Because carbon-based nanomaterials, known collectively as fullerenes, have some very unique properties, these materials may find wide application in important industrial and commercial sectors, including energy production. Yet, any unintended adverse impacts on human health and the environment by these materials remains a critical question. To understand if they will affect the environment, it is important to know if they will degrade in the environment. Professor Chad Jafvert and graduate student Wen-Che Hou at Purdue University were the first to show that Buckminsterfullerene, or C\textsubscript{60}, photochemically decays in the aqueous environment when present as nano-precipitates known as “clusters”. Some of their work is documented in the recent paper referenced below.

In sunlight and under lamps that emit light only within the solar spectrum, the brownish color of the cluster solutions fade to become nearly colorless, the size of the C\textsubscript{60} clusters decrease significantly, and molecular C\textsubscript{60} is gradually lost over a period of weeks. The figure shows one of the C\textsubscript{60}-cluster solutions under sunlight, next to a control bottle that contains no C\textsubscript{60}. Hou and Jafvert have shown that the photochemical reaction does not occur in the absence of molecular oxygen (O\textsubscript{2}), and the reaction produces water soluble materials. While it is strongly suspected that these materials include hydroxylated-C\textsubscript{60}; ongoing work will better characterize these products.


\textbf{Supporting/Contributing Agency:} U.S. EPA STAR Program, under grant award RD 83334001.