
Chad Jafvert, Purdue University page 1

VBA Macros for Solving Problems in Water Chemistry

Chad Jafvert

Purdue University

This handout and Sample Programs are available at:

http://bridge.ecn.purdue.edu/~jafvert/

Outline

 I. Basics

 A. Creating VBA Subroutines in Excel 2007

 B. Common Code

 C. Creating Functions

 II. Sample Programs

 A. Solving Equilibrium chemistry problems with

 Newton-Raphson Iterations (Reading, Writing)

 B. pKa Diagrams – Buffer Design (arithmetic, and

 Linking VBA-Calculations to Figures)

 C. Chemical and Reactor Kinetics (Euler’s Method)

 D. 1-D Diffusion (Central Difference Formula)

 E. Integrating the Area under a Concentration

 Profile (Simpson’s Rule)

References:

1. The Excel toolbar ‘help’ button

2. A bunch of sophomores and juniors at Purdue

3. The usual suspects on my bookshelf (water chemistry texts)

Chad Jafvert, Purdue University page 2

I. Basics

 A. Creating VBA Subroutines (In Excel 2007)

1. If the Developer tab is not available, do the following to display it:

 i) Click the Microsoft Office Button , and then click Excel Options.

 ii) In the Popular category, under Top options for working with Excel, select the Show

Developer tab in the Ribbon check box, and then click OK.

2. To set the security level temporarily to enable all macros, do the following:

 i) On the Developer tab, in the Code group, click

Macro Security.

 ii) Under Macro Settings, click Enable all macros (not

recommended, potentially dangerous code can

run), and then click OK. (To help prevent potentially

dangerous code from running, it is recommend that you return to any one of the

settings that disable all macros after you finish working with macros.)

3. On the Developer tab, in the Code group, click Macros.

4. Type in a name for the Macro and click Create.

5. A Modules will be created that has a first line: Sub Name(), and a last line: End Sub.

6. Between these lines, type VBA code.

6. To run the macro from the module window, press Run, Run

Sub/UserForm

7. When you run a Macro and get an error, you will need to press

Run, Reset.

8. Notice that the Start Bar will have tabs for Excel and for the

Macro, so that you can toggle between them.

9. To run a Macro from a worksheet, add a button to the

worksheet. On the Developer tab, in the Controls group, click

on Insert, and then on the button . Immediately click on the

worksheet where you want to place the control button. A

window will open for you to assign a Macro to the button. Each time the button is

clicked, the Macro will run.

10. When you save and exit the spreadsheet, the associated Macros are saved.

11. The next time you open the spreadsheet, you can immediately run the macro from the

button, or edit the macro by clicking on the Visual Basic icon of the Code group on the

Developer Tab.

Chad Jafvert, Purdue University page 3

B. Common Code (note: From this point on, the windows shown here are from an older

version of Excel, however the code will be the same in Excel 2007)

The program ‘Introduction to VBA.exl’ in the Appendix lists many common VBA

language conventions, including: (i) how to dimension variables and arrays, (ii) how to

write For . . . Next loops, (iii) how to read from and write to the spreadsheet, and

(iv) how to format common mathematical expressions, like logarithms and exponents.

The example code

on the right reads

cell B4 multiples its

value time 10, and

writes this product

to cell C4. To run

this subroutine,

click ‘Run’, move

the curser to

“Sub/UserForm’

and click. To run

the program directly from the spreadsheet, add a control button as described above.

C. Creating Functions

All Excel built-in functions are accessed by clicking the icon, or by directly

typing them in the cells. In addition to these functions packaged with Excel, user-

defined functions are created by the same procedure as VBA subroutines. To create

a function, simple replace

the word ‘Sub’ in the first

line with Function. As with

built-in Excel function, all

variables must be included

in the argument list on the

first line. Here are 4

simple functions that (i)

calculate the volume of a

cylinder, (ii & iii) return

the negative and positive

roots to the quadratic

equation, and (iv) return

the sine of an angle whose

units are degrees.

Chad Jafvert, Purdue University page 4

To create more than one function or subroutine within the same module, simple type

the first and last lines of the new function or subroutine under the previous one, and

add the code lines between these. Excel will add horizontal lines between any

subroutines or functions making it easier to find the beginning and ending lines of

code when editing. These functions can be used on the spreadsheet like any built-in

Excel function. For example, with the last function enabled, typing ‘= sine(45)’ in a

cell will return the sine of 45o in this cell (= 0.707). Because Excel built-in

trigonometric functions operate on angles in units of radians, typing ‘= sin(0.25·π)’ in

another cell returns the same value (recall 360o = 2·π radians. Arguments may be

numbers or cell references.

Chad Jafvert, Purdue University page 5

II. Sample Programs

 A. Solving Equilibrium chemistry problems with

 Newton-Raphson Iterations (Reading, Writing with a VBA Macro)

The recipe for this problem is taken from “Principles and Applications of Aquatic

Chemistry” by François M. M. Morel and Janet G. Hering (Wiley and Sons, NY, 1993).

The problem and tableau solution are found on pp. 60-63 of the text. Here, the general

solution is developed allowing for (i) easy re-adjustment of initial component

concentrations, (ii) exact solution without the need of assumptions, and (iii) activity

coefficient correction, even in the absence of swamping electrolyte.

The Recipe:

 Add to pure water: [CaCO3]T = 10-3 M [CO2]T = 1.1 x 10-3 M

 [HA]T = 4.0 x 10-4 M [NaCl]T = 10-2 M

 Morel and Hering assume:

 (i) [NaCl]T has no effect accept for ionic strength correction.

 (ii) The amount of HA added has no effect on pH (our solution will be valid for

 any value of [HA]T

Mass Action Equations:

(assume activity coefficients are equal for same valence ions, calculate with Davies’ eq)

14

11

w'
w 10]OH[]H[

K
K −−+ =⋅=

γ⋅γ
= 3.4

11

a'
a 10

]HA[

]A[]H[K
K −

−+

=⋅=
γ⋅γ

= (1 & 2)

3.6
*
32

3

11

1,a'
1,a 10

]COH[

]HCO[]H[K
K −

−+

=
⋅

=
γ⋅γ

= 3.10

3

2
3

2

2,a'
2,a 10

]HCO[

]CO[]H[K
K −

−

−+

=
⋅

=
γ

= (3 & 4)

Mass Balance Equations:

On Charge:]A[]CO[2]HCO[]OH[]Ca[2]H[2
33

2 −−−−++ +⋅++=⋅+ (5)

On Carbonates:]CO[]HCO[]HCO[]CaCO[]CO[C 2
33

*
3added,T3added,T2CO,T 3

−− ++=+=− (6)

On Acid:]A[]HA[]HA[C added,TA,T
−+==− (7)

On Calcium:]Ca[]CaCO[C 2
added,T3Ca,T 2

+==+ (an identity) (8)

Chad Jafvert, Purdue University page 6

Mass balances on Ca2+, Na+, and Cl- are identities & need not be considered further.

It is always convenient to select as components, species that contain no other

component(s). HA, for example, contains both H+ and A-. Following this suggestion,
−2

3CO , H+, and A- are selected. Substituting the mass action equations (eqs 1-4) into the

remaining mass balance equations (5-7), leaving only constants and the three component

species as variables, reduces the problem to a list of 3 equations with 3 unknown, where

the 3 unknowns are the ‘component species’ that we have selected:

 +⋅−−+⋅++== +−−
−+

+
−−+

2Ca,T

2
3'

2,a

2
3

'
w2

31 C2]H[]A[]CO[2
K

]CO][H[

]H[

K
0)A,CO,H(f

−−++
⋅

== −
−+−+

−−+
2
3CO,T

2
3'

2,a

2
3

'
2,a

'
1,a

2
3

2
2
32 C]CO[

K

]CO][H[

KK

]CO[]H[
0)A,CO,H(f

−−+== −
−+

−−+
A,T'

a

2
33 C]A[

K

]A][H[
0)A,CO,H(f

Find the roots with the Newton-Raphson method (general algorithm for 4 x 4):

i3

2

1

1

i3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

i3

2

1

1i3

2

1

f

f

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

x

x

x

x

x























⋅



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

−























=























−

+

where the subscripts i and i+1 specify where current and next iteration guess values are

applied or calculated, respectively. In this example, x1 = H+, x2 = −2
3CO , and x3 = A-.

This Spreadsheet that performs these calculations is posted at:

And is named: “Case 3 p60 in Morel & Hering.xls”.

There are 2 ‘sheets’ to this spreadsheet. On the first sheet, aptly named ‘Analytical

Derivatives’, the partial derivatives of the Jacobian are solved analytically. The second

sheet, appropriately named ‘Numerical Derivatives’, solves these partial derivatives

numerically by calculating the slopes (∂fk /∂xj) over an infinitesimal change in each xj

value (∂xj = xj + xj·10
-8) and the calculated difference between each function over this

range (∂fk(xj) = fk(xj) + fk(xj + xj·10
-8)) while holding the 2 other x values constant.

Chad Jafvert, Purdue University page 7

The spreadsheet has 4 macros that are each separately linked to control buttons. One

button writes the new guesses to the cells where the old guesses reside (i.e., iterates),

a 2nd button performs the same task on the value of the ionic strength, and the 3rd

button resets the initial guesses. To show some diversity in programming style,

separate macros are written for updating the ionic strength to each worksheet. The

other macros are written to be nonspecific to any one worksheet, and hence, operate

only on the active worksheet.

Chad Jafvert, Purdue University page 8

B. pKa Diagrams – Buffer Design (arithmetic, and Linking VBA-Calculations to Figures)

Graphical solutions to acid-base equilibrium problems are ubiquitous in water chemistry

textbooks. In Excel, these diagrams are easy to create. Another easy problem is

calculating of amount of acid and its conjugate base to add to an aqueous solution to

buffer the pH to a given value. Such calculations are performed routinely in chemical

kinetic studies or in equilibrium experiments where ionic strength adjustments are

necessary, and where the addition of strong acid or strong base for pH adjustment is

precluded due to their direct affect on ionic strength. The simplest buffer design

equation is the well-known Henderson-Hasselbalch equation:

 









+=

−

n

1n

a
HA

A
logpKpH (1)

where it is assumed that the acid or acid-salt (HAn) and conjugate base (An – 1) do not

accept from or donate to solution or to each other any protons upon their mutual

addition to water. From this relationship, the ratio of base to acid added to solution to

create a solution at the designated pH value is easily calculated. The pKa, is the ionic

strength corrected value. If all activity coefficient corrections are considered, the pH

in eq 1 is the concentration-based value, from which the activity (pH probe value) can be

(back) calculated. It is easy to show that this equation is valid under most conditions by

developing the general solution to the problem, independent of valency of the acid and

its conjugant base, assuming that the acid and base salts contain only monovalent

cations (i.e., Na+, K+, or Li+). Here the solution is developed assuming Na+ is the cation:

 Define: The acid as NaxHA where x = 0, 1, or 2 (i.e., H3PO4, NaH2PO4, Na2HPO4)

 The base as Na(x+1)A

 Species: Na+, HA-x, A-(x+1)

 Equations:]A[]HA[C)1x(x
T

+−+=
x

x

)1x(
)1x(

H
a

]HA[

]A[]H[
K

γ⋅

γ⋅⋅γ⋅
= +

+−+
+

 (2 & 3)

 Where: xHA)x(γ=γ and:)1x(A)1x(+−γ=γ + (4 & 5)

Let:
]HA[

]A[]H[
KK

x

)1x(

)1x(H

x
a

'
a

+−+

+

⋅
=

γ⋅γ
γ

⋅=
+

 (6)

Combining:
]H[K

CK
]A[

'
a

T
'
a)1x(

+
+−

+
⋅

= and:
]H[K

CH
]HA[

'
a

Tx

+

+
−

+
⋅

= (7 & 8)

Chad Jafvert, Purdue University page 9

If extra salt (i.e., NaCl) is added to adjust the ionic strength, [Na+]NaCl = [Cl-]NaCl;

hence, these additional ions can be ignored in the charge balance. With this in mind,

the charge balance can be constructed accounting only for the Na+ ions that result

from dissolution of the buffer acid and base salts:

]A[)1x(]HA[x]OH[]H[]Na[)1x()1x(+−+−−++ ⋅++⋅+=+ (9)

or:]A[Cx]OH[]H[]Na[)1x(
T

+−−++ +⋅+=+ (10)

And the Mass Balance on sodium (due to buffer species) can be constructed:

added)1x(Tadded)1x(addedx]ANa[Cx]ANa[)1x(]HANa[x]Na[++
+ +⋅=⋅++⋅= (11)

Combining the last 2 equations and simplifying, results in:

]A[]H[]OH[]ANa[)1x(
added)1x(

+−+−
+ +−= (12)

Equation 12 confirms that except at extreme pH values, the acid or acid-salt (HAn)

and conjugate base (An – 1) do not accept or donate any protons to solution or to each

other upon their mutual addition to solution. (i.e.]A[]ANa[)1x(
added)1x(

+−
+ =).

Combining eqs 7 & 12:

]H[K

CK
]H[]OH[]ANa[

'
a

T
'
a

added)1x(+
+−

+ +
⋅

+−= (13)

From this equation, the amount of base to be added is calculated, and the amount of

acid to be added is calculated by difference:

added)1x(Taddedx]ANa[C]HANa[+−= (14)

The program ‘pKa. xls’ performs these calculations, making appropriate ionic strength

corrections, and plots the pC-pH diagram for the buffer concentration and pKa

specified by the user. Note that the subroutine writes the calculated speciation to

the second worksheet, and the ‘chart’ on the first worksheet graphs these values.

The graph is undated any time the input parameters are changed and the program is

rerun.

Chad Jafvert, Purdue University page 10

C. Chemical and Reactor Kinetics (Euler’s Method)

Because VBA subroutines provide an easy way to perform iterations and to link program

output to graphs, they are ideal for encoding simple numerical schemes with almost

immediate display of graphical output. Additionally, is very easy (i) to display

experimental data on the same figure that contains ‘model’ results, (ii) to evaluate

squared residuals between model and data values, and (iii) to either minimize these

residuals by ‘eye’ or with a simple grid-search method (such as the method of

bisection). As an example, the problem of tetrachloroethylene transport in Lake

Greifensee, Switzerland, from “Environmental Organic Chemistry” by René P.

Schwarzenbach, Philip M. Gschwend & Dieter M. Imboden (Wiley and Sons, NY, 1993) is

solved. The problem is presented on pp. 551-574 with figures of model simulations

presented on p. 573, Figure 15.8. In the text, calculates are performed over the entire

yearly cycle, however, herein the calculations are presented only for the first 90 days

after the lake becomes stratified. Equations 15-30a and 15-30b on p. 569 are a pair of

simultaneous ‘first order linear inhomogeneous differential equations’ (FOLIDE) that

describe the mass balances of the chemical in a stratified lake and are reproduced

here:

HE,exEE,exE,gE,w'
H

a

E,g
E

EE CkC)kkk(
K

C
k

V

I

dt

dC
' ⋅+⋅++−⋅+= (1)

HH,exEH,ex
H

EE CkCk
V

I

dt

dC
⋅−⋅+= (2)

The text presents the matrix (eigen value) analytical solution to this problem in Table

15.5. The Excel spreadsheet entitled ‘Stratified Lake.xls’ presents the Euler’s method

numerical solution, to this problem assuming the model parameters presented below.

These parameters similar, but not necessarily identical to those used to create Figure

15.8a in the text, as

slight variation occurs

between in the

predictions presented

in the text with those

calculated with the

spreadsheet. Here, ∆t

= 1 d is sufficiently

small, however smaller

time steps can be

invoked by adding

some ‘write’ counters.

Model Parameters

Kw,E (1 / day) = 0.0068 Epilimnetic flushing rate

Kg,E (1 / day) = 0.0267 Epilimnetic gas exchange rate

Kex,E (1 / day) = 0.0075 Exchange across thermocline (epi)

Kex,H (1 / day) = 0.00375 Exchange across thermocline (hyp)

KH (unitless) = 0.727 Henry’s Constant for PCE

IE (mol / day) = 0.0 Total daily input of PCE to epilimnion

IH (mol / day) = 0.9 Total daily input of PCE to hypolimnion

Mass (mol) = 83 Total initial mass of PCE in lake upon stratification

Ca (mole / m
3) = 0.00000001 PCE concentration in the gas phase above the lake

VE (m
3) = 50000000 Volume of the epilimnion

VH (m
3) = 100000000 Volume of the hypolimnion

Chad Jafvert, Purdue University page 11

D. 1-D Diffusion (Central Difference Formula)

The 1-D diffusion equation is:

2

2

m
x

C
D

t

C

∂
∂⋅=

∂
∂

 (1)

where C is chemical concentration, t is time, x is distance, and Dm is the molecular

diffusion coefficient. Equation 1 has several analytical solutions depending on all initial

and boundary conditions. For the case of an impulse input at x = 0 into a semi-infinite

media (C = 0 at x = ∞ at all times), where Ct=0 = 0 at all other values of x, eq 1 has the

following solution:

tE4

x

m

2

e
tD2

M
C ⋅⋅

−

⋅
⋅⋅π

= (2)

where M is the mass of chemical added at x = 0, with units of mass per cross-sectional

area (e.g., mg / cm2). Obviously, diffusion occurs in both directions, with the

concentration profile extending further out as time is increased. To graphically display

the concentration profile over a finite distance, and to avoid expressing distance as a

negative value, the entire distance-scale may be offset. Defining L as the length of the

media, xnew as the new distance locations from xnew = 0 to L, and x = (xnew – L/2). The

initial impulse occurs (at x = 0) at the midpoint of the finite-length media at xnew = L/2.

Equation 1 can be solved also quite easily with numerical methods. The concentrations

of the chemical at xnew = 0 and L are assumed to equal zero at all time steps. This

assumption can be evaluated by examining the calculated concentration profile or by

comparing the area under the curve to the initial mass. Applying the central difference

formula to estimate the second derivation, the following formula is applicable at all

internal nodes, n.

)r21(C)CC(rC j
n

j
1n

j
1n

1j
n ⋅−⋅++⋅= −+

+ (3)

where j and j + 1 are the current and next time steps, respectively, and r is defined by:

2
m

)x(

tD
r

∆
∆⋅

= (4)

where t∆ is the time step, and x∆ is the distance between nodes. The Excel

spreadsheet ‘1D Diffusion.xls’ has these analytical and numerical solutions, with a VBA

macro calculating the numerical solution.

Chad Jafvert, Purdue University page 12

E. Integrating the Area under a Concentration Profile (Simpson’s Rule)

The previous example creates a nice set of data whose integral should equal the initial

mass. Mass conservation can be assessed by comparing the concentration profile to the

analytical solution, or by numerically integrating the area under the concentration

profile. The spreadsheet ‘1D Diffusion.xls’ contains a second macro that invokes

Simpson’s Rule to perform this calculation.

















+⋅+⋅+⋅∆= ∑∑
−

=
=

−

=
=

n

2n

2Step
3i

i

1n

2Step
2i

i1 CC2C4C
3

x
areaunitperMass

where the subscripts refer to the node number, that in this case equal 1 to 101.

This macro can be modified easily to integrate the area under any set of data, or by

replacing the cell references in the summation equations, to integrate the area under

any function, employing a very small step-size for accuracy. A control button is located

on the spreadsheet to automate the calculation.

Chad Jafvert, Purdue University page 13

Appendices
Program 1: Introduction of VBA Spreadsheet:

Source Code:
Sub intro()

' Author: C. T. Jafvert, Purdue University

' Introduction to Visual Basic for Applications (VBA)

commands
' At any time during program construction, you may test your

code***

' An apostropy or REM in the 1st space signifies 'comment'

' Blank lines are OK; The Help, index is very useful

' To declare xx and yy as Double Precision Variables:

 Dim K1, K2, Xave, Yave, X1, Y1 As Double

' To declare an integer

 Dim I As Integer

' To declare double precision Arrays or Matrices:
 Dim X(1 To 20), Y(1 To 20), matri(1 To 10, 1 To 10) As

Double

' To declare a string of miscelaneous characters:

 Dim title1 As String * 10

' One way to initialize coefficients or data:

 Conc1 = 2# 'note: The # means real (2.0 = 2#)

' Another way is to read it from the spreadsheet:
 ' This line reads the value in cell D6 (row 7, column 4)

 ' and defines as K1:

 K1 = Cells(7, 4) 'or formally: A1 = Cells(7, 4).Value

' This line reads the value in cell D8 and defines as K2:

 K2 = Worksheets("sheet1").Range("D8").Value

' To read in an array of data from the spreadsheet,

' read the data within a For-Next loop

 For I = 1 To 5

 X(I) = Cells(10 + I, 4).Value 'first value is cells(11,4)

 Next I
' This loop is like a DO loop in FORTRAN and can be Nested

' Calculations can be performed on this data set.

' Lets take the natural log of all of these numbers:

 n = 5

 For I = 1 To n Step 1 'loops can have step sizes different

that 1

 Y(I) = Log(X(I)) 'log is natural log

 Next I

' Lets find the average of both arrays

 X1 = 0: Y1 = 0 'a : separates two lines of code in the same

 'physical line

 For I = 1 To n

 X1 = X1 + X(I): Y1 = Y1 + Y(I)

 Next I

 Xave = X1 / n: Yave = Y1 / n

' Other common mathematical functions:(see help for other

functions)

 x10 = X1 * Y1 / X1

 Y10 = Log(Y1) / 2.302585092994 'base 10 log

 x11 = 10 ^ (X1) '10 to the power

 x12 = Exp(X1) 'e to the power

' note: VBA does not know the value of Pi:

 Pie = Application.Pi() 'so import it from Spreadsheet.
 x4a = Abs(x4) 'to take the absolute value:

 x4a = Int(x4a) 'to make a real number an

integer:

' Let's print to the spreadsheet:

' Print the value of Xave to cell I7 (I is the 9th letter):

 Cells(7, 9).Formula = Xave

' This prints Yave to cells I8; You can print to different

sheets.

 Worksheets("sheet1").Range("I8").Value = Yave

' Print the array Y(I) to cells I11 to I15

 For I = 1 To n

 Cells(10 + I, 9).Formula = Y(I)

 Next I

' To loop back to a specific line, number the line:

 X1 = 1

 'And let's change the Font to Bold, Italics

 Worksheets("sheet1").Range("F15").Font.Italic = True

10 X1 = 1 + X1
 Worksheets("sheet1").Range("F15") = X1

 If X1 < 1000.5 Then GoTo 10

End Sub

2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18

B C D E F G H I J

x1= 5 Xave = 4.506

x2= 4 ln Xave = 1.295526

1.34 0.29267
x = 2 ln(x) = 0.693147

4.56 1.517323
6.78 1.913977
7.85 1001 2.060514

Chad Jafvert, Purdue University

Print to the Spreadsheet

Introduction to VBA commands

Read from the Spreadsheet

Values in Blue are Read from the Spreadsheet; values in Gray are written to the spreadsheet

A
Little

An Array

Single Values

An Array

Single Values

✪

Chad Jafvert, Purdue University page 14

Program 2: Solving Equilibrium chemistry problems with Newton-Raphson Iterations

(Reading, Writing with a VBA Macro)

Source Code:

Sub loop1()

Rem This subroutine reads values in I30:I32

' and writes them to B12:B14.

' This values are the initial guesses.
For I = 1 To 100 'try I = 1 to 100

x1 = Cells(30, 9).Value

x2 = Cells(31, 9).Value

x3 = Cells(32, 9).Value

Cells(12, 2).Formula = x1

Cells(13, 2).Formula = x2

Cells(14, 2).Formula = x3

Next I

End Sub

Sub loop2()
Rem Reads the ionic strength from L28 and writes to F5

u = Cells(28, 12).Value

Cells(5, 6).Formula = u

End Sub

Sub Init()

Rem Resets the initial guesses to 1.0e-5, only

' on the 'Analytical Derivatives' worksheet.

Worksheets("Analytical Derivatives").Range("B12:B14").Value = 0.00001

Worksheets("Analytical Derivatives").Range("F5").Value = 0#
End Sub

Sub Init2()

Rem Resets the initial guesses to 1.0e-5, only

' on the 'Numerical Derivatives' worksheet.

Worksheets("Numerical Derivatives").Range("B12:B14").Value = 0.00001

Worksheets("Numerical Derivatives").Range("F5").Value = 0#

End Sub

Chad Jafvert, Purdue University page 15

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A B C D E F G H I J K L
ANS:

at µ µ µ µ = γγγγ1111 = 0.8963

1.20E-02 γγγγ1111 = 0.6453

(CaCO3)T = 1.00E-03 Kw = 1.00E-14 1.24E-14

(CO2)T = 1.10E-03 Ka = 5.01E-05 6.24E-05

(HA)T = 4.00E-04 Ka,1 = 5.01E-07 6.24E-07 Ca2+ = 1.00E-03

(NaCl)T = 1.00E-02 Ka,2 = 5.01187E-11 7.77E-11 Na+ = 1.00E-02

Cl- = 1.00E-02

x1 (H
+) = 1.947E-07 f1 = 0.000E+00

x2 (CO3
2-) = 6.384E-07 f2 = 0.000E+00 [H+] = 1.95E-07

x3 (A
-) = 3.988E-04 f3 = 0.000E+00 [CO3

2-] = 6.384E-07

[A-] = 3.988E-04

df1/dx1= 8.218E+03

df1/dx2= 2.508E+03 [OH-] = 6.39E-08

df1/dx3 = 1.000E+00 8.218E+03 2.508E+03 1.000E+00 [H2CO3] = 4.99E-04

df2/dx1 = 1.335E+04 1.335E+04 3.289E+03 0.000E+00 [HCO3
-] = 1.600E-03

df2/dx2 = 3.289E+03 6.391E+00 0.000E+00 1.003E+00 [HA] = 1.244E-06

df2/dx3 = 0.000E+00

df3/dx1 = 6.391E+00

df3/dx2 = 0.000E+00 (CO3
2-)T = 2.100E-03

df3/dx3 = 1.003E+00 (HA)T = 4.000E-04

Function Product New
Vector Vector Guesses µ = 1.20E-02

A-1
f(x1,x2,x3) A-1f xnew p{H+} = 6.71

-5.083E-04 3.876E-04 5.067E-04 0.000E+00 0.000E+00 1.947E-07

2.063E-03 -1.269E-03 -2.056E-03 0.000E+00 0.000E+00 6.384E-07

3.238E-03 -2.469E-03 9.937E-01 0.000E+00 0.000E+00 3.988E-04

Calculated

The Inverted Matrix (Jacobian)

Initial Guesses (M) Functions

Constants at µµµµ = 0

The Partial Derivatives:

In Matrix Notation:

A

Other

Mass Bal. (Check)

Case 3, pp 60-63, Morel and Hering
Chad Jafvert, Purdue University

Initial Values (Recipe) (M)

w/ Analytical Derivatives

Other Species (M)

Identities (M)

Species Concentrations

Components (M)

Initially, assign a constant value to the ionic strength

(e.g., 0.001 M); perform the iterations until

convergence is achieved; then use the calculated

value for ionic strength by simply setting tll equal to

cell I37 (i.e., move µ); and iterate again until
convergence is achieved.

