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Overview

• Problem formulation 

• Synchronous distributed solution algorithms

• Asynchronous distributed solution algorithms

• Examples

• Extensions



• A set of agents, each with a local variable and a local optimization problem

• Local problems are coupled 

Optimization Problems on Agent Networks

Agent 1

Agent 2

Agent 3

Agent 1 

 Local variable 𝑥1
 In-neighbors

 Out-neighbors  

Global optimization problem

dependency graph



Special Cases

• Consensus optimization

• Common feasibility problem  

• Hierarchical optimization



Assumptions

Convexity:
𝑓𝑖 are extended-valued, closed, convex, proper (CCP) functions

𝐷𝑖 are nonempty convex sets, with (convex) indicator functions

Existence of solution: global optimization problem has solutions 

Communications: Neighboring agents can exchange information both ways

Agent 1 Agent 2



Relevant Approaches

• Primal approaches
• Subgradient descent plus consensus step (e.g. [Nedic et al’09&10], …)

• Projected subgradient method (e.g. [Figueiredo et al’07], …)

• Proximal subgradient method (e.g. [Nesterov’83&07],[Shi et al’15], …)

• Primal-dual approaches
• Dual decomposition (e.g. [Terelius et al’11] )

• ADMM algorithms (e.g., [Gabay&Mercier’83],[Boyd et al’11],...)

• Operator splitting techniques ([Bauschke&Combettes’16])



Objectives of Our Approach

Find iteration algorithms                         for some operator 𝑇 such that
• Fixed points of 𝑇 are exactly the optimal solutions

• Starting from any      ,  

Desired features:
• Can handle arbitrary dependency graph and state partition 

• Can handle general convex cost function and constraints

• Distributed implementation with minimal inter-agent communications

• Can be adapted for asynchronous implementations



Averaged Operators

An operator                          is nonexpansive if

• May not converge to a fixed point (if exsits). e.g. a rotation

𝑇 is averaged if                                       for a nonexpansive 𝑆 and 

• Convergence to a fixed point (if exists) is guaranteed  

• For any fixed point                          (if exists) and any 𝑥



• Augment agent 𝑖’s variable to                                        where         is a local copy of

• Recast local cost as 

• Impose consensus constraints 

Problem Reformulation

Agent 1

Agent 2

Agent 3

Global optimization problem

Generalized consensus subspace:



Proximal Operators

For an extended-valued, CCP function         , its proximal operator is  

• is nonexpansive, hence                is 1/2 −averaged 

• Fixed points of               are the minimizers of 

• Proximal point algorithm ([Rockafellar’76]):

Many common          are “proximable”

• Proximal operator of                                                          is the product of 

• Proximal operator of         is the projection          onto   



Operator Splitting

Goal: find the minimizers of                        for proximable

Douglas-Rachford Splitting: [Douglas&Rachford’56] 

1. Find a fixed point      of the nonexpansive map

2. Output  

• Step 1 can be accomplished by iterating the 𝛼-averaged operator:

• Roles of                  can be switched 



Douglas-Rachford Algorithm

Goal: find the minimizers of            

Algorithm: initialize                                 

Output:  

Theorem:       converges to an optimal solution      for any            



Example

• D-R algorithm with

•

• is an optimal solution  

Agent 1 Agent 2



Algorithm Complexity

In each round

• Total number of one-way communications:

• Total number of  variables transmitted: 

• Total number of proximal evaluations: 𝑚

Agent 1

Agent 2

Agent 3



Dual Douglas-Rachford Algorithm

Dual Problem: Let                                      be the convex conjugate of    

Algorithm: initialize                                 .    

Output:  

Theorem:                converges to a dual solution      for any       

• Moreau’s decomposition relates                   to



Asynchrony in Agent Networks

• Previous algorithms require multiple synchronized operations in a round

• Full synchronization may be costly or unrealistic
• No central agent coordinating the computation

• Heterogeneous agent computation powers and proximability

• Blackout of agents and communication links



Asynchronous Implementation of Averaged Operators

Iteration                        using an averaged operator

• Block coordinate decomposition:

Random coordinate update

• At each round randomly activate a block 𝑖 with probability 𝑝𝑖 to update

• Under some ergodicity assumption, the iteration converges to a fixed point of 
𝑇 with probability one ([Wei&Ozdaglar’13] [Bianci et al’16])



Asynchronous D-R Algorithm

At each round, activate an agent 𝑖 randomly with probability 𝑝𝑖 and do

Agent 1

Agent 2

Agent 3

Activated agent collects information from 

• Its out-neighbors

• Its in-neighbors and their in-neighbors



Modified Asynchronous D-R Algorithm

Each agent 𝑖 maintains an extra variable     , the consensus value of  

Activate randomly an agent 𝑖 at each round and do

Agent 2

Agent 3
At each round

• Activated agent only communicates with in-neighbors

• Expected number of transmissions: 



Example: Network Localization

• 28 agents with unknown positions and two anchors

• Each edge is a constraint on the relative orientation of two agents

Ground Truth Random Initial Guess



Synchronous Algorithm Asynchronous Algorithm

Example: Network Localization



Extensions

• Local costs                        with proximable
• 3-operator splitting [Davis&Yin’15], Condat-Vu Algorithm [Condat’13] [Vu’13]

• Communication delays (e.g. ARock Algorithm [Peng et al’16])

• One-way communications on dependency graph

• Asynchronous implementation with general activation rules

• Nonconvex problems


