Characterization of Resonant Mass Sensors Using Inkjet Deposition

Nikhil Bajaj, Jeffrey F. Rhoads, and George T.-C. Chiu*
School of Mechanical Engineering, Ray W. Herrick Laboratories, and Birck Nanotechnology Center
Purdue University
West Lafayette, IN 47907
Contact Email: gchiu@purdue.edu

ABSTRACT

Micro- and millimeter-scale resonant mass sensors have received widespread research attention due to their robust and highly-sensitive performance in a wide range of detection applications. A key performance metric associated with such systems is the sensitivity of the resonant frequency of a given device to changes in mass, which needs to be calibrated for different sensor designs. This calibration is complicated by the fact that the position of any added mass on a sensor can have an effect on the measured sensitivity, and thus a spatial sensitivity mapping is needed. To date, most approaches for experimental sensitivity characterization are based upon the controlled addition of small masses. These approaches include the direct attachment of microbeads via atomic force microscopy or the selective microelectrodeposition of material, both of which are time-consuming and require specialized equipment. This work proposes a method of experimental spatial sensitivity measurement that uses an inkjet system and standard sensor readout methodology to map the spatially-dependent sensitivity of a resonant mass sensor – a significantly easier experimental approach. The methodology is described and demonstrated on a quartz resonator and used to inform practical sensor development.

INTRODUCTION

Microscale devices lend themselves towards sensing applications due to the high sensitivity of their mechanical behavior to changes in system parameters (such as mass, stiffness, or damping), boundary conditions and various external fields. The promise associated with this high sensitivity has motivated the development of resonant sensors suitable for general mass sensing [1–6], as well as chemical and biological sensing [7–18]. As a specific example, prior art exists wherein resonant microscale sensors are used to detect explosive materials [19–22].

One of the most important metrics associated with the performance of a resonant mass sensor is the sensitivity of the resonant frequency of the device to an addition or subtraction of mass, measured in Hz/pg or equivalent units. An added mass may have more or less “effective mass” with respect to its effect on the frequency response of a resonator depending on where it is located relative to the vibrational modes of the device. Accordingly, the mass sensitivity of a resonator is spatially-dependent. This metric can be estimated in many cases via simulation or analysis. However, with complex resonator geometries or material behavior this can become difficult. In addition, even if the spatially-distributed mass sensitivity can be estimated, it is useful to be able to validate such metrics experimentally. Dohn et al. [23,24] have demonstrated this by using an etched tungsten tip to load polystyrene microbeads and magnetic microbeads with diameters of 2 μm and 2.8 μm (and masses of 4.4 pg and 14.9 pg), respectively, on various devices and estimating localized mass sensitivity through experimentation. Likewise, Wagonner et al. [25] considered the use of selectively-placed gold dots on
cantilevers and examined the effect that etching the dots away had on the sensors’ frequency responses. This approach allowed for very small test masses (approximately 400 fg) but required the researchers to fabricate and test many devices. Nieradka et al. [26] approached the problem of validating mass change and position determination using focused ion beam (FIB) milling and deposition. However, this work, like those noted above, focused on beam-like device geometries.

For plate-like devices, tuning forks, or other more complex structures, a second dimension becomes important for deciding optimal placement of functional compounds and masses. Concretely, the desired outcome is to experimentally produce the differential mass sensitivity:

\[S(x_m, y_m) = \frac{\partial f(x_m, y_m)}{\partial m} \]

where \(f \) is a resonant frequency of a device, \(m \) is mass, \(S(x_m, y_m) \) is a function with units of Hz/(unit mass), and \(x_m \) and \(y_m \) are the spatial coordinates of a small added mass. Notably, Hillier and Ward [27] used an electrochemical deposition technique with a scanning stage and microelectrode to position and deposit copper on a quartz crystal microbalance (QCM) device, and used this method to generate a 2-dimensional map of differential sensitivity.

Inkjet printing is a known method for applying functional and polymer materials to microscale devices [28–31]. It is also used in other circumstances to aerosolize compounds [32]. With inkjet printing, drop size control can be made repeatable and reliable, if the correct material and nozzle are chosen [33]. The chief contribution of this work is the development and application of an inkjet deposition-based method suitable for characterizing the spatially-dependent sensitivity of resonant mass sensors. The proposed approach is to estimate \(S(x_m, y_m) \) by using a precision inkjet deposition system constructed for device functionalization. This is advantageous because the system designed for functionalizing a mass or chemical sensor can also be used to calibrate it and map its sensitivity. Precisely controlled drops can be deposited accurately using the inkjet system and allowed to dry so that the solvent in the ink evaporates and an inert material dissolved in the fluid is left as a deposit. The resulting change in resonant frequency can then be evaluated. The experimental techniques employed herein are described in the Methodology section, and the corresponding results are interpreted in the Results and Discussion section. The work concludes with a brief overview and suggestions for research extensions.

METHODOLOGY
Experimental Setup

The custom deposition system comprised of an X-Y motion stage (Anorad-XKY-C-150-150-AAA0 stage controlled by an Anorad-CM-2 controller) and a custom mounted HP (Hewlett-Packard) thermal inkjet picojet system, with printing commands provided through in-house software. An aqueous Canon thermal inkjet printing ink was used as the deposition material. The designed drop weight for aqueous inks for the selected nozzle was 28 ng, with the corresponding solids loading per drop being 6 ng.

Because aqueous inks can have a long drying time, a temperature-controlled hot air tool was used to dry the drop on the sensor. This hot air tool (normally used for hot air soldering rework) was set to 100°C and allowed to run at 50% of its maximum fan speed for 5 to 10 s at a time.

An Edmund Optics EO-1312 Color USB 3.0 Camera mounted with a 2X primary magnification, 65 mm working distance compact telecentric lens was used for imaging the sensor (with a 2.63 μm/pixel resolution) to determine drop placement locations. For the experiment conducted here, the resonant sensor was characterized using a circuit based on two Texas Instruments LMH6609 amplifiers, with one configured as a drive amplifier for the crystal and the other configured as a transimpedance amplifier with a 2 pF capacitor in parallel with a 43 Ωresistor in the feedback path. The circuit was excited and measured using a Zurich Instruments HF2LI lock-in amplifier, which had phase-locked loop (PLL) functionality. A schematic of the entire experimental system can be seen in Figure 1.

![FIGURE 1](Image 322x248 to 405x287)

FIGURE 1. Schematic of the deposition system, including hot air source, sensing system, inkjet system, and X-Y stage positioning system.

Experimental Procedure

The CX3225 resonator is a 16 MHz member of a quartz crystal family produced by Kyocera. While the intended use of the device is as part of a crystal oscillator circuit for clock signal
generation, the device is under investigation for use in mass sensing applications due to its small size and surface mount packaging (3.2 mm by 2.5 mm). Internally, the device is a bulk-acoustic wave crystal operating in the fundamental thickness shear mode, mounted to a ceramic substrate. The experimental procedure consisted of decapping a new CX3225 resonator in order to make it accessible for inkjet printing and mass sensing. A CX3225 sensor in this state is shown in Figure 2. An initial frequency sweep was performed using the HF2LI amplifier. The results of the frequency sweep can be seen in Figure 3. Based on the results of this frequency sweep, the magnitude and phase of the response at resonance were identified, and the phase was used to allow the PLL to adjust the frequency input to the resonator and track resonance. The corresponding modulator settings, output frequency, and phase error were continuously recorded with a sampling rate of 55 Hz. The PLL loop parameters (proportional and integral) were tuned using the Zurich Instruments ziControl PLL advisor software.

![FIGURE 2. A mass sensor (with measurement circuitry) undergoing the characterization procedure.](image)

After the PLL was configured to track the resonant frequency, the experiment continued into the iterative deposition phase. First, the inkjet deposition system was commanded to print an array of 30 drops onto a “sacrificial” substrate, a small piece of absorbent paper. It was then immediately commanded to print a single drop at a location on the resonator. The X-Y stage then moved the resonator directly in the viewing area of the downward-looking camera system and imaged the deposited drop, saving the microscope image for later use. As a pair of examples, Figure 4 shows the first drop deposited in a 51 drop experiment, and Figure 5 shows the camera image taken after the 51st drop was deposited.

![FIGURE 4. A Kyocera CX3225 device with a single drop of black inkjet ink deposited.](image)

After each drop was deposited, the hot air tool was turned on for 5 to 10 s in order to quickly dry the droplet. The resonator was then allowed 3 to 5 min to return to thermal equilibrium before continuing with the next drop and repeating the process while...
FIGURE 5. A Kyocera CX3225 device with a 51 drops of black inkjet ink deposited.

adjusting the printing position of the droplet. The process for a single drop can be seen in the PLL frequency present in Figure 6, and a set of 12 subsequent drops in Figure 7. The added mass due to the drop solids content that did not evaporate during the drying stage is spread out in a “spot”. In this this experiment, the deposited drop forms an approximately 55 to 65 μm diameter spot on the resonator. This spot size could potentially be further reduced by a change in nozzle diameter, printing parameters (such as back-pressure, inkjet drive voltages and pulse shaping), ink formulation changes, or potentially a change to another type of inkjet printing. However, for a device of this size, the spot size was deemed sufficiently small.

One consideration that is based on the design and behavior of the device to be evaluated is that the deposition of previous droplets in a sequence might change the sensitivity of the device to subsequent drops. In order to be sure that this is not the case, it is advisable to estimate the effect of each droplet on the sensitivity of the sensor. The device to be characterized in this work is a Kyocera CX3225 16 MHz bulk-mode resonator that shares some characteristics with QCM devices – therefore the Sauerbrey equation can be used to recover a rough estimate of average sensitivity across the device. For other geometries or types of device some estimate of sensitivity and effective mass should exist in order to ascertain whether previous mass depositions will result in significant deviation in the sensitivity of subsequent ones.

Validation of Proposed Approach for a Bulk Resonator

The Sauerbrey equation can be considered as a starting point for validation of the approach adopted herein [27,34]. This equation stipulates that for a change in mass Δm, the corresponding frequency shift can be written as

$$\Delta f \approx -\frac{2f_0^2\Delta m}{A\sqrt{\rho q\mu q}} = C_f\Delta m$$

(2)
Here, C_f is the average sensitivity across the device, Δf is the resulting frequency shift, f_0 is the resonant crystal frequency in Hz, Δm is the mass change, A is the piezoelectrically active area, ρ_q is the density of quartz (2.648 g/cm3) and μ_q is the shear modulus (2.947 * 1011 dyne/cm2 for AT-cut quartz.) Letting $K = A\sqrt{\rho_q\mu_q}$, the differential mass sensitivity is approximately

$$S_0 = \frac{\Delta f}{\Delta m} = -2\frac{f_0^2}{K} \approx$$ \hspace{1cm} (3)

In order to determine the impact of additional drops on the mass sensitivity, let f_i be the natural frequency after the addition of i drops. Then,

$$f_0 = f_0,$$
$$\Delta f_1 = \frac{\Delta f_0}{\Delta m} = -\frac{2f_0^2}{K},$$
$$f_1 = f_1 + f_0,$$
$$\Delta f_2 = \frac{\Delta f_1}{\Delta m} = -\frac{2f_1^2}{K},$$
$$f_2 = f_2 + f_1,$$

etc...

This calculation was performed for $\Delta m = 6000$ pg, $f_0 = 16$ MHz, $A = 0.01$ cm2, the aforementioned ρ_q and μ_q values, and iterated for 250 drops. The results can be seen in Figure 8. It appears from the plot that the trend is linear, but it is not (as the equations suggest). However, it is close to linear in the region and parameter space plotted. Nonlinear behavior of the model becomes more evident if drop mass is significantly increased, but such changes also push outside the applicability of the Sauerbrey model. Another limitation to note is that the Sauerbrey model is only valid for masses covering the entire electrode surface, so this iterated model can be considered to be a spatially-averaged model. A third limitation of the Sauerbrey model derivation is that a key assumption is that the material added has a similar stiffness and composition to the resonator material itself, which is not the case when depositing inkjet ink, so the results should only be taken as an approximation. Despite the noted limitations, the results indicate that over 100 inkjet drops, the resulting change in the differential sensitivity measurement would be $\leq 0.5\%$, which is relatively small compared to our resolution in frequency measurement and small compared to normal variations in inkjet drop volume (up to 5%) and will not make a significant difference for the sensitivity estimation accuracy.

RESULTS AND DISCUSSION

To compute the drop-to-drop frequency shift, 10 seconds of PLL output frequency data at the beginning and end of each drop response (as in Figure 6) were used. The frequency over the 10 seconds was averaged, and the drop frequency shift was computed as $\Delta f_i = f_i - f_{i-1}$. In order to correlate the ith drop with its position, the drops were identified by a MATLAB script that allowed the user to sequentially specify drop locations on the final image (with the full number of spots). The individual sequential images, taken as previously mentioned after each deposition step, allowed the user to determine the order of droplet deposition, which need not be in a strict pattern.

The individual deposition frequency shifts are plotted in a 3-dimensional scatterbar plot aligned with the drop placement image in order to visualize the relative spatial sensitivity of the device, in Figure 9. As can be seen, the sensitivity is highest in the center of the device’s upper electrode, as the drops, which should be of close to uniform mass, produce the highest shift in resonant frequency there.

The absolute sensitivity can be estimated if the drop mass is known. In this case, the average drop mass is 6.1 ng. This drop mass was estimated by deposition of 1,250,000 drops of ink into a clean glass scintillation vial, the mass of which was measured before deposition and after allowing the solvents in the ink to evaporate, computing the differential mass, and dividing by the
number of drops to compute the average drop mass. Therefore
the maximum sensitivity of the device can be estimated to be 534
Hz/6100 pg = 0.0875 Hz/pg, but notably this sensitivity rapidly
gets significantly worse (close to 0 Hz/pg around the outside of
the electrode of the device. The Sauerbrey equation estimated
170 pg/Hz or 0.00588 Hz/pg sensitivity over the entire device,
using Equation 3 and the parameters discussed earlier. Thus, it
may, in certain sensing applications, be useful to only functional-
ize the highest sensitivity portions of the device, though whether
or not this improves performance will depend on other factors,
such as the means by which the sensor is being exposed to the
compound or masses to be detected.

![FIGURE 9](image.png)

FIGURE 9. Results of a 51-drop experiment compiled into a scatter-
bar plot showing the relative frequency shift due to drops in locations
across the device.

CONCLUSIONS

An inkjet method for mapping relative mass sensitivity
across a resonant structure was successfully developed and ap-
plicated to a quartz bulk-mode resonator. This method can be used to
validate numerical and analytical models employed in design,
and also to decide the most promising areas for deposition of functional compounds used in sensing, as long as the drops can
be generated in an appropriate size for the application. Future
improvements to the process could include refined ink formula-
tion and optimization for the task of keeping spot size small but
improve drying times (this could potentially remove the hot air
tool from the process). In addition, drop-to-drop variations in
mass could cause some error, and characterization of this could
be helpful in better bounding the experimental error. Finally, the
methodology could be aided by additional automation of the drying
system, inkjet system, and back-pressure control to make the
characterization a turn-key process.

REFERENCES

