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I. Basics 

   A. Creating VBA Subroutines (In Excel 2007) 

 

1.  If the Developer tab is not available, do the following to display it:  

      i) Click the Microsoft Office Button , and then click Excel Options.  

      ii) In the Popular category, under Top options for working with Excel, select the Show 

Developer tab in the Ribbon check box, and then click OK. 

 

2.  To set the security level temporarily to enable all macros, do the following:  

   i) On the Developer tab, in the Code group, click 

Macro Security. 

 ii) Under Macro Settings, click Enable all macros (not 

recommended, potentially dangerous code can 

run), and then click OK.   (To help prevent potentially 

dangerous code from running, it is recommend that you return to any one of the 

settings that disable all macros after you finish working with macros.) 

 

3. On the Developer tab, in the Code group, click Macros.  

4. Type in a name for the Macro and click Create. 

5.  A Modules will be created that has a first line: Sub Name(), and a last line: End Sub.  

6.  Between these lines, type VBA code. 

6.  To run the macro from the module window, press Run, Run 

Sub/UserForm 

7.  When you run a Macro and get an error, you will need to press 

Run, Reset. 

8.  Notice that the Start Bar will have tabs for Excel and for the 

Macro, so that you can toggle between them. 

9. To run a Macro from a worksheet, add a button to the 

worksheet.  On the Developer tab, in the Controls group, click 

on Insert, and then on the button .  Immediately click on the 

worksheet where you want to place the control button.  A 

window will open for you to assign a Macro to the button.  Each time the button is 

clicked, the Macro will run. 

10. When you save and exit the spreadsheet, the associated Macros are saved. 

11.  The next time you open the spreadsheet, you can immediately run the macro from the 

button, or edit the macro by clicking on the Visual Basic icon of the Code group on the 

Developer Tab. 
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B. Common Code  (note: From this point on, the windows shown here are from an older 

version of Excel, however the code will be the same in Excel 2007)  

The program ‘Introduction to VBA.exl’ in the Appendix lists many common VBA 

language conventions, including: (i) how to dimension variables and arrays, (ii) how to 

write For .  .  . Next loops, (iii) how to read from and write to the spreadsheet, and 

(iv) how to format common mathematical expressions, like logarithms and exponents. 

The example code 

on the right reads 

cell B4 multiples its 

value time 10, and 

writes this product 

to cell  C4.   To run 

this subroutine, 

click ‘Run’, move 

the curser to 

“Sub/UserForm’ 

and click.  To run 

the program directly from the spreadsheet, add a control button as described above.   

 

C. Creating Functions  

All Excel built-in functions are accessed by clicking the  icon, or by directly 

typing them in the cells.  In addition to these functions packaged with Excel, user-

defined functions are created by the same procedure as VBA subroutines.  To create 

a function, simple replace 

the word ‘Sub’ in the first 

line with Function.  As with 

built-in Excel function, all 

variables must be included 

in the argument list on the 

first line. Here are 4 

simple functions that (i) 

calculate the volume of a 

cylinder, (ii & iii) return 

the negative and positive 

roots to the quadratic 

equation, and (iv) return 

the sine of an angle whose 

units are degrees.  
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To create more than one function or subroutine within the same module, simple type 

the first and last lines of the new function or subroutine under the previous one, and 

add the code lines between these.  Excel will add horizontal lines between any 

subroutines or functions making it easier to find the beginning and ending lines of 

code when editing.  These functions can be used on the spreadsheet like any built-in 

Excel function.  For example, with the last function enabled, typing  ‘= sine(45)’ in a 

cell will return the sine of 45o in this cell (= 0.707).  Because Excel built-in 

trigonometric functions operate on angles in units of radians, typing ‘= sin(0.25·π)’ in 

another cell returns the same value (recall 360o = 2·π radians.  Arguments may be 

numbers or cell references.   
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II. Sample Programs 

 

 A. Solving Equilibrium chemistry problems with  

  Newton-Raphson Iterations (Reading, Writing with a VBA Macro) 

 

The recipe for this problem is taken from “Principles and Applications of Aquatic 

Chemistry” by François M. M. Morel and Janet G. Hering (Wiley and Sons, NY, 1993).  

The problem and tableau solution are found on pp. 60-63 of the text.  Here, the general 

solution is developed allowing for (i) easy re-adjustment of initial component 

concentrations, (ii) exact solution without the need of assumptions, and (iii) activity 

coefficient correction, even in the absence of swamping electrolyte.   

 

The Recipe: 

 Add to pure water:  [CaCO3]T  =  10-3 M  [CO2]T  =  1.1 x 10-3 M 

       [HA]T  =  4.0 x 10-4 M [NaCl]T  =  10-2 M 

       

 Morel and Hering assume:  

 (i)  [NaCl]T has no effect accept for ionic strength correction.  

 (ii) The amount of HA added has no effect on pH (our solution will be valid for  

  any value of [HA]T   

 

Mass Action Equations:  

(assume activity coefficients are equal for same valence ions, calculate with Davies’ eq) 
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Mass Balance Equations:  

 

On Charge:   ]A[]CO[2]HCO[]OH[]Ca[2]H[ 2
33

2 −−−−++ +⋅++=⋅+     (5) 

 

On Carbonates: ]CO[]HCO[]HCO[]CaCO[]CO[C 2
33

*
3added,T3added,T2CO,T 3

−− ++=+=−  (6) 

 

On Acid: ]A[]HA[]HA[C added,TA,T
−+==−  (7) 

 

On Calcium: ]Ca[]CaCO[C 2
added,T3Ca,T 2

+==+       (an identity) (8) 
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Mass balances on Ca2+, Na+, and Cl- are identities & need not be considered further. 

It is always convenient to select as components, species that contain no other 

component(s).  HA, for example, contains both H+ and A-.  Following this suggestion, 
−2

3CO , H+, and A- are selected.  Substituting the mass action equations (eqs 1-4) into the 

remaining mass balance equations (5-7), leaving only constants and the three component 

species as variables, reduces the problem to a list of 3 equations with 3 unknown, where 

the 3 unknowns are the ‘component species’ that we have selected: 
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Find the roots with the Newton-Raphson method (general algorithm for 4 x 4): 
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where the subscripts i and i+1 specify where current and next iteration guess values are 

applied or calculated, respectively.  In this example, x1 = H+, x2 = −2
3CO , and x3  = A-. 

 

This Spreadsheet that performs these calculations is posted at: 

 

And is named: “Case 3 p60 in Morel & Hering.xls”. 

 

There are 2 ‘sheets’ to this spreadsheet.  On the first sheet, aptly named ‘Analytical 

Derivatives’, the partial derivatives of the Jacobian are solved analytically.  The second 

sheet, appropriately named ‘Numerical Derivatives’, solves these partial derivatives 

numerically by calculating the slopes (∂fk /∂xj) over an infinitesimal change in each xj 

value (∂xj = xj + xj·10
-8) and the calculated difference between each function over this 

range (∂fk(xj) =  fk(xj) + fk(xj + xj·10
-8)) while holding the 2 other x values constant.   
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The spreadsheet has 4 macros that are each separately linked to control buttons.  One 

button writes the new guesses to the cells where the old guesses reside (i.e., iterates), 

a 2nd button performs the same task on the value of the ionic strength, and the 3rd 

button resets the initial guesses.  To show some diversity in programming style, 

separate macros are written for updating the ionic strength to each worksheet.  The 

other macros are written to be nonspecific to any one worksheet, and hence, operate 

only on the active worksheet.    
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B. pKa Diagrams – Buffer Design (arithmetic, and Linking VBA-Calculations to Figures) 

 

Graphical solutions to acid-base equilibrium problems are ubiquitous in water chemistry 

textbooks.  In Excel, these diagrams are easy to create.  Another easy problem is 

calculating of amount of acid and its conjugate base to add to an aqueous solution to 

buffer the pH to a given value.  Such calculations are performed routinely in chemical 

kinetic studies or in equilibrium experiments where ionic strength adjustments are 

necessary, and where the addition of strong acid or strong base for pH adjustment is 

precluded due to their direct affect on ionic strength.  The simplest buffer design 

equation is the well-known Henderson-Hasselbalch equation: 
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where it is assumed that the acid or acid-salt (HAn) and conjugate base (An – 1) do not 

accept from or donate to solution or to each other any protons upon their mutual 

addition to water.  From this relationship, the ratio of base to acid added to solution to 

create a solution at the designated pH value is easily calculated. The pKa, is the ionic 

strength corrected value.  If all activity coefficient corrections are considered, the pH 

in eq 1 is the concentration-based value, from which the activity (pH probe value) can be 

(back) calculated.  It is easy to show that this equation is valid under most conditions by 

developing the general solution to the problem, independent of valency of the acid and 

its conjugant base, assuming that the acid and base salts contain only monovalent 

cations (i.e., Na+, K+, or Li+).  Here the solution is developed assuming Na+ is the cation: 

 

 Define:   The acid as NaxHA where x = 0, 1, or 2 (i.e., H3PO4, NaH2PO4, Na2HPO4) 

   The base as Na(x+1)A 

    Species: Na+, HA-x, A-(x+1) 
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If extra salt (i.e., NaCl) is added to adjust the ionic strength, [Na+]NaCl =  [Cl-]NaCl; 

hence, these additional ions can be ignored in the charge balance. With this in mind, 

the charge balance can be constructed accounting only for the Na+ ions that result 

from dissolution of the buffer acid and base salts: 

 

]A[)1x(]HA[x]OH[]H[]Na[ )1x()1x( +−+−−++ ⋅++⋅+=+   (9) 

 

or:  ]A[Cx]OH[]H[]Na[ )1x(
T

+−−++ +⋅+=+    (10) 

 

And the Mass Balance on sodium (due to buffer species) can be constructed: 

 

added)1x(Tadded)1x(addedx ]ANa[Cx]ANa[)1x(]HANa[x]Na[ ++
+ +⋅=⋅++⋅=  (11) 

  

 

Combining the last 2 equations and simplifying, results in: 

 

]A[]H[]OH[]ANa[ )1x(
added)1x(

+−+−
+ +−=     (12) 

 

Equation 12 confirms that except at extreme pH values, the acid or acid-salt (HAn) 

and conjugate base (An – 1) do not accept or donate any protons to solution or to each 

other upon their mutual addition to solution.  (i.e. ]A[]ANa[ )1x(
added)1x(

+−
+ = ). 

 

Combining eqs 7 & 12: 
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⋅
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From this equation, the amount of base to be added is calculated, and the amount of 

acid to be added is calculated by difference: 

 

added)1x(Taddedx ]ANa[C]HANa[ +−=       (14) 

 

The program ‘pKa. xls’ performs these calculations, making appropriate ionic strength 

corrections, and plots the pC-pH diagram for the buffer concentration and pKa 

specified by the user.  Note that the subroutine writes the calculated speciation to 

the second worksheet, and the ‘chart’ on the first worksheet graphs these values. 

The graph is undated any time the input parameters are changed and the program is 

rerun.  
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C. Chemical and Reactor Kinetics (Euler’s Method) 

 

Because VBA subroutines provide an easy way to perform iterations and to link program 

output to graphs, they are ideal for encoding simple numerical schemes with almost 

immediate display of graphical output.  Additionally, is very easy (i) to display 

experimental data on the same figure that contains ‘model’ results, (ii) to evaluate 

squared residuals between model and data values, and (iii) to either minimize these 

residuals by ‘eye’ or with a simple grid-search method (such as the method of 

bisection).  As an example, the problem of tetrachloroethylene transport in Lake 

Greifensee, Switzerland, from “Environmental Organic Chemistry” by René P. 

Schwarzenbach, Philip M. Gschwend & Dieter M. Imboden (Wiley and Sons, NY, 1993) is 

solved.  The problem is presented on pp. 551-574 with figures of model simulations 

presented on p. 573, Figure 15.8.  In the text, calculates are performed over the entire 

yearly cycle, however, herein the calculations are presented only for the first 90 days 

after the lake becomes stratified.   Equations 15-30a and 15-30b on p. 569 are a pair of 

simultaneous ‘first order linear inhomogeneous differential equations’ (FOLIDE) that 

describe the mass balances of the chemical in a stratified lake and are reproduced 

here:   
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⋅−⋅+=       (2) 

 

The text presents the matrix (eigen value) analytical solution to this problem in Table 

15.5.  The Excel spreadsheet entitled ‘Stratified Lake.xls’ presents the Euler’s method 

numerical solution, to this problem assuming the model parameters presented below.  

These parameters similar, but not necessarily identical to those used to create Figure 

15.8a in the text, as 

slight variation occurs 

between in the 

predictions presented 

in the text with those 

calculated with the 

spreadsheet.  Here, ∆t 

= 1 d is sufficiently 

small, however smaller 

time steps can be 

invoked by adding 

some ‘write’ counters.  

Model Parameters  

Kw,E ( 1 / day) = 0.0068  Epilimnetic flushing rate 

Kg,E (1 / day) = 0.0267  Epilimnetic gas exchange rate 

Kex,E (1 / day) = 0.0075  Exchange across thermocline (epi) 

Kex,H (1 / day) = 0.00375  Exchange across thermocline (hyp) 

KH (unitless) = 0.727  Henry’s Constant for PCE 

IE (mol / day) = 0.0  Total daily input of PCE to epilimnion 

IH (mol / day) = 0.9  Total daily input of PCE to hypolimnion 

Mass (mol) = 83  Total initial mass of PCE in lake upon stratification 

Ca (mole / m
3) = 0.00000001  PCE concentration in the gas phase above the lake 

     

VE (m
3) = 50000000  Volume of the epilimnion 

VH (m
3) = 100000000  Volume of the hypolimnion 
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D. 1-D Diffusion (Central Difference Formula) 

 

The 1-D diffusion equation is:   
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          (1) 

 

where C is chemical concentration, t is time, x is distance, and Dm is the molecular 

diffusion coefficient. Equation 1 has several analytical solutions depending on all initial 

and boundary conditions.  For the case of an impulse input at x = 0 into a semi-infinite 

media (C = 0 at x = ∞ at all times), where Ct=0 = 0 at all other values of x, eq 1 has the 

following solution: 

 

tE4

x

m

2

e
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⋅
⋅⋅π
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where M is the mass of chemical added at x = 0, with units of mass per cross-sectional 

area (e.g., mg / cm2).  Obviously, diffusion occurs in both directions, with the 

concentration profile extending further out as time is increased.  To graphically display 

the concentration profile over a finite distance, and to avoid expressing distance as a 

negative value, the entire distance-scale may be offset.  Defining L as the length of the 

media, xnew as the new distance locations from xnew = 0 to L, and x = (xnew – L/2).  The 

initial impulse occurs (at x = 0) at the midpoint of the finite-length media at xnew = L/2. 

 

Equation 1 can be solved also quite easily with numerical methods.  The concentrations 

of the chemical at xnew = 0 and L are assumed to equal zero at all time steps.  This 

assumption can be evaluated by examining the calculated concentration profile or by 

comparing the area under the curve to the initial mass. Applying the central difference 

formula to estimate the second derivation, the following formula is applicable at all 

internal nodes, n. 

 

)r21(C)CC(rC j
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j
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j
1n

1j
n ⋅−⋅++⋅= −+

+       (3) 

 

where j and j + 1 are the current and next time steps, respectively, and r is defined by: 

 

2
m

)x(

tD
r

∆
∆⋅

=           (4) 

    

where t∆ is the time step, and x∆ is the distance between nodes.  The Excel 

spreadsheet ‘1D Diffusion.xls’ has these analytical and numerical solutions, with a VBA 

macro calculating the numerical solution.    



Chad Jafvert, Purdue University    page 12 

E. Integrating the Area under a Concentration Profile (Simpson’s Rule) 

 

The previous example creates a nice set of data whose integral should equal the initial 

mass.  Mass conservation can be assessed by comparing the concentration profile to the 

analytical solution, or by numerically integrating the area under the concentration 

profile.  The spreadsheet ‘1D Diffusion.xls’ contains a second macro that invokes 

Simpson’s Rule to perform this calculation.  
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where the subscripts refer to the node number, that in this case equal 1 to 101. 

This macro can be modified easily to integrate the area under any set of data, or by 

replacing the cell references in the summation equations, to integrate the area under 

any function, employing a very small step-size for accuracy.  A control button is located 

on the spreadsheet to automate the calculation.  
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Appendices 
Program 1: Introduction of VBA    Spreadsheet: 

 

Source Code:  
Sub intro() 

'  Author: C. T. Jafvert, Purdue University 

'  Introduction to Visual Basic for Applications (VBA) 

commands 
'  At any time during program construction, you may test your 

code*** 

'  An apostropy or REM in the 1st space signifies 'comment' 

'  Blank lines are OK; The Help, index is very useful 

 

'  To declare xx and yy as Double Precision Variables: 

   Dim K1, K2, Xave, Yave, X1, Y1 As Double 

'  To declare an integer 

   Dim I As Integer 

'  To declare double precision Arrays or Matrices: 
   Dim X(1 To 20), Y(1 To 20), matri(1 To 10, 1 To 10) As 

Double 

    

'  To declare a string of miscelaneous characters: 

   Dim title1 As String * 10 

 

'  One way to initialize coefficients or data: 

   Conc1 = 2#         'note: The # means real (2.0 = 2#) 

 

'  Another way is to read it from the spreadsheet: 
    ' This line reads the value in cell D6 (row 7, column 4) 

    ' and defines as K1: 

   K1 = Cells(7, 4)    'or formally: A1 = Cells(7, 4).Value 

'  This line reads the value in cell D8 and defines as K2: 

   K2 = Worksheets("sheet1").Range("D8").Value 

 

'  To read in an array of data from the spreadsheet, 

'  read the data within a For-Next loop 

   For I = 1 To 5 

     X(I) = Cells(10 + I, 4).Value   'first value is cells(11,4) 

   Next I 
'  This loop is like a DO loop in FORTRAN and can be Nested 

 

'  Calculations can be performed on this data set. 

'  Lets take the natural log of all of these numbers: 

   n = 5 

   For I = 1 To n Step 1  'loops can have step sizes different 

that 1 

     Y(I) = Log(X(I))     'log is natural log 

   Next I 

    
'  Lets find the average of both arrays 

   X1 = 0: Y1 = 0    'a : separates two lines of code in the same 

                     'physical line 

   For I = 1 To n 

     X1 = X1 + X(I):  Y1 = Y1 + Y(I) 

  Next I 

   Xave = X1 / n:  Yave = Y1 / n 

 

 

 

 

'  Other common mathematical functions:(see help for other 

functions) 

   x10 = X1 * Y1 / X1 

   Y10 = Log(Y1) / 2.302585092994   'base 10 log 

   x11 = 10 ^ (X1)                  '10 to the power 

   x12 = Exp(X1)                    'e to the power 

'  note: VBA does not know the value of Pi: 

   Pie = Application.Pi()           'so import it from Spreadsheet. 
   x4a = Abs(x4)                    'to take the absolute value: 

   x4a = Int(x4a)                   'to make a real number an 

integer: 

    

'  Let's print to the spreadsheet: 

'  Print the value of Xave to cell I7 (I is the 9th letter): 

   Cells(7, 9).Formula = Xave 

'  This prints Yave to cells I8; You can print to different 

sheets. 

   Worksheets("sheet1").Range("I8").Value = Yave 
 

'  Print the array Y(I) to cells I11 to I15 

   For I = 1 To n 

     Cells(10 + I, 9).Formula = Y(I) 

   Next I 

 

'  To loop back to a specific line, number the line: 

   X1 = 1 

   'And let's change the Font to Bold, Italics 

   Worksheets("sheet1").Range("F15").Font.Italic = True 

10 X1 = 1 + X1 
   Worksheets("sheet1").Range("F15") = X1 

   If X1 < 1000.5 Then GoTo 10 

 

End Sub

2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18

B C D E F G H I J

x1= 5 Xave = 4.506

x2= 4 ln Xave = 1.295526

1.34 0.29267
x = 2 ln(x) = 0.693147

4.56 1.517323
6.78 1.913977
7.85 1001 2.060514

Chad Jafvert, Purdue University

Print to the Spreadsheet

Introduction to VBA commands

Read from the Spreadsheet

Values in Blue are Read from the Spreadsheet; values in Gray are written to the spreadsheet

A 
Little 

An Array

Single Values

An Array

Single Values

✪
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Program 2: Solving Equilibrium chemistry problems with Newton-Raphson Iterations 

(Reading, Writing with a VBA Macro) 

 

Source Code: 
 

Sub loop1() 

Rem This subroutine reads values in I30:I32 

'   and writes them to B12:B14. 

'   This values are the initial guesses. 
For I = 1 To 100               'try I = 1 to 100 

x1 = Cells(30, 9).Value 

x2 = Cells(31, 9).Value 

x3 = Cells(32, 9).Value 

Cells(12, 2).Formula = x1 

Cells(13, 2).Formula = x2 

Cells(14, 2).Formula = x3 

Next I 

End Sub 

 

Sub loop2() 
Rem  Reads the ionic strength from L28 and writes to F5 

u = Cells(28, 12).Value 

Cells(5, 6).Formula = u 

End Sub 

 

Sub Init() 

Rem Resets the initial guesses to 1.0e-5, only 

'   on the 'Analytical Derivatives' worksheet. 

Worksheets("Analytical Derivatives").Range("B12:B14").Value = 0.00001 

Worksheets("Analytical Derivatives").Range("F5").Value = 0# 
End Sub 

 

Sub Init2() 

Rem Resets the initial guesses to 1.0e-5, only 

'   on the 'Numerical Derivatives' worksheet. 

Worksheets("Numerical Derivatives").Range("B12:B14").Value = 0.00001 

Worksheets("Numerical Derivatives").Range("F5").Value = 0# 

End Sub 
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2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A B C D E F G H I J K L
ANS:

at µ µ µ µ = γγγγ1111 = 0.8963

1.20E-02 γγγγ1111 = 0.6453

(CaCO3)T = 1.00E-03 Kw = 1.00E-14 1.24E-14

(CO2)T = 1.10E-03 Ka = 5.01E-05 6.24E-05

(HA)T = 4.00E-04 Ka,1 = 5.01E-07 6.24E-07 Ca2+ = 1.00E-03

(NaCl)T = 1.00E-02 Ka,2 = 5.01187E-11 7.77E-11 Na+ = 1.00E-02

Cl- = 1.00E-02

x1 (H
+) = 1.947E-07 f1 = 0.000E+00

x2 (CO3
2-) = 6.384E-07 f2 = 0.000E+00 [H+] = 1.95E-07

x3 (A
-) = 3.988E-04 f3 = 0.000E+00 [CO3

2-] = 6.384E-07

[A-] = 3.988E-04

df1/dx1= 8.218E+03

df1/dx2= 2.508E+03 [OH-] = 6.39E-08

df1/dx3 = 1.000E+00 8.218E+03 2.508E+03 1.000E+00 [H2CO3] = 4.99E-04

df2/dx1 = 1.335E+04 1.335E+04 3.289E+03 0.000E+00 [HCO3
-] = 1.600E-03

df2/dx2 = 3.289E+03 6.391E+00 0.000E+00 1.003E+00 [HA] = 1.244E-06

df2/dx3 = 0.000E+00

df3/dx1 = 6.391E+00

df3/dx2 = 0.000E+00 (CO3
2-)T = 2.100E-03

df3/dx3 = 1.003E+00 (HA)T = 4.000E-04

Function Product New
Vector Vector Guesses µ = 1.20E-02

A-1
f(x1,x2,x3) A-1f xnew p{H+} = 6.71

-5.083E-04 3.876E-04 5.067E-04 0.000E+00 0.000E+00 1.947E-07

2.063E-03 -1.269E-03 -2.056E-03 0.000E+00 0.000E+00 6.384E-07

3.238E-03 -2.469E-03 9.937E-01 0.000E+00 0.000E+00 3.988E-04

Calculated 

The Inverted Matrix (Jacobian)

Initial Guesses (M) Functions

Constants at µµµµ = 0

The Partial Derivatives:

In Matrix Notation:

A

Other

Mass Bal. (Check)

Case 3, pp 60-63, Morel and Hering
Chad Jafvert, Purdue University

Initial Values (Recipe) (M)

w/ Analytical Derivatives

Other Species (M)

Identities (M)

Species Concentrations

Components (M)

Initially, assign a constant value to the ionic strength 

(e.g.,  0.001 M); perform the iterations until 

convergence is achieved; then use the calculated 

value for ionic strength by simply setting tll equal to 

cell I37 (i.e., move µ); and iterate again until 
convergence is achieved.


