
1

h
c
e
p
T
s
l
w
i
m
i
c
r
a
s
t
t
�
o
n
t
t
s
�

p
f
G
t
m
j
m
t

p
2
2
E
C

J

Downloa
Jeffrey F. Rhoads
School of Mechanical Engineering,

Purdue University,
West Lafayette, IN 47907

e-mail: jfrhoads@purdue.edu

Nicholas J. Miller
e-mail: mille820@msu.edu

Steven W. Shaw
e-mail: shawsw@egr.msu.edu

Brian F. Feeny
e-mail: feeny@egr.msu.edu

Department of Mechanical Engineering,
Michigan State University,

East Lansing, MI 48824

Mechanical Domain Parametric
Amplification
Though utilized for more than 50 years in a variety of power and communication sys-
tems, parametric amplification, the process of amplifying a harmonic signal with a para-
metric pump, has received very little attention in the mechanical engineering community.
In fact, only within the past 15–20 years has the technique been implemented in micro-
mechanical systems as a means of amplifying the output of resonant microtransducers.
While the vast potential of parametric amplification has been demonstrated, to date, in a
number of micro- and nanomechanical systems (as well as a number electrical systems),
few, if any, macroscale mechanical amplifiers have been reported. Given that these am-
plifiers are easily realizable using larger-scale mechanical systems, the present work
seeks to address this void by examining a simple representative example: a cantilevered
beam with longitudinal and transverse base excitations. The work begins with the sys-
tematic formulation of a representative system model, which is used to derive a number of
pertinent metrics. A series of experimental results, which validate the work’s analytical
findings, are subsequently examined, and the work concludes with a brief look at some
plausible applications of parametric amplification in macroscale mechanical systems.
�DOI: 10.1115/1.2980382�
Introduction
Parametric amplification, the process of amplifying an external

armonic signal with a parametric pump, is a well established
oncept in the field of electrical engineering, where it has been
mployed for more than 50 years in applications ranging from
ower and communication systems to Josephson junctions �1,2�.
hough the technique has been widely implemented in electrical
ystems, parametric amplification has received comparatively
ittle attention in mechanical engineering circles. In fact, only
ithin the past 15–20 years has the technique been implemented

n micromechanical systems as a means of amplifying, with mini-
al noise, the output of resonant microtransducers. The classical

nvestigation of mechanical domain parametric amplification,
ompleted by Rugar and Grütter in 1991, considered low-noise
esonant amplification and noise squeezing in a microcantilever
ctuated by both piezoelectric and electrostatic elements �3�. Sub-
equent studies have built upon this seminal work by examining
he feasibility of both degenerate �where the pump is locked at
wice the frequency of the external signal� and nondegenerate
where the pump is locked at a frequency distinct from twice that
f the external signal� manifestations of parametric low-noise sig-
al amplification in a variety of resonant microsystems, including
orsional microresonators �4,5�, electric force microscopes �6�, op-
ically excited micromechanical oscillators �7�, microring gyro-
copes �8�, microelectromechanical system �MEMS� diaphragms
9�, coupled microresonators �10�, and microcantilevers �11–13�.

While the literature detailed above has demonstrated the vast
otential of parametric amplification at the micro- and nanoscales,
ew, if any, macroscale mechanical amplifiers have been reported.
iven that these amplifiers are easily realizable at larger scales,

he present work seeks to address this void by examining a simple
acroscale parametric amplifier. Specifically, the work details a

oint analytical and experimental investigation of mechanical do-
ain parametric amplification in a cantilevered beam with longi-

udinal and transverse base excitations. This paper begins in the
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following section with the development of a consistent lumped-
mass model for the macroscale amplifier that is amenable to
analysis. Following this, analytical results, obtained using the
method of averaging, are detailed. The results acquired during the
course of experimentation are presented in the subsequent section,
and the work concludes with a brief discussion of the potential
macroscale applications of parametric amplification.

2 Modeling
Though parametric amplification can be easily realized in a

large number of macroscale systems, the present work, as noted
above, limits itself to a simple representative example: a base-
excited cantilever, such as that depicted schematically in Fig. 1.
Given that the equation of motion governing the transverse dy-
namics of this system can be recovered using the energy-based
methods previously presented in Refs. �14,15�, only an outline of
the procedure is detailed here.

Assuming that the cantilever beam is uniform and has negli-
gible rotational inertia, the specific Lagrangian associated with the
system can be approximated by

L̄ = 1
2�A��u̇ + u̇p�2 + �v̇ + v̇p�2� − 1

2EI����2 �1�

where u, v, and � are defined as in Fig. 1, �•̇� and �•�� represent
the temporal and spatial derivatives �determined with respect to
time t and arc length variable s�, up and vp specify the imposed
base motion in the longitudinal and transverse directions, and �,
A, E, and I represent the beam’s mass density, cross-sectional
area, modulus of elasticity, and cross-sectional moment of inertia,
respectively. Noting this and further assuming that the neutral axis
of the beam is inextensible result in a governing variational equa-
tion for the system, derived from extended Hamilton’s principle,
given by

�H = ��
t1

t2�
0

l �L̄ +
1

2
��1 − �1 + u��2 − �v��2��dsdt

+�
t1

t2�
0

l

�Qu�u + Qv�v�dsdt = 0 �2�
where l represents the beam’s undeformed length, � denotes the
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agrange multiplier used to maintain the inextensibility con-
traint,

�1 + u��2 + �v��2 = 1 �3�

nd Qu and Qv represent the generalized forces not accounted for

n the specific Lagrangian, L̄, in the u and v directions, respec-
ively. Assuming that damping has an appreciable impact on only
he local transverse motion of the beam, these forces can be ap-
roximated by

Qu = − �Ag, Qv = − cv̇ �4�

here g represents the beam’s acceleration due to gravity and c
epresents a specific viscous damping coefficient. Substituting
ach of these forces, as well as the specific Lagrangian, into Eq.
2�, integrating by parts successively, and introducing the kine-
atic constraint relating the angle � to the planar displacements u

nd v,

tan � =
v�

1 + u�
�5�

esults in a pair of coupled governing equations. The equation of
otion governing transverse dynamics can be recovered from this

et, by first solving the longitudinal equation to obtain the
agrange multiplier and then substituting the obtained function

nto the second equation. Truncating the result such that only lin-
ar terms remain �only linear amplifier operation is deemed perti-
ent and practical here� yields a distributed-parameter system
odel given by

�Av̈ + cv̇ + EIviv − v��Aüp�s − l� − v��Aüp − v��Ag�s − l�

− v��Ag = − �Av̈p �6�
To reduce the number of free parameters in the system detailed

bove, it proves convenient to rescale Eq. �6�. Accordingly, the arc
ength variable and beam displacements are scaled by the beam’s
ndeformed length l and an additional characteristic length v0
e.g., the width or thickness of the beam�, according to

ŝ =
s

�7�

ig. 1 Schematic of a representative mechanical parametric
mplifier: a base-excited cantilevered beam
l

61006-2 / Vol. 130, DECEMBER 2008

ded 15 Oct 2008 to 128.46.184.236. Redistribution subject to ASM
v̂ =
v
v0

, ûp =
up

v0
, v̂p =

vp

v0
�8�

and time is scaled by a characteristic period of the system, accord-
ing to

t̂ =
t

T
�9�

where

T =��Al4

EI
�10�

This renders a final distributed-parameter system model given by

v̈̂ + ĉv̇̂ + v̂iv −
v0

l
ü̂p�ŝ − 1�v̂� −

v0

l
ü̂pv̂� −

�Agl3

EI
�ŝ − 1�v̂� −

�Agl3

EI
v̂�

= − v̈̂p �11�

where

ĉ =
cT

�A
�12�

Note that the derivative operators have been redefined here in
terms of the new time and arc length variables, t̂ and ŝ, respec-
tively.

Though the beam’s behavior could potentially be recovered
from the distributed-parameter model presented in Eq. �11�, a
lumped-mass model proves sufficient for the present analysis. Ac-
cordingly, the dynamic variable v̂ is decomposed into spatial and
temporal components using the cantilever’s first mode shape ��ŝ�,
according to

v̂ = w�t̂���ŝ� �13�

The result is then projected back onto the first mode shape using
an inner product operator yielding a final lumped-mass model
given by

z� + 2��z� + z + ���1�2 cos��	 + 
� + ��2�2 cos�2�	��z

= ��1�2 cos��	 + 
� + ��2�2 cos�2�	� �14�

with nondimensional parameters and operators defined as in Table
1. Note that the imposed harmonic base motions included here are
assumed to result from a unidirectional base excitation x̂p given
by

x̂p = Â cos��t + 
� + B̂ cos�2�t� = Â cos��̂t̂ + 
� + B̂ cos�2�̂t̂�
�15�

and are defined according to

ûp = x̂p sin 
, v̂p = x̂p cos 
 �16�

Excitations of frequency � are used to provide direct excitation to
the system, while excitations of frequency 2� are used for para-
metric pumping. Also note that the phase-dependent nature of this
excitation is requisite in the examination of degenerate parametric
amplification. An examination of nondegenerate amplification,
which is phase independent and does not require the strict 2:1
frequency ratio utilized above, is left for subsequent studies.

3 Analysis
Though the equation of motion detailed in Eq. �14� is linear, its

time-varying stiffness coefficient prevents the derivation of a trac-
table closed-form solution. Accordingly, the method of averaging
is exploited here. To facilitate this approach, a constrained coor-
dinate change is first introduced into Eq. �14�, namely,
z�	� = X�	�cos��	� + Y�	�sin��	�
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z��	� = − X�	�� sin��	� + Y�	�� cos��	� �17�

dditionally, since near-resonant behavior is of particular interest,
detuning parameter � defined by

� =
� − 1

�
�18�

s utilized. Separating the constraint equation, as well as that
hich results from substitution, in terms of X� and Y� and aver-

ging the results over one period of the oscillator’s response
2� /�� result in the system’s averaged equations, which are
iven by

X� = − 1
4���2Y + 4�Y + 4�X − 2�1 sin 
� + O��2�

Y� = − 1
4���2X − 4�X + 4�Y − 2�1 cos 
� + O��2� �19�

sing these averaged equations, the steady-state behavior of the
ystem can be recovered by setting �X� ,Y��= �0,0�. This reveals
hat the system has a steady-state solution given, in terms of am-
litude and phase, by

ā = 2��1
2��2

2 + 16��2 + �2� + 8�2�� cos 2
 − � sin 2
��
��2

2 − 16��2 + �2��2

�20�

�̄ = arctan	 ��2 − 4��sin 
 − 4� cos 


��2 + 4��cos 
 − 4� sin 


 �21�

able 1 Nondimensional parameter definitions. Note the ε
epresents a “small” parameter introduced for analytical pur-
oses and � represents the system’s “physical” base excita-
ion frequency.

z=w

	=�0t̂, �•��=
d�•�

d	

�̂=�T, �=
�̂

�0

�0
2 =�

0

1

��ivdŝ −
�Al3g

EI ��
0

1

����ŝ − 1�dŝ +�
0

1

���dŝ

��=

ĉ

2�0

��1 =
Âv0 sin 


l ��
0

1

����ŝ − 1�dŝ +�
0

1

���dŝ

��2 =

4B̂v0 sin 


l ��
0

1

����ŝ − 1�dŝ +�
0

1

���dŝ

��1 = Â cos 
�

0

1

�dŝ

nd

��2 = 4B̂ cos 
�
0

1

�dŝ
here
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ā = �X̄2 + Ȳ2, �̄ = arctan
Ȳ

X̄
�22�

Utilizing this form of the oscillator’s amplitude, the gain associ-
ated with the amplifier can be defined as

G =
āpump on

āpump off

=
ā

�ā��2=0

�23�

which at �=0 yields

G�� = 0� = 4���2
2 + 16�2 − 8�2� sin 2


��2
2 − 16�2�2 �24�

Using Eqs. �20� and �24�, the pertinent performance metrics of the
mechanical amplifier can be readily identified.

Generally speaking, the resonator described herein can operate
at any point within the �2-� parameter space. However, due to the
presence of parametric excitation in Eq. �14�, the oscillator has a
classical “wedge of instability” �Arnold tongue� structure associ-
ated with it �see Fig. 2� �16,17�. As such, parametric-resonance-
induced oscillations, bounded by only by the system’s mechanical
nonlinearities, are possible for pump amplitudes greater than

�2,crit = 4��2 + �2 �25�

As these motions are incompatible with linear signal amplifica-
tion, the present study limits itself to operation below the

�2
2 − 16��2 + �2� = 0 �26�

threshold, which corresponds to the principal parametric reso-
nance’s wedge of instability. While the present work focuses on
amplification near the system’s principal instability zone �i.e., near
�=0�, it is important to note that amplification can be realized, at
least in theory, by pumping the system near secondary instability
regions as well. Given that these regions are quite difficult to
identify and exploit experimentally, further discussion is omitted
here.

With the limitation on pump amplitude ��2�, detailed above, in
place, the gain associated with the macroscale parametric ampli-
fier can be readily characterized. Figure 3, for example, details the
amplifier’s gain as a function of pump amplitude. As expected, the
gain monotonically increases with increasing pump amplitude,
eventually approaching infinity as �2 approaches �2,crit �as the
system passes into parametric resonance�. This is in direct contrast
to the effect of increasing the amplitude of the amplifier’s input
signal �direct excitation�, which has a negligible effect on the
system’s gain, as detailed in Eq. �24�. Also evident from Fig. 3 is
the potential for relatively high amplifier gains. As these gains
require the ability to operate near, but not above, �2,crit, though,
extremely large gains �i.e., multiple orders of magnitude� may be
quite difficult to realize in the face of noise and system uncer-
tainty.

To further reinforce the amplification seen in Fig. 3, frequency
response curves for the mechanical amplifier operating under
three distinct pump conditions are included in Fig. 4. Once again
the effect of the parametric amplifier is evident, as gains of ap-
proximately 1.25 and 1.45 are realized with pump amplitudes well
below �2,crit.

Though Figs. 3 and 4 detail the effect of the pump’s amplitude
on the amplifier’s performance, as detailed in Eq. �24�, the system
gain also depends on the relative phase 
 incorporated into the
amplifier’s input signal. Figure 5 details the effect of varying this
phase in a representative amplifier. As evident, maximum gains
are realized for a relative phase angle of 
=−45 deg �and every
180 deg interval�, where sin 2
 is minimum. Likewise, minimum
gains are realizable at 
=45 deg �and every 180 deg multiple�,

where sin 2
 is maximum. The latter operating point reveals a
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otential application for parametric amplifiers which has received
ittle attention and is targeted for future study: vibration suppres-
ion.

Before proceeding with an experimental investigation of the
acroscale parametric amplifier, the noise characteristics of the

evice should be briefly noted. Given that the amplifier described
erein is designed to operate in a degenerate phase-sensitive
ode, it, in theory, should be noise free down to a quantum me-

hanical level �3,11,18�. In practice, minimal amounts of noise
an be expected, but these noise contributions should be apprecia-
ly smaller than the 3 dB of noise typically attributed to phase-
nsensitive nondegenerate amplifiers �11�.
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4 Experimental Results

Though the preceding analytical investigation appears to verify
the feasibility of a macroscale parametric amplifier, experimental
results were deemed necessary to validate the analytical results
detailed herein. Accordingly, the experimental setup depicted pic-
torially in Fig. 6 and schematically in Fig. 7 was assembled. The
system’s signal flow is outlined below.

To begin, a signal generator �Wavetek 2 MHz Variable Phase
Synthesizer, model 650� is used to produce the two required input
signals, one at the driving frequency � and another at 2�, with a
fixed relative phase 
. These two signals are added together using

0 0.05 0.1

�

� � �
� � ����
� � ��	

ed for various levels of damping,
parametric amplification requires

rresponding wedge, as parametric
y region.

0.6 0.8 1

ump Amplitude

versus normalized pump ampli-
g at �=0 with �=−� /4. Note that

zed such that the parametric insta-
tally determined… occurs at unity.
sed to designate analytical results
experimental results. Finally, note
ver
ear
co
P

tted
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en
e u
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summing operational amplifier circuit, and the result is given as
command signal to the electromagnetic vibration exciter �MB
ynamics model PM-500�. This exciter, in turn, provides base

xcitation to a cantilevered spring steel beam �190�19
0.5 mm3, f1�11.5 Hz, f2�73.3 Hz�, which is orientated at 


80 deg to induce both direct and parametric excitations. To en-
ure that the shaker output matches that desired by the operator,
he base excitation is measured using a three-axis accelerometer
Analog Devices ADXL105EM-3� attached directly to the exciter
able. Beam deflections are measured using two strain gauges
Measurements Group Inc., Micro Measurements Division, EA-
3-120LZ-120� mounted in a half-bridge configuration. The strain
ignal from these gauges is balanced and low-pass filtered
100 Hz cutoff frequency� by a signal conditioning amplifier
Measurements Group Inc., Instruments Division, Model 2210�.
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For measurement purposes, the command, accelerometer, and
strain signals are each recorded using an Agilent 54624A oscillo-
scope.

With the experimental test-rig depicted in Fig. 7 assembled, the
beam’s damping ratio ����0.0065� was determined using loga-
rithmic decrement methods and the beam’s response was recorded
at discrete operating points over a wide range of forcing param-

eters �i.e., values of 
, Â, B̂, etc.�. Pertinent results recovered
during experimentation are detailed below.

Figure 4, recovered by holding the vibration exciter’s resonant

direct excitation amplitude �Â� fixed and systematically varying

both the excitation frequency ��� and pump amplitude �B̂�, de-
picts the cantilevered beam’s frequency response for three distinct
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ump values. As evident, the system exhibits a linear resonance at
pproximately 11.5 Hz, which varies in normalized amplitude
rom 1 to approximately 1.5 with varying pump amplitude. This is
n close accordance with the predicted system behavior shown in
ig. 4, in terms of both Q and amplitude, and verifies that non-
egligible amplifier gains are experimentally realizable in a mac-
oscale parametric amplifier. This conclusion is further reinforced
y Fig. 8, which shows the system’s resonant response when
umped and unpumped, and by Fig. 3, which depicts the ampli-
er’s gain as a function of normalized pump amplitude. In the

atter figure, as predicted analytically, the amplifier’s gain is

hown to increase with increasing pump amplitude �B̂�. However,
hile theory predicts multiple-order-of-magnitude gains, the ex-
erimentally acquired amplifier gains appear to only reach ap-
roximately 1.6 before the onset of parametric resonance �as veri-

ed by turning off the direct excitation signal, i.e., setting Â=0�.
hough this difference could be due to geometric or inertial non-

inearities, the symmetric nonhysteretic nature of the frequency
esponse near this operating condition seems to indicate the pres-
nce of another limiting factor. Accordingly, the authors are cur-
ently exploring other reasons for this experimental gain limita-
ion, including the effect that the nonresonant direct excitation has
n the system’s behavior near the onset of parametric resonance
nd the effect that noise and uncertainty have on the system’s
nstability threshold.

To validate the phase-dependent nature of the degenerate am-
lifier, system behaviors akin to those illustrated in Fig. 5 were

ig. 6 The experimental setup used to obtain the results in-
luded in Figs. 3–5

ig. 7 Block diagram of the experimental setup used to obtain

he results included in Figs. 3–5

61006-6 / Vol. 130, DECEMBER 2008
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also examined experimentally. As evident, the system exhibits a
phase-dependent amplitude, which varies between approximately
0.6 and 1.6 with varying 
. The maximum and minimum response
amplitudes, as previously predicted, occur near −45 deg and
45 deg, respectively, and the phase relationship is repeated on
180 deg intervals. This is in close accordance with the present
work’s analytical findings.

5 Conclusion
As noted in the Introduction, parametric amplification has been

implemented, to date, in a wide variety of electrical and micro-
and nanomechanical systems. However, to the best of the authors’
knowledge, few, if any, macroscale mechanical amplifiers have
been reported. The present work fills this apparent void by dem-
onstrating that parameter amplification can be easily realized in
even the simplest of macroscale mechanical systems, including a
base-excited cantilever with longitudinal and transverse excita-
tions. Furthermore, the work demonstrates that nontrivial ampli-
fier gains on the order of 1.4–1.6 are relatively easy to realize in
practice and that appreciable gains may be recoverable with fur-
ther study. Accordingly, mechanical amplifiers are believed to be
of practical use in a wide variety of macroscale applications, in-
cluding the amplification of output signals in some acoustic sys-
tems, such as cavity resonators, and vibration test equipment. Ad-
ditionally, in certain applications, parametric amplification, with
careful phase selection, may facilitate vibration suppression and
thus offers a potential alternative to classical vibration absorbers,
which typically require the implementation of additional hard-
ware. Ongoing work is aimed at extending the results described
herein to the aforementioned applications, as well as identifying
the factor�s� limiting the mechanical amplifier’s gain.
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