agent network consisting of 50 agents as shown in

Fig. 3. Four agents at the corners of the formation (marked

by red dots and labeled A,B,C and D) serve as anchors

(i.e., their positions are a priori known). Fig. 2 shows the

simulation result. As is theoretically proven, the localization

result converges to the ground truth as the number of

iterations increases.

V. ERROR ANALYSIS

When the absolute positions of the anchors or the angle

measurements are subject to error, Algorithm 1 still con-

verges to the solution of (5), but the result may deviate

from the ground truth. In this section, we study the effect

of measurement error on the localization result through per-

turbational analysis. These results will be useful in assessing

the steady-state performance of the algorithm, as well as

formulating optimization problems in the future studies.

A. Inaccurate Anchor Locations

Consider the scenario where the absolute positions of the

anchors differ from their true absolute positions by δpa.

From (5) we can readily know that the localization error

is

(δpf )
⊥ = −S−1

ff Sfa(δpa)
⊥.

From the above two relations, we propose two methods

of evaluating the intensity of the error propagation from

anchors’ self-positioning to the AOA localization of free

vertices. The first method is to regard δpa as a static bias
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and consider the largest possible error propagation due to

δpa. We define the following error propagation coefficient

for such worst case:

εwa , max
δpa 6=0

‖δpf‖

‖δpa‖
=

∥
∥
∥S−1

ff Sfa

∥
∥
∥
2

(10)

which is equal to the largest singular value of the matrix

S−1
ff Sfa.

A second method is to model the error δpa as some

random perturbation and consider the root mean square error

(RMSE) of the localized positions, which can be computed

as follows,
√

E
[

‖δpf‖
2
]

=

√

tr
(

S−1
ff SfaE [(δpa)⊥(δpa)⊥⊤]S⊤

faS
−1
ff

)

=

√

tr
(

S−1
ff SfaQΣ(δpa)Q

−1S⊤
faS

−1
ff

)

,

(11)

where Σ(δpa) denotes the covariance matrix of δpa. More-

over, if each component of δpa has an identical independent

normal distribution N (0, σ2
p), then the RMSE (11) can be

further simplified as below,
√

E
[

‖δpf‖
2
]

=

√

σ2
p · tr

(

S−1
ff SfaS⊤

faS
−1
ff

)

= σp ·
∥
∥
∥S−1

ff Sfa

∥
∥
∥
F
, (12)

where ‖·‖F denotes the Frobenius norm of a matrix. Similar

to the first case, we can also define the error propagation

coefficient for the mean case as below,

εma ,

√
√
√
√E

[

‖δpf‖
2

‖δpa‖
2

]

=
1

√

2|A|

∥
∥
∥S−1

ff Sfa

∥
∥
∥
F
. (13)

B. Inaccurate Angle Measurements

Let θij denote the absolute angle of the incoming signal to

vertex i from vertex j, for every i ∈ F and (i, j) ∈ E . If there

is no measurement error, then the relation |θij − θji| = π
holds. Consequently,

Pij =

[
cos θij
sin θij

] [
cos θij
sin θij

]⊤

= Pji.

Now we take the AOA measurement errors δθij into account

and apply perturbational analysis to (5). If both i and j are

free vertices,

∂(δpf )
⊥

∂θij
=

∂(−S−1
ff )

∂θij
Sfap

⊥
a

= S−1
ff

∂Sff

∂θij

(

S−1
ff Sfap

⊥
a

)

= −S−1
ff

∂Sff

∂θij
p⊥
f ,

(14)

where the matrix derivative
∂Sff

∂θij
has only two nonzero

blocks: kij
∂Pij

∂θij
at (i, i) and −kij

∂Pij

∂θij
at (i, j). Moreover,

∂Pij

∂θij
=

[
− sin θij
cos θij

] [
cos θij
sin θij

]⊤

+

[
cos θij
sin θij

] [
− sin θij
cos θij

]⊤

= QPij + PijQ
−1.

Plugging these into (14) and recalling that Pij(pi−pj)
⊥ =

0, we have

∂(δpf )
⊥

∂θij
= −S−1

ff





|
kij(QPij + PijQ

−1)(pi − pj)
⊥

|





= −kijS
−1
ff





|
pi − pj

|



 ← i-th block row

(zero elsewhere)

, −kijS
−1
ff wij . (15)

The notation “|” here means that all components except the

one specifically indicated are zero.

Next, we consider the case when j is an anchor, where

both Sff and Sfa now depend on θij . With some calculation,

it can be seen that

∂(δpf )
⊥

∂θij
= −kijS

−1
ff wij , (16)

which turns out to be identical to the case when i, j are both

free vertices.

We may stack all wij horizontally into the matrix W . Let

δθ be the vector whose components are δθij and ΛK be

the diagonal matrices whose entries consist of kij , for all

(i, j) ∈ E ∩ (F ×V). Then from (15) and (16) the total error

can be written in the matrix form below,

δpf ≈ Q−1S−1
ff WΛKδθ.

If the errors are modeled by the Gaussian random variables

δθij ∼ N
(

0, σ2
δθij

)

, the RMSE can be computed as below,

√

E [‖δpf‖2] ≈

√

tr
(

S−1
ff WΛKΣθΛKW⊤S−1

ff

)

=
∥
∥
∥S−1

ff WΣ
1

2

θ ΛK

∥
∥
∥
F

(17)

where Σθ , diag
(

σ2
δθij

)

. We may define the error propaga-

tion coefficients for the worst case and the mean case (where

we assume Σθ is isotropic) as follows,

εwθ ,

∥
∥
∥S−1

ff WΛK

∥
∥
∥
2
, εmθ ,

1
√

2|E|

∥
∥
∥S−1

ff WΛK

∥
∥
∥
F
.

C. Numerical Examples

To illustrate the results in the previous sections numeri-

cally, we computed the error propagation coefficients for the

formation shown in Fig. 3 with different anchor sets. The

four candidates for anchors are labeled A,B,C and D. The

numerical results of the error propagation coefficients are

listed in Table I.

From the numbers in Table I, several observations can be

made. Firstly, the values of mean error propagation coeffi-

cients are always smaller than their worst-case counterparts,

which verifies their definitions. Secondly, one may notice

that in general the more anchors the network possesses, the

smaller εwθ and εmθ becomes. This complies with our intuitive

that more anchors help suppress the uncertainty caused by

measurement errors. Particularly, in the case of A,B being

the anchors, the localization errors caused by inaccurate AOA
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Fig. 3. Sample anchored formation graph (ground truth)

TABLE I

ERROR PROPAGATION COEFFICIENTS FOR FIG. 3

Anchor Set εwa εma εw
θ

εm
θ

A,B,C,D 5.8885 3.8852 6.5043 2.8913

A,B,C 5.4307 3.9999 15.1156 6.9432

A,B 9.2271 5.8950 184.1435 92.5459

A,D 5.0222 4.5624 24.1448 13.2067

measurements could potentially be huge. This can be seen

intuitively from Fig. 3, as the wing on the bottom is hardly

“pinned down” by any anchors, and hence can be easily

deformed.

The numerical results regarding the error propagation co-

efficients for the anchor position errors are relatively harder

to interpret. It can be seen from the first, second and fourth

cases in Table I that more anchors may cause larger error on

the localization result in general. Nevertheless, a small but

poorly chosen anchor set, such as the third case, could still

potentially lead to large error propagation coefficients. These

results motivate us to further investigate the factors which

affect the error propagation coefficients, and the formulation

of optimization problems with respect to these coefficients

in the future.

VI. CONCLUSION

In this paper, we propose a discrete-time distributed al-

gorithm for network localization based on angle-of-arrival

(AOA) measurements. This algorithm can be viewed as a

special case of the averaging consensus algorithm in the

two-dimensional space. The effectiveness of our localization

algorithm is demonstrated through numerical simulation. We

also analyze the localization error under inaccurate anchor

positions and angles measurements and provide approximate

formula for the error term. Numerical examples are provided

to illustrate the relation between the anchored formation

graphs and their the error progagation coefficients.

Compared to other sophisticated AOA localization meth-

ods [16], our algorithm may typically require more itera-

tions to converge to a relatively precise configuration. An

explanation for this is that, our current scheme does not

weigh the information according to its confidence when it is

taken into weighted-average-like computation. Therefore, we

can imagine that the algorithm may take a lot of iterations

to counter the effect of the initial guess. To improve the

algorithm in the future, we may dynamically adjust the link

connectivity coefficients kij based on the confidence level

of the node. The effect of the damping matrix Λ is also a

quantity that we will look into in our future work. Based on

the theorical framework of our algorithm proposed in this

paper, we expect that more performance improvements can

be made through optimization with respect to quantities such

as the above-mentioned K and Λ.
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