Final Project Report:

Ozone Water Disinfection

Design Team:

Kelsey Hunter¹, Dianne Kaminsky¹, Clinton Pflum¹, Fernando Segovia² ¹Second Semester Senior Design Student ²GEP Student

¹Division of Environmental & Ecological Engineering, Purdue University

04/26/2013

Faculty Advisers: John Howarter Materials Engineering, and Environmental & Ecological Engineering email: howarter@purdue.edu

Graduate Assistants: Dan Su Yingcan Zhao Chad T. Jafvert Civil Engineering, and Environmental & Ecological Engineering email: jafvert@ecn.purdue.edu

Executive Summary

The presence of parasites and microbiological organisms in water treated by slow sand filtration indicates that further treatment is necessary prior to human consumption. Chlorination is the most commonly used method of water disinfection, but chlorine is not always effective at inactivating *Giardia lamblia* (EPA, 1999), which is particularly prevalent in South America. Chlorination is therefore not a viable single method of disinfection for the community partner (i.e. on the mountain slopes of Barbosa, Colombia). On the other hand, ozone has been shown to be effective at inactivating *Giardia* (EPA, 1999). Ozone is typically expensive and energy intensive to produce and thus it has been predominantly used in municipal waste water treatment facilities. Furthermore, point-of-use (POU) ozone generators are not common, and therefore commercial systems are too expensive and not viable options. However because of the effectiveness of ozone disinfection against *Giardia*, an alternative to commercial ozone POU generators was pursued. The Ozone Disinfection Team was created to research and design a cost effective, batch ozone disinfection system to be used as secondary treatment in series with slow sand filtration.

Previously established slow sand filtration (SSF) systems are effective at removing dissolved organic matter (DOM) and total suspended solids (TSS) from drinking water. Sand particles provide filtration and a medium for growth of the Schmutzdecke (i.e. biological) layer. Efforts by previous Global Design Teams (GDTs) at Purdue have successfully shown SSFs, operated in batch mode, as a successful method for removing DOM and TSS. The successes achieved by those projects have gone a long way toward increasing water quality for rural communities in Barbosa, Colombia (i.e. our community partner). However, while SSF is an effective way to remove DOM and TSS, disinfection is required for the inactivation of any residual microorganisms and parasites. In Colombia, one of the most problematic parasites is Giardia lamblia. It is estimated that in developing countries, much like Colombia, nearly 33% of the people have suffered from Giardiasis (a diarrheal disease caused by Giardia lamblia) (Center for Disease Control and Prevention, 2012). The reason that chlorination generally is ineffective for Giardia is due to the parasite's sturdy outer shell (Center for Disease Control and Prevention, 2011). As a result, teams are working on projects aimed at implementing alternative methods for disinfection: UV and Ozone. This report specifically addresses the development of methods for ozone production at the point-of-use home or school scale. Ozone is well known to be a very powerful oxidant and is already used in many disinfection settings in developed countries. The goal of this project was to design and construct a point-of-use ozone generator for use by our community partners in South America.

In order to meet expectations, the following series of goals and criteria were established:

- a. The reactor should be constructed of common, low technology and low cost items that will generate a sufficient supply of ozone for point-of-use application.
- b. An effective method for measuring the concentration of ozone in aqueous solution should be developed.
- c. Through research and experimentation, the aqueous phase concentration and contact time of ozone that is required to effectively inactivate *Giardia lamblia* should be determined.

List of Terms and Acronyms

Cryptosporidium – Genus of protozoa with similar characteristics to G. lamblia

DI – Deionized (water); all ions (Na⁺, Ca²⁺, Cl⁻, SO₄²⁻, etc.) removed

Disinfection – Removal of harmful micro-organisms from drinking water, either via filtration or chemical addition.

 $\mathbf{DOM} - \mathbf{Dissolved}$ organic matter

Giardia lamblia – Protozoan parasite found in contaminated water.

Giardiasis – Infection of *G. lamblia* in the small intestine. Can cause severe diarrhea and dehydration.

GFP – Ground fault protection

gpm – Gallons per minute

Half-Life – The time required for a quantity to be reduced to $\frac{1}{2}$ its original amount.

Inactivation – Destruction of a micro-organism's ability to infect other cells.

Indigo trisulfonate – Chemical indicator dye used to react with ozone in order to monitor O3 aqueous phase concentration.

MF – Membrane Filtration

NEMA – National Electrical Manufacturers Association

NOM – Natural organic matter

OM – Organic Matter

Oxidant – Oxidizing agent. Can be used to break down organic matter.

POU – Point-of-use

pp(m/b) - parts per (million/billion)

- **Residual** Chemical disinfectant remaining in solution with the drinking water throughout the distribution network. Intended to prevent microbial contaminants form forming between initial disinfection and human consumption.
- Schmutzedecke Naturally occurring biological layer at surface of SSF. Consumes much of the OM from filtering water.

SOC – Synthetic organic compounds

Sodium dihydrogen phosphate – Chemical used in Indigo Reagent I.

 $\boldsymbol{SSF}-\boldsymbol{Slow}$ sand filtration

TNTC – too numerous to count

Transformer – A static electrical device which transfers energy by inductive coupling between its winding circuits.

TSS – Total suspended solids

UV – Ultraviolet radiation. Wavelength approximately 10-400 nm.

I. Introduction

Project Background

To address some of the drinking water quality issues of our partner community in Colombia, previous Global Engineering Program design teams have constructed several slow sand filters in rural elementary schools in the Barbosa area. These filters are comprised of two 5 gallon pails stacked upon one another, each containing layered sand and gravel filtration media. Slow sand filtration (SSF) systems are effective at removing dissolved organic matter (DOM) and total suspended solids (TSS) from surface waters. Suspended particles are removed by attachment to the sand grains as the water flows through the sand (i.e., filtration). The sand particles also provide a large surface area to which the desired microorganisms can attach. These microorganisms mineralize the filtered particles and the dissolved organic matter. As a result, both the turbidity of the water (caused by suspended particles), and the color or tint of the water (caused by DOM), are removed. After several weeks of operation, a schmutzdecke (*i.e.* biological slime layer) begins to form on the top surface of the sand. This layer of microorganisms further increases TSS and DOM removal rates.

Although the SSF system is highly effective, disinfection of the effluent water is still needed due to the possible presence of human pathogens. Chlorination is the most commonly used method of water disinfection, but is generally ineffective at inactivating *Giardia lamblia* (EPA, 1999), a common intestinal infecting protozoa found in South America. Chlorination alone is therefore not a viable disinfection method for our community partner.

On the other hand, ozone has been shown to be effective at inactivating *Giardia* (EPA, 1999). Ozone can be expensive and energy intensive to produce, and thus has been predominantly used in municipal wastewater treatment facilities. Furthermore, point-of-use (POU) ozone generators are not common, and therefore commercial systems are expensive and not viable options. Due to its effectiveness against *Giardia*, an alternative to commercial POU generators was pursued. The Ozone Disinfection Team was created to research and design a cost effective, batch ozone disinfection system to be used to disinfect the effluent water from the slow sand filters.

Generation of Ozone

There are three common methods used to produce ozone: corona discharge, UV radiation, and cold plasma. All of these methods can be achieved for POU generation (i.e. as opposed to industrial scale generation.) In all of these methods molecular oxygen molecules are energetically excited to the point where separation of the oxygen atoms is induced followed immediately by recombination with molecular oxygen (O_2) forming O_3 (Singer et al., 1982),

$$0_2 + \text{energy} \to 2 \ 0 \cdot \tag{1}$$

$$0 \cdot + 0_2 \to 0_3 \tag{2}$$

Corona Discharge. In corona discharge, ozone is generated by causing a voltage drop between two conductors separated by an insulator and passing ambient air through the system. Without an insulator, the current will arc and generate heat (i.e., lightning arcs through air). As will be described latter, the prototype generator designed in this study uses a transformer (AKA voltage multiplier) to create a large enough voltage drop (3,600 V) that O_2 molecules split by oscillating charge between electrodes (i.e. from one conductor to another). The effect created by the oscillating charges is called the corona (USA Patent 4892713; Jung et al., 2008).

UV Radiation. This method uses the same mechanism that occurs in the stratosphere of the earth where shorter wavelength UV radiation from the sun (< 300 nm) exists. Artificially generating ozone is less effective because it requires gas (ambient air, or oxygen) exposed to UV radiation in batch. Appropriate flow rates thus need to be experimentally established to account for UV bulb output decay.

Cold Plasma. This method nearly mimics corona discharge except that the voltage drop is created across a dielectric insulating barrier (as opposed to a neutral insulator). The ozone yield by cold plasma is larger than that of corona discharge because ambient air is exposed to more energy due to the exposure to the plasma region (ionized gas) created by the dielectric barrier separating the electrodes (Bes et al., 1985).

In the United States, the first ozonation plant for the disinfection of municipal effluent water was built in 1975 (Paraskeva and Graham, 2002). Although ozone can be used as a sustainable disinfectant, it seems unlikely that it will replace chlorine because of the expense of industrial ozone generators and the lack of a disinfectant residual in the drinking water, due to the short half-half of ozone. This report explores the feasibility of using ozone as a primary disinfectant for point of use applications because the water disinfected in batch mode can either be immediately consumed or further disinfected with a chlorine residual.

Ozone and its Effect on *Giardia lamblia*

Ozone is used for disinfection and oxidation in water treatment (EPA, 1999). It is one of the most powerful oxidants utilized in treating water. Ozone decomposition forms hydroxyl radicals, which reacts with natural organic matter (NOM), bromide, and bicarbonate. In addition it reacts with organic constituents and pathogens. When applied to drinking water treatment, ozone is used to disinfect, remove inorganic pollutants, and oxidize organic micropollutant and macropollutant materials (EPA, 1999).

The inactivation of bacteria by ozone is attributed to oxidation reactions known to effect glycoproteins or glycolipids in bacterial membranes or through reactions with certain amino acids (EPA, 1999). In viruses, ozone attacks the protein capsid, liberates the nucleic acid and inactivates the DNA. With *Giardia muris*, ozone is thought to affect the cysts wall making it more permeable, damaging the plasma membranes, which eventually affects the nucleus, ribosomes, and other cell components.

One of the main concerns with disinfection treatment involves the inactivation of protozoa, specifically *Giardia lamblia* pictured in Figure 1. *Giardia lamblia* has created some of the

largest problems for disinfection in Colombia. In developing countries, it is estimated that 33% of people have contracted Giardiasis, a diarrheal disease caused by *Giardia* (Center for Disease Control and Prevention, 2012). *Giardia lamblia* has sensitivity to ozone that is similar to the popular forms of Mycobacteria (EPA, 1999). In terms of disinfection, ozone is more effective than chlorine, chloramines, and chlorine dioxide for inactivation of viruses, *Cryptosporidium*, and *Giardia* (EPA, 1999). Owens et al., (2000) state: "Protozoan cysts, specifically *Giardia* and Cryptosporidium, and bacterial spores are more resistant to ozone than bacteria and viruses, although moderate degrees of inactivation have been demonstrated under realistic ozonation conditions". Furthermore, it has been reported that microorganism reactivation after ozonation is unlikely to occur (Paraskeva et al., 2002) and therefore should meet inactivation regulations.

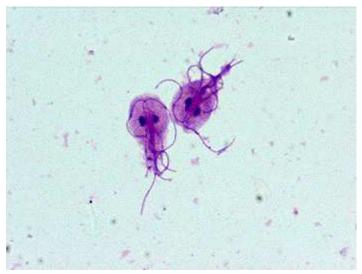


Figure 1. Photograph of Giardia cysts (Source: microbiology.mtsinai.on.ca)

Both *Giardia* and *Cytosporidium* are prevalent in raw water and have become concerns of public health as waterborne pathogens. A study completed by Hsu and Yeh (2003) examined the effects of parasites in water samples taken from three separate pilot-scale plant processes. The study was aimed at determining the most efficient method of water filtration that will remove the largest percentage of both protozoan parasites. Coagulation and sedimentation removed the majority of *Giardia* and *Cytosporidium* in the raw water samples. However, the study showed that through the use of pre-ozonation, the protozoa concentrations were decreased to non-detectable levels for *Giardia* cysts. This shows that pre-ozonation treatment can damage the structure of (oo)cysts effectively, while post-ozonation was proven better for (oo)cysts inactivation compared to chlorine (Hsu and Yeh, 2003). The use of ozone as a disinfectant shows promising results in terms of the ability to destroy specific protozoan that are known to infect drinking water sources in Colombia.

Measuring Ozone Concentration in Water

To determine if the ozone generator produces sufficient ozone to disinfect water, and to ensure that residual ozone does not make the treated water unsafe to consume, it was necessary to measure aqueous ozone concentrations. Ozone in water decays rapidly and typically has a half-life of ten to fifteen minutes (Standard Methods, 2005). Ozone test-strips are often used to

measure the concentration of ozone present in spas or pools that are treated with ozone. A more accurate method, especially at low concentrations, is the indigo colorimetric method.

The indigo colorimetric method is the most accurate and accepted method for measuring aqueous ozone concentrations. *Standard Methods* discusses the indigo colorimetric method, originally developed by Badger and Hoigené (1980). Indigo and its water soluble derivatives, such as indigo trisulfonate, were first used to measure ozone in air or exhaust gases. Bader and Hoigené developed a method using indigo trisulfonate for the purpose of analyzing ozone concentrations in aqueous systems. The method involves determining aqueous ozone concentrations by the decolorization of indigo (Bader and Hoigené, 1980) as ozone rapidly decolorizes (i.e., oxidizes) indigo in acidic solution (Standard Methods, 2005). The indigo method was not originally developed with the intentions of analyzing ozone in drinking water, but is applicable to lake water, river infiltrate, manganese-containing groundwaters, extremely hard groundwaters, and biologically treated domestic wastewaters (Standard Methods, 2005). The indigo colorimetric method is applicable to this project as it is the standard method for measuring aqueous concentrations of ozone and is more accurate and less expensive than ozone test-strips.

In the indigo method, indigo trisulfonate is added to a water sample and then the decolorization (i.e., loss in light absorbance) is measured with a UV/Vis spectrophotometer at 600 nm. In addition, the materials needed in order to perform an aqueous ozone analysis include: distilled water, concentrated phosphoric acid, potassium indigo trisulfonate, sodium dihydrogen phosphate, malonic acid, and glycerin (Bade and Hoigené, 2005). The acid is needed to reduce the pH below 4 – the pH required for ozone to rapidly decolorize indigo (Standard Methods, 2005). Once the pH has been reduced and the indigo is added, the spectrometer is used to determine concentrations based on the difference in absorbance between the sample and a blank. The procedure varies slightly depending on the range of ozone concentrations; for samples, with higher concentrations, more indigo is added. Ozone test-strips are helpful for determining the concentration range of interest.

The indigo colorimetric method has several advantages. A main advantage is that it uses commercially available and affordable reagents. Another advantage is that it precisely measures ozone concentrations with an error of generally less than 5%, and often within 2% (Bader and Hoigené, 1980). The reagent solution remains stable for three months, indicating that a stock solution can be made to reduce procedure time and materials cost. The developers of this method state that the indigo colorimetric method is sensitive, precise, fast, specific, and easy to perform (Bader and Hoigené, 1980). The indigo method does have certain limitations. The practical lower limit for residual measurement is 10 to 20 μ g/L O₃ (Standard Methods, 2005) which is much lower than the practical lower limit of the test-strips. Furthermore, the presence of chlorine or bromine in water samples has the potential to interfere with measurements.

Contact Time for *Giardia* Inactivation

According to Colombia Water Regulations, drinking water must be treated so that a $2 \log - \sigma$ 99% - inactivation of *Giardia lamblia* is achieved (Colombia Ministry of the Environment, 2007). The U.S. EPA provides information about the effectiveness of inactivation for various

disinfectants. In a health advisory report about *Giardia*, the U.S. EPA analyzes typically utilized water disinfectants including ozone, mixed oxidants, chlorine dioxide, iodine, free chlorine, and chloramines. Of the disinfectants mentioned, ozone is the most efficient disinfectant in terms of *Giardia* inactivation and chloramines are the least efficient (U.S. EPA, November 1999). This document also provides the necessary contact times to achieve 99% inactivation of *Giardia* cysts for each type of disinfectant. Contact time is the concentration of the disinfection (in mg/L) multiplied by time (in minutes). The contact time necessary for ozone to disinfect water at 25°C is 0.2 mg/L × min (U.S. EPA, November 1999). At 5°C the necessary contact time with ozone as the disinfectant is 0.5 mg/L × min (U.S. EPA, November 1999). These are significantly more efficient contact times as compared to the most efficient form of chlorine, chlorine dioxide. The contact times for chlorine dioxide are 5 mg/L × min at 25°C and 11 mg/L × min at 5°C (U.S. EPA, November 1999). In order to disinfect slow-sand filtered water, it must be treated with ozone for a period of time that achieves a contact time of 0.2 mg/L × min. The necessary time the ozone disinfection system must operate is established based on the aqueous concentration of ozone the ozone generator is able to produce.

Standards for Electrical Enclosures

The National Electrical Manufacturers Association (NEMA) defines standards for various grades of electrical enclosures. The enclosure that is most applicable to this project is a NEMA Type 3 enclosure and is defined in NEMA 250 as:

"Enclosures constructed for either indoor or outdoor use to provide a degree of protection to personnel against incidental contact with the enclosed equipment; to provide a degree of protection against falling dirt, rain, sleet, snow, and windblown dust; and that will be undamaged by the external formation of ice on the enclosure" (NEMA 250, 2003).

A safe electrical enclosure is necessary for the ozone generation system in order to protect the users. As it is possible that the schools in Colombia will place the unit outside, an enclosure type that will protect personal and equipment both indoors and outdoors is necessary. The selected electrical enclosure for the ozone generation system must therefore comply with NEMA Type 3 standards.

II. Design Goals, Tasks, and Criteria

Design Goals

The overall goal of this project was to research, construct, and evaluate an ozone disinfection system to be combined with a slow sand filtration system for rural schools in Barbosa, Colombia. This disinfection method should disinfect in accordance with Colombian drinking water standards. In addition, it should be safe and easy to operation, with minimal instructions, and housed in a proper casing material and contain components that are resistant to ozone degradation and that will withstand the electrical voltage that develops during corona discharge.

Project Tasks

The overall project task was to research and develop a disinfection system to treat slow sand filtered water. The delivered disinfectant dose must satisfy Colombia drinking water standards. One of the main targets of disinfection is the protozoa, *Giardia lamblia*. As a result, the disinfection system was designed to target this protozoon.

The materials should be resistant to oxidation and electrical current as well as comply with NEMA standards of safety.

The design of the system should be compatible with the slow sand filter system, as they will be used in tandem. The ozone disinfection system needs to treat the volume of water produced daily by the SSFs. The disinfection batch size was determined based on these operating conditions.

The final project task concerns the overall price of the system. As this system will be implemented in a rural area in a developing country, cost is a major factor for the project design. Design materials were chosen for their effectiveness, safety, and additionally, their price and availability.

Design Criteria

The design criteria for this project have been designated as either must criteria or want criteria. The must criteria include effective disinfection, appropriate materials, and operation safety. The want criteria include batch size and price. Each of these criteria is described in more detail below.

Must Criteria:

Disinfection: The extent of disinfection (i.e., dose) should comply with the Colombia drinking water standards set in place by the national government. Currently, teachers at the schools where SSFs were installed, boil the water after SSF in order to remove the remaining pathogens. This is costly and requires much time. Ozone is one of the most powerful oxidants utilized in treating water (EPA, 1999) and an ozone disinfection system would eliminate the need for boiling, as well as reduce the dependence on propane. As a standard for disinfection, the Colombia Water Regulation committee requires a two log, or 99%, reduction in the protozoa *Giardia*, (Colombia Water Regulations, 2007).

Materials: Because ozone is a highly corrosive gas, all materials need to be resistant to oxidation. Hence, system components, including the tubing, diffuser, insulator, conductors, unit casing, and water container need to be ozone resistant. In addition, the system operates on an AC electric current to generate the corona discharge. As a result, all materials should be in compliance with NEMA safety standards.

Operation Safety: The stakeholders and operators of the ozone disinfection systems are teachers in rural Colombian schools. Therefor a necessary design criterion was to provide a degree of safety during system operation. A protective casing is required to minimize exposure to the

transformer and electrical cords. The system should be easy to use and maintain to keep the operator and school children safe.

Want Criteria:

Batch Size: The current SSF systems operate with a batch size of 5 L. Therefore the ozone generator was designed to disinfection 5 L in batch mode (i.e., without flow-through).

Price: An aim is to create an effective ozone generator for less than \$50 USD.

III. Project Results

Design and Prototype

A prototype ozone generator was constructed using the corona discharge method. The system generates ozone inside a sealed insulated glass reactor that uses a 0.608 gpm aquarium pump to transport ambient air through the reactor. The corona effect is achieved by an early model neon sign transformer called a Core & Core (C&C) neon transformer (Input: 60Hz 120V & Output: 8 mA / 3500V). Sponholtz (1999), Yehia et al. (2000), and Ibarra et al. (2008) have shown that transformer induced coronas are the most viable method for producing the required voltage drops for ozone generation in small scale reactors. C&C transformers are not embedded with ground fault protection (GFP) circuits that immediately shut off the power when current runs to either electrode sporadically (i.e., not constant). Transformer GFP circuits are calibrated to avoid exposed circuits and thus injuries in commercial products. Any final ozone generator can be calibrated with a GFP to incorporate a factor of safety. The C&C transformer is pictured in Figure 2.

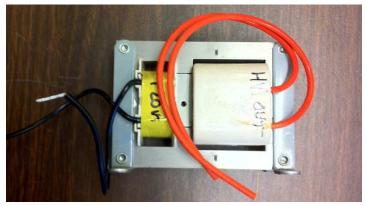
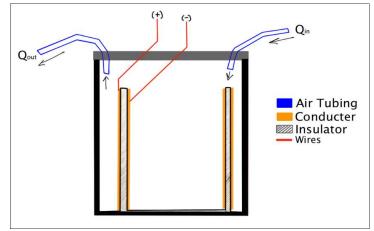



Figure 2. Core Coil Neon Transformer: Input: 120V. Output: 8 mA / 3500V

The ozone reactor is housed in a glass jar used mainly for containment of the generated ozone. Inside, is a smaller glass jar used to separate the two conductors. The conductors were stainless steel in the case of Prototype I, and aluminum foil in the case of Prototype II, and are connected to the power source. A schematic of the ozone generator is shown in Figure 3.

Materials and Cost Figure 3. Reactor Prototype Schematic

Materials used in the construction of the ozone generator include: a 32 oz. glass jar; an 8 oz. glass jar; a neon transformer; high-voltage electrical wires; plastic tubing; a diffuser stone; and aluminum foil.

One of the design criteria of this project was to construct the generator for less than \$50. A cost analysis was performed to determine if this criterion was met. In this analysis, the prices of each item used in construction were converted into the price per unit of material. This "per unit price" was then multiplied by the approximate amount of material used in the construction of the prototype. These values were summed to estimate the price per ozone generator. The cost analysis is summarized in Table 1.

Item Description	Item Purchase Cost (\$)	Per Unit Cost (\$)	Amount Used	Cost per Generator (\$)
302°F High-Voltage Wire, 22AWG, 0.111" OD, 10000 VDC, White	1.91	1.91	2 ft	3.82
Push-in Grommet 1/8" ID, 11/32" OD, 1/16" Thk for 3/16" Dia Panel Hole, packs 100	3.62	0.04	8 grommets	0.15
Push-in Grommet 1/4" ID, 1/2" OD, 1/16" Thk for 3/8" Dia Panel Hole, packs of 100	5.66	0.06	8 grommets	0.45
Air Pump-Tubing (25 ft)	3.56	0.14	4 ft	0.57
Diffuser Stone (2 pack)	2.53	1.27	1 rock	1.27

Table 1.	Prototype	Cost Analysis
10010 10	1100000000000	cost i mai jois

Electrical Tape (20 ft)	2.03	0.10	1	ft	0.10
Aluminum Foil (25 sq ft)	\$ 3.95	0.16	1	ft ²	0.16
Economy Clear Glass Jar 8oz. 250 mL, 2- 7/8" Base Diameter, 3-1/2" Height	3.99	3.99	1	jar	3.99
Economy Clear Glass Jar 32 oz, 1,000ml, 3-3/4' Base Diameter, 6-5/8" Height	5.56	5.56	1	jar	5.56
Neon Transformer	24.53	24.53	1	transformer	24.53
Tetra Whisper Air Pump	13.97	13.97	1	pump	13.97
				Total Cost:	\$54.57

Table 1 shows that the approximate cost to construct a single ozone generator is \$55, which is close to the goal of \$50 per generator.

Experimental Procedures: Measuring Ozone

Three methods of measuring ozone concentrations have been used in lab experiments. These methods include ozone test strips, the indigo colorimetric method and an ozone detection meter. The first two methods were utilized for measuring the aqueous phase concentration of ozone. The ozone meter measures the concentration of ozone in the gaseous phase and outputs a dynamic volumetric ppm measurement.

Ozone Test-Strip Trials

Ozone Test Strips from SenSafe where used to estimate a concentration range in ppm (or mg/L O_3). Two trials of measuring ozone concentration were performed with the ozone test strips. The first trial involved measuring ozone concentrations in water produced by the small-design ozone generator. The small-design ozone generator consisted of a 2-1/8 inch base diameter glass jar containing a layer of aluminum foil wrapped around the outside and the inside of the inner jar. The inner jar acted as an insulator and was then placed in a 2-7/8 inch base diameter glass jar. The neon transformer and air-pump were then connected to this jar. The effluent airflow tubing was placed in a 1 L column filled with water. The small-design ozone generator ran for 15 minutes. After the 15 minute time period, the ozone generator was turned off. Immediately following this, a test strip was used to take the first ozone concentration measurement. Subsequent measurements were taken using the test strips. For each measurement, 50 mL of water from the 1000 mL column was pipetted into a glass beaker. The test strip was then placed

in the 50 mL sample for 10 seconds, removed, and compared to the concentration key provided on the SenSafe test-strip bottle. The test was compared to samples of di-ionized water (DI) water. This key on the test strip bottle is shown in Figure 4.

Figure 4. Concentration key on ozone test strip bottle

The second trial used the same procedure except that it involved producing ozone with the largescale ozone generator. The interior jar had a 2-7/8 inch base diameter and the exterior jar had a 3-3/4 inch base diameter. The procedure for measuring ozone in the water with the test strips was the same as in trial 1.

The results from these two trials are shown in Figure 5. Both trials resulted in the same initial ozone concentration of 0.1 mg/L. In both trials, ozone decayed at a similar rate. Note that distilled water produced some color on the test strips, similar to the final concentration measured in the ozonated water, indicated the limit of detection with the test strips.

It was expected that the larger ozone generator would produce a higher initial aqueous ozone concentration, however, the small and large generators produced equal initial ozone concentrations. While these measurements are rather imprecise due to human involvement in determining the color, it is clear that not much difference in the aqueous concentrations occurred between the two generators. This may indicate that smaller containers can be used without significantly decreasing the rate of ozone production.

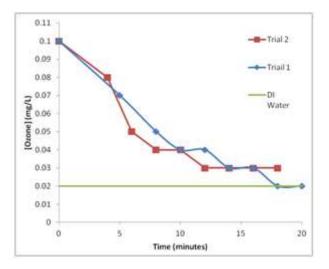


Figure 5. Plot of Ozone Concentration vs. Time

Two conclusions can be drawn from the results of measuring ozone concentrations with test strips. First, the ozone generator produced a sufficient ozone dosage to be able to measure it in the water. This can be seen as both trials resulted in initial concentrations measured well above the DI water control. The second conclusion is that another method is needed in order to obtain more precise ozone concentration measurements.

Indigo Colorimetric Method:

Several trials of the indigo colorimetric method were performed to determine aqueous ozone concentrations produced by the prototype ozone generator. The standard operating procedure for the indigo colorimetric method is in Appendix B. Figure 6 shows an image of the experimental set-up.

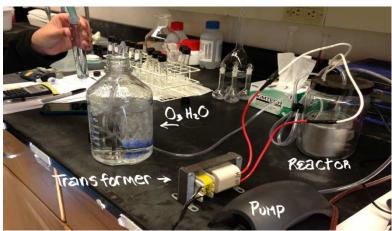
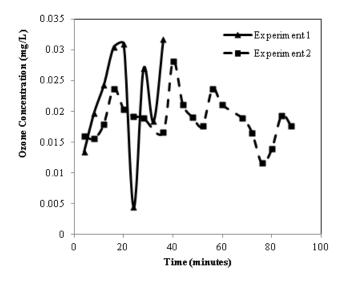


Figure 6. Indigo Colorimetric Method Experimental Set-up

In each experiment, a spectrophotometer and 10 cm path-length cuvettes were used, monitoring the absorbance of the blanks and samples at 600 nm. In each experiment, 1 L water was sparged with the ozone generated by the larger reactor, and after 5 minutes, a 27 mL sample was

removed and immediately added to a test tube containing 3 mL of the indigo method reagents. Additional 27 mL samples were removed as a function of time, under continued sparging.

Experiment Calculations. The concentration of ozone in each aqueous sample was calculated with the following equation,


$$\operatorname{mg} \frac{O_3}{L} = \frac{30 \times \Delta A}{f \times b \times V}$$
(3)

where,

 ΔA = difference in absorbance between the sample and blank (i.e., unreacted indigo solution) b = path length of cell (10 cm) V = volume of sample (27 mL) f = 0.42

The factor, *f*, is a sensitivity factor for the change of absorbance at 600 nm per mole of added ozone per liter. The UV absorbance of ozone in pure water may serve as a secondary standard since ozone has an absorption coefficient in water of $\varepsilon = 2950 \text{ M}^{-1} \text{cm}^{-1}$ at 258 nm.

Test Results. In each experiment, the average concentration of ozone in the sparged water was

approximately 0.02 mg/L (

Figure 7), lower than that measured with the test strips. The reason for the variability in the data on Figure 7 is likely because the detection limit of the indigo method is approximately 0.01 mg/L. Equation 3 indicates that the absorbance value of each sample is subtracted from the absorbance of the control sample. Hence, there in a large error in the measured concentration when this concentration is close to the detection limit. Also during these experiments, there may have not been adequate mixing of the indigo reagents with the water samples resulting in the measured values being below the actual concentrations.

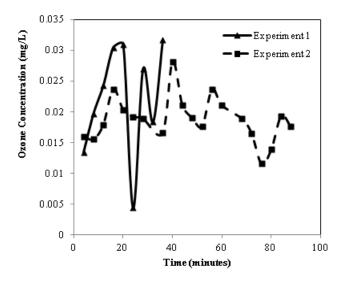


Figure 7. Ozone Concentrations for Indigo Colorimetric Method Experiment

To provide an example calculation, the aqueous ozone concentration from the indigo colorimetric method experiment performed on 02/08/2013 (labeled as experiment 2 in

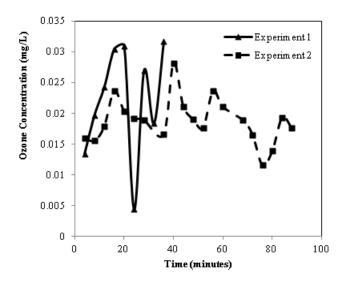


Figure 7) can be determined from the calculations below:

Note the change in absorbance for this experiment was only 0.08.

Reduced Air Flowrate. If the flow rate of air through the ozone generator is too high, the ozone that is produced will be diluted by this air, resulting in a lower concentration of ozone in the gas phase. As Figure 7 shows, a steady-state concentration of ozone will occur in the water after only a few minutes. As a result, the concentration of ozone in the water phase is controlled largely by the air-water partition coefficient of ozone (i.e., Henry's constant). By reducing the air flow rate, a higher gas phase concentration should result, which in turn should produce a higher aqueous phase concentration, if the rate of mass transfer from the gas to the water phase is not limiting. Only at very low gas flow rates, is it likely that mass transfer from the gas bubbles to the water would limit the steady state concentration. Hence, in experiment 3, the concentration of ozone in the water was measured at three air flow rates. The methods used in experiment 3 can be found in Appendix D. Figure 8 reports the average (steady-state) concentrations of ozone in the water at 3 different air flow rates. When the flow rate was decreased to ~4 mL/sec, the aqueous concentration of ozone was the highest. The error bars in Figure 8 show there was no significant difference in ozone concentration at 8 and 12 mL/min flow rates. This reveals that a decrease in the air flow rate can increase the steady state aqueous ozone concentrations, which in turn decreases the amount of time the generator needs to operate during each batch treatment.

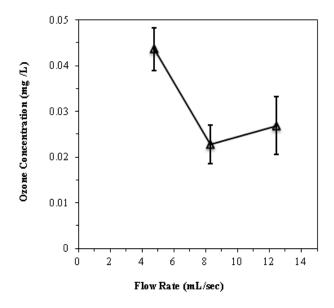


Figure 8. Ozone Concentration Measured at Three Different Flow Rates

Measuring the Gas-Phase Ozone Concentration

An InDevR 2B Technologies Ozone Meter was used to measure the gas-phase ozone concentration produced by the ozone generator. Ozone gas-phase concentrations were measured in a flow-through system over a period of 50 minutes using the InDevR 2B Ozone detector. The flow-through system (i.e., container) was a 2 L glass flask with an inlet at the bottom and a one-inch opening at the top. The bottom inlet (Q1) was used for ozone input from the reactor using PTFE thread tape to seal around the tubing (Figure 9). On the top of the flask, a two-holed rubber stopper was used: One outlet was used to connect the InDevR detector's tubing (Q2) and the other outlet was open to the atmosphere (Q3).

The flow rate (Equation 6) of the ozone reactor with no water head is approximately 2 L/sec. The InDevR meter requires a minimum flow rate (eqs 6 and 7) of 1 L/sec for accurate measurements. The team therefore used the third outlet (Q3) that was open to the atmosphere to vent the additional gas from the generator,

(5)

(6)

The arrangement of the ozone meter experiment is shown in Figure 9.

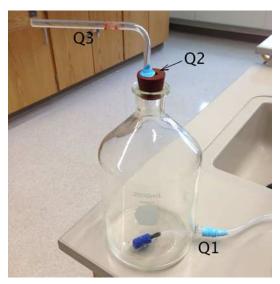


Figure 9. Ozone Meter Experimental Set-Up

Ozone concentrations in ppm_v were recorded at 1 minute intervals under standard atmospheric conditions and at a temperature of 20°C.

Test Results. The experimental results are shown in Figure 10, with the gas phase ozone concentration plotted versus time.

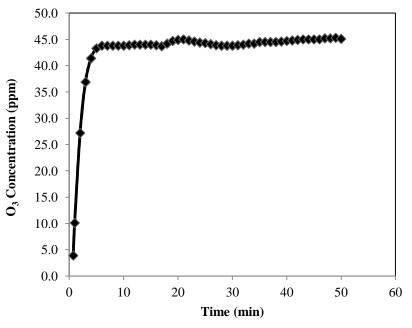


Figure 10. Gas-Phase Ozone Concentration vs. Time

From the average measured gas phase concentration of 45 $ppm_v O_3$ (Figure 10), the aqueous concentration at equilibrium can be calculated using Henry's Law constant for ozone. After rearranging and showing all unit conversions, this produces:

$$K_{\rm H} = 0.012 \ \frac{\rm mol}{\rm L \times atm} = \ \frac{[0_3]aq}{P_{0_3}} \tag{7}$$

$$[0_3]_{aq} = \left(0.012 \ \frac{\rm mol}{\rm L \times atm}\right) \left(\frac{45}{10^6} \ atm\right) \left(48 \ \frac{\rm g}{\rm mol}\right) \left(\frac{1000 \ \rm mg}{\rm g}\right) = 0.026 \ \frac{\rm mg}{\rm L} 0_3 \tag{8}$$

The above calculations yield a calculated steady-state aqueous ozone concentration of 0.026 mg/L. This calculation confirms the results of the indigo colorimetric method experiment performed on 02/08/2013 (= 0.021 mg/L). The necessary contact time can be determined for this aqueous ozone concentration of 0.021mg/L. In order to achieve a Ct value of 0.2 mg × min × L⁻¹, the water disinfection system must be operated for approximately 9.5 minutes. To account for a 15 minute period to achieve a steady ozone concentration, the water disinfection system should be operated for approximately 25 minutes. The decreased air flow rate as observed in Figure 8 results in an increase aqueous ozone concentration. This increased ozone concentration would reduce the required contact time.

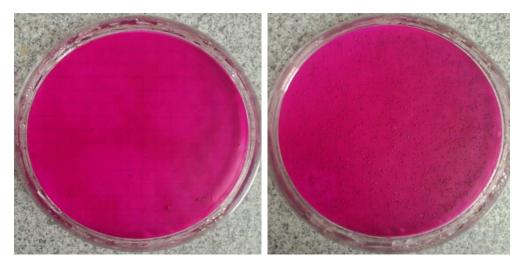
Membrane Filtration Technique

The membrane filtration technique has been adapted from EPA Method 9132 in order to test the ability of the ozone generator to disinfect microorganisms. A standard method for measuring *Giardia* does not exists, and local water sources do not necessarily contain high amounts of *Giardia*; therefore, EPA Method 9132 was utilized to test the reactors ability to inactivate coliform bacteria. The membrane filtration technique is used to monitor drinking water and natural waters for the presence of "coliform" bacteria. However, the membrane filtration (MF) technique is not reliable for high turbidity samples and for water containing large numbers of non-coliform bacteria.

When viewing MF samples, the typical coliform colony has a pink to a dark-red color with a metallic surface sheen. Colonies that lack sheen may be pink, red, white, or colorless, and are considered to be non-coliform colonies. The coliform density is usually reported as (total) coliform per 100 mL. The coliform count is computed using membrane filters with 20 to 80 coliform colonies, and no more than 200 colonies, by Equation 9,

$$\frac{\text{Total coliform colonies}}{100 \text{ mL}} = \frac{\text{coliform colonies counted}}{\text{mL sample filtered}} \times 100$$
(9)

If confluent growth occurs, that is, growth covering either the entire filtration area of the membrane or a portion of it, the colonies are not discrete and results are reported as "confluent growth with (or without) coliforms." If the total number of bacterial colonies, coliforms plus


non-coliforms, exceeds 200 per membrane, or if the colonies are not discrete enough for accurate counting, results are reported as "too numerous to count" (TNTC). The standard operating procedure is in Appendix B.

Membrane Filtration Experiment I. The first trial of the MF technique tested nine samples: three controls that used sterilized DI water; three samples that used SSF water; and three samples that used SSF water treated with ozone.

The first membrane filtration experiment was designed to measure the residual coliform bacteria before and after ozonating 5 L slow sand filtered water. The original water source was the Wabash River. Five liters of each (SSF water and ozonated SSF water) were tested. The ozonated SSF water was collected from the SSF and immediately ozonated for 25 minutes. The experiment was conducted using three control variables to test for contamination during the experiment. Three samples were taken for each water sample type.

The results were inconclusive. After the required incubation period, two out of the three ozonated water samples showed no coliforms and neither of the un-ozonated water samples showed coliform growth. Interestingly, all of the ozonated samples showed non-coliform microbial growth. The volume of solution used in preparing the broth used in the test may have been miscalculated. The samples were incubated for an additional 24 hours to note any further development.

The images in Figure 11 show the membrane filters of the SSF water (right) and ozonated SSF water (left) after twice the required incubation period. See Appendix E for an image of the control membranes.

Figure 11. Ozonated slow sand filtered Wabash River water (left) compared to Un-ozonated SSF Wabash River water (right).

The ozonated water shows three microbial colonies, however none were coliform bacteria. The un-ozonated water sample shows more bacterial growth. There was one possible coliform

colony, but after an additional 24 hours of incubation, no additional growth developed and no definitive conclusions could be made.

Membrane Filtration Experiment II. In repeating the membrane filtration experiment, a larger variety of sample types were tested. The first membrane filtration experiment tested three sample types: (1) controls of sterilized water; (2) SSF water; and (3) ozonated SSF water. The second membrane filtration experiment tested six sample types:

- (1) Sterilized DI water (control)
- (2) Ozonated DI water
- (3) Diluted untreated Wabash River water: 1 mL with 99 mL DI water (1% dilution)
- (4) SSF Wabash River water
- (5) Diluted SSF Wabash River water:10 mL with 90 mL DI water (10% dilution)
- (6) Ozonated SSF water

The same MF standard operating procedure was used. This procedure is in Appendix C. Two diluted samples were used because the membrane filtration technique has problems with high turbidity samples and water containing large numbers of non-coliform bacteria. By diluting the samples, the turbidity of the samples was reduced and the results of the membrane filtration experiment should be more accurate.

For each of the sample types, the resulting number of coliform per 100 mL sample is shown in Table 2. Adequate materials were not available to run two filtrations at each sample time, however the sample types that were filtered twice are reported in Table 2 separated by a comma.

Sample Type	# Coliforms/100 mL
Sterilized DI Water	0, 0
Ozonated DI Water	0,0
Diluted Wabash River Water	0, 1
SSF Water	10
Diluted SSF Water	1
Ozonated SSF Water	61, 48

Table 2. Membrane Filtration Experiment II Results

Both control samples (i.e., sterilized DI water) showed no contamination, as was the case in the first membrane filtration experiment. The diluted Wabash River water, SSF water, and the diluted SSF water all resulted in contamination. It was expected that these sample types would result in some contamination as we know that microorganisms persist in the water even after slow sand filtration. A surprising result from this experiment is that the coliform count for the ozonated SSF Wabash River water was significantly higher than the coliform counts for the unozonated Wabash River water. Procedural errors and contamination could possibly be the cause of this result. To determine if this was the case, the membrane filtration experiment should be

repeated and an additional sample should be analyzed as a positive reference with a high dose of chlorine to help determine where contamination is occurring. Another possible explanation for this result is that the ozonated SSF water was not ozonated for a sufficient amount of time. Instead, only material that holds the bacterial clumps together may have been oxidized, allowing more colonies to grow. Thus, these membrane filtration experiments have not confirmed the theoretically determined contact time of 0.2 mg/L × min. The contact time should be experimentally determined by repeated the membrane filtration experiment and varying the time of ozonation. Because the indigo method showed that a reduced air flow results in a higher ozone concentration, repeating the membrane filtration experiment with at a reduced air flow could be performed. Additional photographs of the Petri dishes are shown in Appendix F.

IV. Scale-up to 5 L Batch Size

The ozone system is designed to disinfect water after slow sand filtration. The slow sand filters already in use in Colombia were designed to output five liters in each batch. Therefore, the scalability of the system was determined by measuring the steady-state concentration of ozone in five liters of water, using the same type of pail used to collect the water in each school in Colombia. Again, the Indigo method was used to measure the aqueous phase O_3 concentration after the system reached steady state.

Ozone was sparged into 5 L DI water at 12.45 mL/sec for 17 minutes. Three 27 mL water samples were removed at 17, 20, and 23 minutes and each sample was immediately mixed with 3 mL of Indigo Reagent I. The samples were measured using a UV/Vis spectrometer at 600 nm. As can be seen in **Error! Reference source not found.**, the calculate aqueous ozone concentration at steady state was 0.02 mg/L, consistant with the previous measurements made on 1 L water samples. Note, that in this experiment, the samples were mixed immediately after adding the sample to the indigo reagent by inverting the tubes, resulting in very reproducible results.

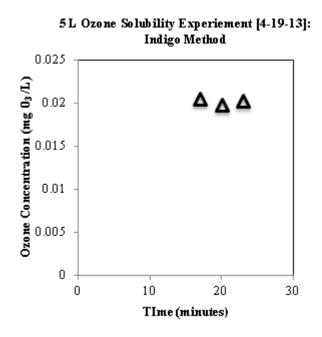


Figure 12. Indigo Colorimetric Method of Batch Scale-up

Comparing this aqueous ozone concentration with the concentration of 0.0205 mg/L from indigo colorimetric method experiments with 1L, it can be determined that a larger batch size of 5L results in a slightly lower aqueous ozone concentration. This may or may not have significant effects on contact time required for disinfection. Additional testing is needed to conclusively determine the effect of a larger batch size on aqueous ozone concentration and disinfection contact time.

V. Electrical Enclosure

As the designed ozone generator prototype has electrical components such as a neon transformer, an electrical enclosure is needed. The electrical enclosure is necessary to protect the people who operate it or have the potential to come into contact with it. This is especially important as these devices will be utilized in schools and the children need to be protected from potential harm. An electrical enclosure system is also needed to prevent damage to the ozone generator from weather or physical contact. It has been determined that a NEMA Type 3 electrical enclosure is an appropriate electrical enclosure.

Many companies carry electrical enclosures that are NEMA ranked and certified. These containers are typically expensive or are not large enough to accommodate the ozone generator. For instance, the image on the left in Figure 13 shows an electrical enclosure available from McMaster-Carr that has dimensions of $15 \times 12 \times 6$ inch³ and costs \$62.20 (McMaster-Carr). This electrical enclosure is not large enough for the existing ozone generator and its cost is higher than the cost of the system components. A larger certified electrical enclosure box costs

significantly more. The enclosure in the image on the right in Figure 13 costs 378.74 and has dimensions of $23.6 \times 15.7 \times 8.7$ inch³ (see the McMaster-Carr webpage).

Figure 13. NEMA Certified Electrical Enclosures

The two examples of electrical enclosures show that purchasing an item that is large enough to contain the entire ozone generator prototype is expensive and does not meet the cost criteria of the design project. Instead, it is proposed that a 5-gallon plastic pail and lid be used to house all components. The neon transformer can be housed in a separate, smaller container which can be placed inside the 5-gallon bucket. Holes can be drilled for the wires and tubing. The smaller electrical box would likely cost between \$15-30, the 5-gallon plastic bucket would cost \$2.78, and the lid would cost \$1.27 (Menards), making the cost of the designed electrical enclosure less than \$35. This is much less than the cost of a certified electrical enclosure for housing the entire system, yet the required degree of protection would still be achieved.

VI. Conclusion

In the past year, the ozone disinfection team has worked to design, construct, and test a point-ofuse ozone generator. Several significant conclusions can be drawn from this effort. First, three iterations of the ozone generator were successfully designed and constructed. Second, it was determined that aqueous O_3 concentrations from 0.022 to 0.043 mg/L can be produced from this ozone generator, with the concentration being a function of the air flow rate. Third, in order to achieve a two-log₁₀ (99%) inactivation of *Giardia*, the *Ct* value for ozone disinfection of *Giardia* was needed. Through a literature review, it was determined that a *Ct* value of 0.2 mg/L $O_3 \times$ min was needed to achieve the desired inactivation. Once the *Ct* value was identified and the aqueous concentration was measured, it was determined that the time necessary for disinfection (specifically for *Giardia*) was 20-25 minutes. And finally, a preliminary experiment was performed on 5 L water sample, indicating a similar state-state concentration of ozone can be achieve on this volume compared to a 1 L volume. This was expected as ozone transfer to the water phase is rapid, establishing an aqueous phase concentration that is only dependent on Henry's constant and the concentration of ozone in the gas phase.

VII. Suggested Future Work

As this is a continuing project, the ozone disinfection team has several suggestions for work to be completed in the future.

Literature Review. While the current team has completed a considerable literature review, there are some additional topics that need to be researched further. One such topic is how ozone may affect or react with the materials being used in the generator. A more complete understanding of oxidation chemistry will allow the team to recommend possible alternative materials that are more resistant to oxidation.

Additional research is needed on how the surface area of an electrode affects the rate of ozone generation by a corona discharge. A better understanding of how electrode surface area and ozone generation are related would provide insight in redesigning the generator to maximize efficiency and minimize space and costs.

Additional Membrane Filtration Experiments. As previously mentioned, additional membrane filtration experiments are needed to determine if there is a procedural error or source of contamination, and to experimentally determine the appropriate contact time needed for disinfection. Whether some coliform bacteria are more resistant to ozone than Giardia needs to be documented.

Electrical Enclosure. A design concept has been developed for the electrical enclosure. Next, materials for the enclosure need to be identified and purchased, and the electrical enclosure needs to be constructed. Once constructed, measurable criteria for the safety performance of the electrical enclosure should be established and the enclosure should be tested based on these criteria.

Scale-up to 5 L Batch Size. An indigo colorimetric method experiment has been performed using a 5 L batch size. Additional ozone measurements and membrane filtration tests should be performed to definitively measure concentration and inactivation for this larger batch-size.

VIII. Outreach

The ozone disinfection team has participated in numerous outreach events over the last two semesters. These events include those in which either the ozone disinfection project was presented or the team represented the entire Colombia drinking water project. The team twice presented at the Ecological and Environmental Engineering Senior Design Review. Additionally, the project was presented at the Global Engineering Design Team Expo, the Purdue Sustainability Summit, and the College of Engineering Research and Poster Symposium. Finally, the team represented the Colombia project at the STEAM! Innovation Fair at Conner Prairie.

IX. Acknowledgements

We wish to acknowledge and thank the Purdue Global Engineering Program and Kimberly-Clark Corporation for their continued support. The Ozone Disinfection Team would also like to thank Dr. Chad Jafvert, Dr. John Howarter, Leila Nyberg, and Dan McMahon for their advising and assistance on this project.

X. References

- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works
 Association, Water Environment Federation publication. APHA, Washington D.C., 1992, 21, 4-144 – 4-146
- Bader, H.; Hoigené, J.; Determination of Ozone in Water by the Indigo Method. *Water Research.*, 1981, 15, 449-456
- Bes, R. S., R. J. Routie, and C. Coste. "Ozone Production Economical Operation of a Cold-Plasma Reactor." *Ozone-Science & Engineering* 7.4 (1985): 299-312. Print.
- Center for Disease Control and Prevention, Parasites *Giardia*. 2011, ">http://www.cdc.gov/parasites/Giardia/>.
- Center for Disease Control and Prevention, Epidemiology & Risk Factors, 2012. http://www.cdc.gov/parasites/Giardia/epi.html.
- Colombia Ministry of the Environment. "Resolution Number 2115." *Colombia Water Regulations*. N.p.: n.p., 2007. Print.
- Consultants in Environmental Sciences, Ltd. (1988) Review of Operational & Experimental Techniques for the Removal of Bacteria, Viruses & Pathogens from Sewage Effluents ; PECD 7/7/260; Department of the Environment: London, September.
- Hsu, B. M. and Yeh, H. H. Removal of *Giardia* and Cryptosporidium in drinking water treatment: a pilot-scale study. *Water Research*. 2003, 37, 1111-1117.
- Ibarra, D. F. E., et al. "Experimental Results of a Cost-Effective Ozone Generator for Water Treatment in Colombia." *Ozone-Science & Engineering* 30.3 (2008): 202-09. Print.
- Jung, Jae-Seung, and Jae-Duk Moon. "Corona discharge and ozone generation characteristics of a wire-plate discharge system with a glass-fiber layer." *Journal of Electrostatics* 66 (2008): 335-41. Print.
- McMaster-Carr, *Electrical Enclosures NEMA 3*. Web. 14 Apr. 2013. http://www.mcmaster.com/#electrical-enclosures/=mhaau3
- Menards, 5 Gallon Menard Pail. Web. 14 Apr. 2013. http://www.menards.com/main/housewares/cleaning-supplies/buckets/5-gallon-menard-pail/p-1319254-c-7112.htm
- National Electrical Manufacturers Association. "NEMA Standards Publication 250 Section 2.2." Rosslyn, VA: National Electrical Manufacturers Association, 2003. 5-8. Web. 18 Mar.

2013.

https://dlweb.dropbox.com/get/2013%20Spring%20Purdue/Senior%20Design/NEMA%2 0Standards/Nema_250-225408_tech_notes.pdf?w=AAAz-HwZag95eoNWCFPUI6q9dfUVNMJp_Xus8L4CrmbuRw

- Owens, J. H., et al. "Pilot-Scale Ozone Inactivation of Cryptosporidium and Other Microorganisms in Natural Water." *Ozone-Science & Engineering* 22.5 (2000): 501-17. Print.
- Paraskeva, P., and N. J. D. Graham. "Ozonation of Municipal Wastewater Effluents." *Water Environment Research* 74.6 (2002): 569-81. Print.
- Shin, Won-Tae, et al. "A pulseless corona-discharge process for the oxidation of organic compounds in water." *Ind. Eng. Chem. Res.* 39 (2000): 4408-14. Print.
- Singer, Philip C; Gurol, D. Mirat. "Kinetics of Ozone Decomposition: A Dynamic Approach." *Environmental Science & Technology* 16.7 (1982): 377-83. Print.
- Sponholtz, Debra J., et al. "A Simple and Efficient Ozone Generator." Journal of Chemical Education 76.12 (1999): 1712-13. Print.
- Tyrrell, S. A.; Rippey, S. R.; Watkins, W. D. (1995) Inactivation of Bacterial and Viral Indicators in Secondary Sewage Effluents Using Chlorine and Ozone. Water Res., 29, 2483–2490.
- U.S. EPA Office of Water. *Giardia: Drinking Water Health Advisory*. Washington D.C.: U.S. EPA, 1999. Web. 26 Jan. 2013. <Colombia Ministry of the Environment. "Resolution Number 2115." Colombia Water Regulations. N.p.: n.p., 2007. Print. >.
- U.S. EPA. "Ozone Guidance Manual Alternative Disinfectants". *Environmental Protection Agency*. 1999, 3-1 – 3-50.
- Yehia, A., A. Mizuno, and K. Takashima. "On the characteristics of the corona discharge in a wire-duct reactor." *J. Phys. D: Appl. Phys.* 33 (2000): 2807-12. Prin

VII. Appendices

Appendix A. Giardia Inactivation Contact Times

Table xx. shows the necessary contact times for the inactivation of *Giardia* for various disinfectants. The table lists the disinfectants in order of most efficient to least efficient.

1					
Disinfectant	Temp	pН	Ct	Cysts	Reference
Ozone	25⁰C	7	0.3	G. muris	Wickramanayake et al., 1984b
Ozone	5°C	7	1.9	G. muris	Wickramanayake et al., 1984b
Ozone	25⁰C	7	0.2	Human	Wickramanayake et al., 1984a
Ozone	5°C	7	0.5	Human	Wickramanayake et al., 1984a
MOGOD	20°C	6-7.5	3	Human	Witt & Reiff, 1996
MOGOD	3-5⁰C	6-7.5	6-10	Human	Witt & Reiff, 1996
Chlorine Dioxide	25⁰C	7	5	G. muris	Jarroll, 1988
Chlorine Dioxide	5℃	7	11	G. muris	Jarroll, 1988
Free Chlorine	25⁰C	7	26-45	G. muris	Leahy et a1., 1987; Jakubowski, 1990
Free Chlorine	5°C	7	360-1012	G. muris	Leahy et a1., 1987; Jakubowski, 1990
Free Chlorine	25⁰C	7	<15	Human	Jarroll et a1., 1981; Jakubowski, 1990
Free Chlorine	15°C	7	120-236	Human	Rubin et al., 1989
Free Chlorine	5℃	7	90-170	Human	Jarroll et a1., 1981; Rice et al., 1982; Jakubowski, 1990
Chloramine	18°C	7	144-246	G. muris	Jarroll, 1988
Chloramine	3⁰C	7	425-556	G. muris	Jarroll, 1988
Preformed Chloramine	15°C	7	825-902	G. muris	Jarroll, 1988
Preformed Chloramine	5℃	8-9	1400	G. muris	Witt & Reiff, 1996

Appendix B. Standard Operating Procedure for Indigo Colorimetric Method

The ozone disinfection team developed a standard operating procedure for the indigo colorimetric method which involved modifying the amount of chemicals used proportionally to achieve the desired sample volume of 30mL. The developed procedure is as follows:

Reagents: The ozone test strip experiments resulted in aqueous ozone concentrations within the range of 0.01 to 0.1 ppm. Therefore the indigo stock solution and indigo reagent I are needed. There is no need to make indigo reagent II which is used in the presence of ozone concentrations ranging between 0.05 and 0.5 ppm.

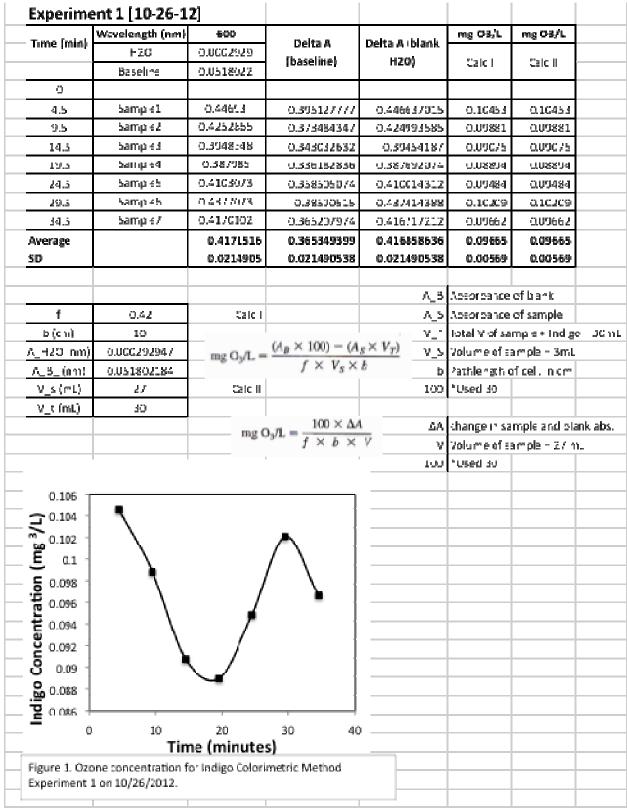
Indigo Stock Solution: In a 100-mL volumetric flask, add 5 mL distilled water and 0.1 mL concentrated phosphoric acid. Then stir and add 77 mg potassium indigo trisulfonate. Fill the 100-mL volumetric flask to the mark with distilled water. Transfer to storage container and store in a dark location for up to four months.

Indigo Reagent I: In a 200-mL volumetric flask, add 4 mL indigo stock solution, 2.3 g of sodium dihydrogen phosphate monohydrate (NaH₂PO₄*H₂O), and 1.4 mL concentrated phosphoric acid. Dilute to the mark with distilled water. Sodium dihydrogen phosphate monohydrate can be substituted with 2 g of sodium dihydrogen phosphate (NaH₂PO₄).

Procedure 1:

A schematic of the indigo colorimetric method is pictured above in Figure 7. For the first four indigo colorimetric experiments, one control is made with distilled water not exposed to ozone. Use a 30-mL test tube for each sample. Add 3mL of indigo reagent I to each test tube. Remove 27mL of water every four minutes once the ozone generator begins to pump ozonated air into a 32 oz glass bottle containing distilled water. Continue until the desired number of samples has been collected.

Spectrophotometric, gravimetric procedure: Calibrate the spectrophotometer using distilled water in a 10-cm cuvette. Add the sample from each test tube to 10-cm cuvette. Measure absorbance of each sample at 600 nm in chronological order.

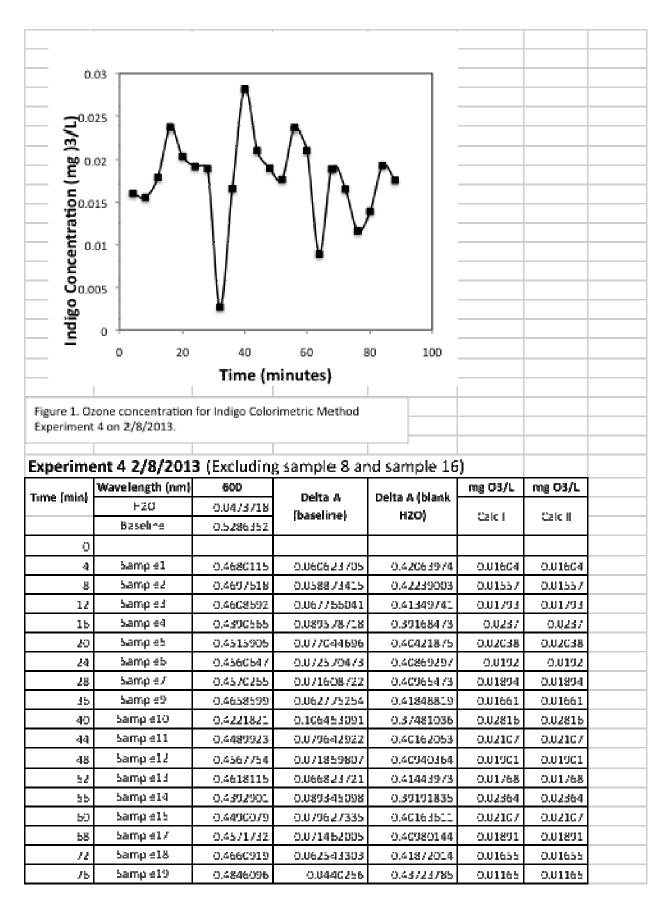

Procedure 2:

The fifth indigo experiment involves changes with the flow rate of the prototype air pump by tying off the air pump. Take twelve samples during this procedure. Three samples are of the standard control with 3mL of the indigo reagent and 27mL of distilled water excluding ozone. The fastest flow rate is utilized first and measured with the bubble meter for a flow rate. Run the ozone prototype generator for fifteen minutes with three samples of the ozonated water collected at run time of 15 minutes, 17.5 minutes and 20 minutes and mix with the indigo reagent. Change the flow rate and measure using the bubble meter to a medium flow rate. Run the prototype for 15 minutes and take samples of the ozonated water at a run time of 15 minutes, 17.5 minutes and 20 minutes and measure using the bubble meter to a medium flow rate and measure using the bubble meter to a slow flow rate. Run the prototype for 15 minutes and take at a run time of 15 minutes and take sample of the ozonated water are taken at a run time of 15 minutes and 20 minutes and maximum and mixed with the indigo reagent.

Spectrophotometric, gravimetric procedure: Calibrate the spectrophotometer using distilled water in a 10-cm cuvette. Add the sample from each test tube to 10-cm cuvette. Measure absorbance of each sample at 600 nm in chronological order.

Appendix C. Standard Operating Procedure for Membrane Filtration

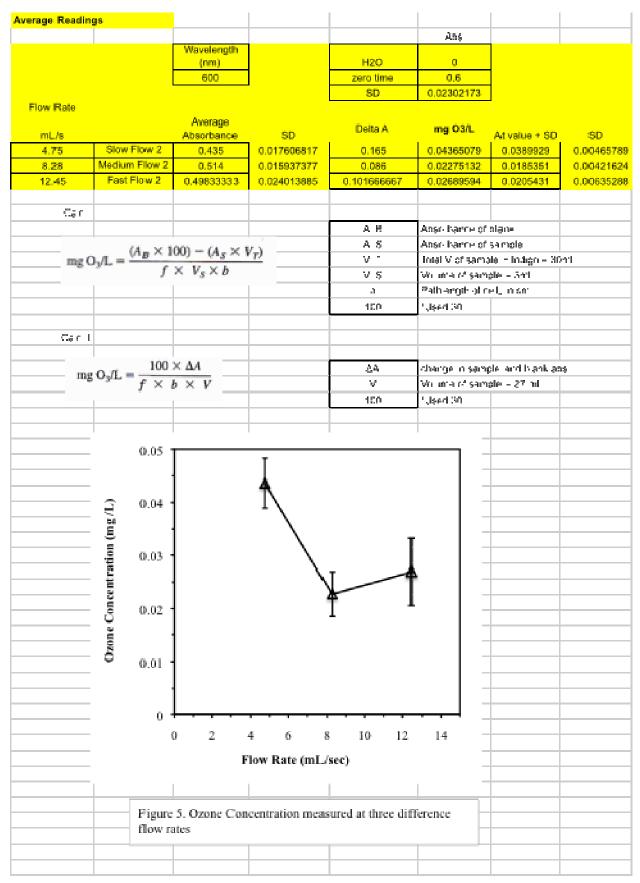
- 1. Autoclave to sterilize water and dry material.
- 2. Use 100mL of drinking water for membrane filtration. Divide the sample into four portions of 25 mL for analysis.
- 3. Using sterile forceps, place a sterile membrane filter over porous plate receptacle of the filtration unit.
- 4. Place matched funnel unit over receptacle and lock it in place.
- 5. Filter sample under partial vacuum.
- 6. Upon completion of filtration:
 - a. disengage vacuum
 - b. unlock and remove funnel
 - c. immediately remove membrane filter with sterile forceps
 - d. place membrane on a petri-dish using rolling motion to avoid entrapment of air
- 7. Place petri-dishes in incubator for 24 hours at 35°C.
- 8. After incubation period count colonies and calculate coliform density.

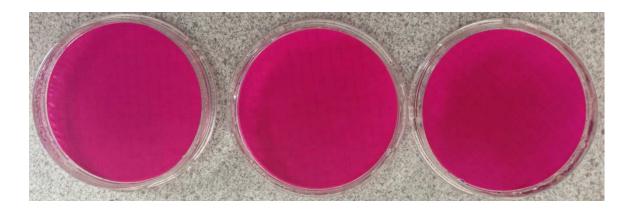


Appendix D. Indigo Colorimetric Experiment Results

	Wavelength (nm)	600			mg D3/L	mg 134/L	
Time (min)	F2C	0.0011883	Delta A	Delta A			
0	Baseline	0.0391522	(baseline)	(blank H2O)	Calci	Calc II	
4.5	bamp e1	0.436354	0.596592	0.434355	0.10437	0.10487	
9.5	Sample2	0.4667733	0.366311	0.404/85	0.09764	0.09764	
14.5	Samp es	0.3610749	0.321113	0.359087	0.08495	0.08495	
19.5	Sample4	0.365558	0.325505	0.36358	0.08614	0.08614	
24.5	5amp e5	0.3795274	0.339555	0.377539	E8080.0	0.08983	
29.5	Samp e5	0.3796385	0.339575	0.37/65	0.08985	0.08985	
34.5	Sample/	0.370001	0.330039	0.368013	0.08731	0.08731	
Average		0.3855624	0.3456	0.383574	0.09143	0.09143	
SD		0.0269034	0.026903	0.026903	0.00712	0.00712	
				۸_8	Assonsance	of blank	
f	n 47	Cale I		6_S	Association	of sample	
b (cm)	10		$(4_{-} \times 100) = (4_{-})$	V_1	Iotal V of sa	mp e + Indige ·	- BCmL
A_H2O (nm)	0.001988316	mg C ₃ /L =	$\frac{(A_g \times 100) - (A_g}{f \times V_g \times b}$	<u>v_v</u>	Volume of a	ample – 27mL	
$A_8_(nm)$	0.039952151			b	Pathlengh	of cel . n cm	
$V_{\perp} S\left(c^{*}L\right)$	27	Cale II		100	*Used 30		
V_t (mL)	30						
		mg O ₃ /I	$=\frac{100 \times \Delta}{f \times b \times c}$	<u>A</u> AA	Change in s	ample and blan	k abs.
			$f \times b \times$	V V	Volume of a	ample – 27 mu	
				100	*Used 30		
	1 1						
- 0.11	1						
L)							
— 😐 0.105							
_ <u></u>							
— 5 0.1	$+$ \wedge						
	1 b						
불 0.095	1 1						
19	1 \		-				
— Š 0.09	- \						
_ 3			\checkmark				
0.085		×					
0.00 0.105 0.02 0.09 0.09 0.09 0.085 0.085 0.085							
			1				
		4 6	8	10			
		Time (min	utes)				
Elmiro 1. On	one concentration fo	se Indian Colori	insotale Kiethe	ad .			

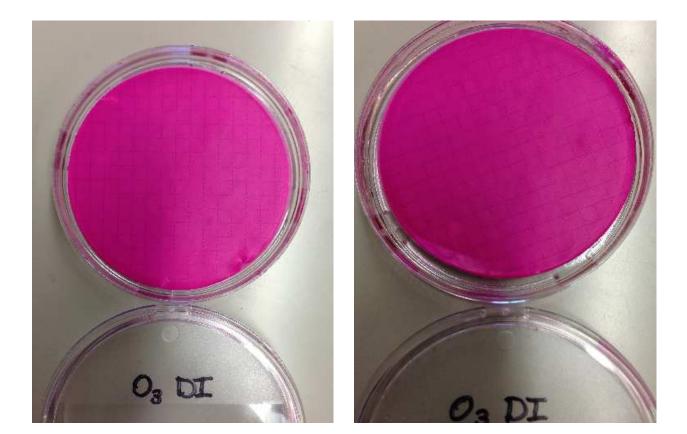
Time (min)	Wavelength (nm)	600			mg O3/L	mg 03/L
	F20	0.028313383	Delta A	Delta A (blank	_	_
	Baiseli ne	1.733677745	(baseline)	HZO)	Calci	Cale II
0						
4	5amp el	1.695982099	0.03/695646	1.66/658/16	0.013452731	0.0134527
8	5amp #2	1.6/84492/3	0.055228472	1.65014589	0.019724454	0.0197244
12	5amp e3	1.665575458	0.068101287	1.63/2530/5	0.024321888	0.0243218
15	5amp e4	1.64828527	0.085392475	1.6199/1887	0.030497313	0.03C4973
20	5amp #5	1.64/025062	0.086651683	1.618/126/9	0.03094703	0.03C9473
24	5amp e5	1./211594/2	0.012508273	1.692855089	0.00445724	0.0044572
28	5amp #/	1.658254862	0.075422883	1.629941479	0.026935744	0.026935
32	5amp e8	1.682245612	0.051432133	1.653932229	0.018358619	0.0183580
45	5amp -e 9	1.64487548	0.088801265	1.616553097	0.031714738	0.031/14
Avera ge		1.671318399	0.062359346	1.643005015	0.022271195	0.022271
5D		0.025707792	0.025707792	0.025707792	0.009181354	0.0091813
f	-0.42	Calc I			Absorbance of bis	
b (chi)	10		(A . X 1000 -	(4.XV) AS	Apportance of sal	mple
A_420 (nm)	0.028313383	mg ($J_v/L = \frac{(n_B \wedge 100)}{L}$	$(A_S \times V_T)$ v	Iotal V of sample	+ ind go = $3C_{\rm c}$
$A_8_(nm)$	1./336///45	~	f X V	sXb v_s	Volume of sample	e – 20mL
V_s (mL)	20				Pathlength of cel	. n cr*
V_t (mL)	0-E	Calc II		100	*Used 30	
			100 X	14		
			$mg O_y L = \frac{100 \times f \times b}{f \times b}$	ΔA	change in sample	
			J X b		Volume of sample	e – 20 m.
				100	*Used 3O	
				100	*Used 3O	
0.035				100	*Used 3O	
	1		+		*Used 30	
			t		*Used 30	
		$\overline{\gamma}$	~ /		*Used 30	
			\wedge		*Used 30	
			\wedge		*Used 30	
(1) 0.03 0.025 0.02			\mathcal{N}		*Used 30	
(1) 0.03 0.025 0.02			$\overline{\bigwedge}$		*Used 30	
(1) 0.03 0.025 0.02			\bigwedge		*Used 30	
(1) 0.03 0.025 0.02			\mathcal{N}		*Used 30	
(1) 0.03 0.025 0.02			\bigwedge		*Used 30	
(1) 0.03 0.025 0.02			\bigwedge		*Used 30	
0.03 0.025 0.02 0.015			\bigwedge		*Used 3:0	
(1) 0.03 0.025 0.02			\bigwedge		*Used 30	
0.03 0.025 0.02 0.015 0.015 0.015 0.005 0.005			, 30		*Used 30	
0.03 0.025 0.02 0.015 0.015 0.015 0.005 0.005	0 10 T	20 me (minute	√ √ √	40	*Used 30	
0.03 0.025 0.02 0.015 0.015 0.015 0.005 0.005					*Used 3:0	
0.03 0.025 0.02 0.015 0.015 0.015 0.005 0.005		me (minute	s)		*Used 30	
() 0.03 0.025 0.02 0.015 0.015 0.015 0.005 0 0 Figure 1. Ozor	Ti	me (minute	s)		*Used 30	


	Wavelength (nm)	600	-		mg O3/L	mg O3/L	
Time (min)	F20	0.04/3/18	Delta A	Delta A (blank	-	-	
	Baseline	0.5286352	(baseline)	HZO)	Calcil	Cale II	
0							
ą	Samp e1	0.4680115	0.066623705	0.42063974	0.01664	0.01664	
ų	5amp e2	0.4697518	0.058873415	0.42239003	0.01557	0.01557	
12	Samp e3	0.4608592	0.067755041	0.41349741	0.01/93	0.01/93	
15	5amp e4	0.4390555	0.089578718	0.39168473	0.0237	0.0237	
20	Samp e5	0.4515905	0.077044696	0.40421875	0.02038	0.02038	
24	5.amp 45	0.4560547	0.072570473	0.46869297	0.0192	0.0192	
28	Samp e7	0.4570255	0.071608722	0.40965473	0.01894	0.01894	
32	5.amp e8	0.5387744	0.010139227	0.49140267	0.00268	0.00268	
35	5amp 49	0.4658599	0.062775254	0.41848819	0.01661	0.01661	
40	5amp e10	0.4221821	0.106453091	0.37481035	0.02815	0.02815	
리리	5amp e11	0.4489923	0.079642922	0.40162053	0.02167	0.02167	
48	5amp e12	0.4567754	0.071859807	0.40940364	0.01961	0.01961	
52	5amp 413	0.4618115	0.066823721	0.41443973	0.01768	0.01768	
55	5amp e14	0.4392901	0.089345998	0.30191835	0.02364	0.02364	
50	5amp e15	0.4490079	0.079627335	0.40163511	0.02167	0.02167	
54	5amp e15	0.4949413	0.03369391	0.44755954	0.00891	0.00891	
58	5amp e17	0.4571732	0.071452005	0.40980144	0.01891	0.01891	
72	5amp e18	0.4660919	0.062543303	0.418/2014	0.01655	0.01655	
Љ	5amp e19	0.4846096	0.0440255	0.43723785	0.01165	0.01165	
80	5amp e20	0.4759539	0.052671343	0.4285921	0.01393	0.01393	
84	5amp e21	0.4556133	0.073021918	0.40824153	0.01932	0.01932	
<u>HH</u>	5amp e22	0.4621582	0.066457047	0.4147954	0.01/58	0.01758	
Average		0.4628015	0.066755334	0.41542985	0.01/65	0.01765	
50		0.0229141	0.01992542	0.02291409	0.00527	0.00527	
				A_3	Accordance	of blank	
f	0.42	Calci			Absorbance		
b (cm)	10				Iotal V of sa	mp e + Ind g	e - 30m
∧_H2O (nm)	0.047371756	mg O ₂ /L =	$\frac{(A_B \times 100) - (A_B \times 100)}{f \times V_S \times 100}$	$s \times V_T$ V_S	Volume of a	ample - 3ml	•
A_8_(nm)	0.528635204		$f \times V_S \times$	b b	Pathlength d	of cell, in cm	
V_s (mL)	27	Calc II		100	*Used 30		
V_t (mL)	30						
			$b_3/L = \frac{100 \times \Delta}{f \times b \times}$	Δ <u>Δ</u>	change in sa	mple and of	ank abs.
		- mg C	$f \times b \times$	V V	Volume of a		
				100			


80		amp e20	0.4759539	0.052671343	0.4285921	0.01393	0.01393
84	5	amp e21	0.4556133	0.073021918	0.46824153	0.01932	0.01932
88		ampie22	0.4621582	0.066457047	0.4147954	0.01758	0.01758
werage			0.457396	0.071239211	0.41002424	0.01885	0.01885
D			0.0138354	0.013835357	0.01383536	0.00366	0.00355
entration (mg3/L)	0.03						
ligo Con	0.01).005						
	0		1				
-		0 20	40 Time (mir	60 80 nutes)	100		
_			-	-			

EXPERIMEN	T 5 [3-7-12]	Volume of ga	as per time me	easurement (ml	.; =	90	
LOW RATE Dep	emination						
	Sign. Lines Bate		Medicion Licos Dati	p.	' ași Eleo Bale		
					S.J.ale		
	Subale Reare	Historia (814) Jacob Jacob	Subale Reade	How Rate	Reader Inte	How Catta	
	Three (s)	(m) (sec)	linte (S	(01-186-5)	>)	(mi sea;	
	18 8	4 78723404	11.0	7 56302521	2.3	12 328767	
	17.8	5 05817908	15	0.473644211	2.4	12 162167	
	15.1	4 71204188	10.0	8 256880734	2.6	11.842105	
	15.2	4 6875	10.2	8 623520412	2.4	12 162162	
	18.7	4 81283472	10.8	8.3333333333	2.3	12 328767	
	17.0	5.02703208	11	8 18 8 8182	6.0	13 043478	
	10.5	÷ 6576	16.5	A 671426571	2.5%	2	
	16.6	4 50183603	11	8 18 8 8182	6.7	13 412836	
	210	4 10558504	11.7	7 602317652	3.2	12.5	
	17.0	5.02703208	11.7	7 602337652	2.1	12 616356	
AVEBACE	15.01	4.750058-6	15.92	8.2770-3322	724	12 447633	
ATT DOLLE	10.1	H. Canoare a	16.12	412710 2022	124	12 417 633	
PEGIBOMETE	LI DE APOR 210						
	6 6E91885,6						
Mading 1		Meduar Flag					
	S-ow Flow Rate	Sale	Fast Flow Rate	Black (zero time)			
	Abst- Narre	Absr- Farre	Abst- Farre	THE PERSON AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI			
Sample	(0.00)	0.00	0100	Absr- Name (http:			
1	0.46	0.53	0.51	0.635			
2	0.44	0.53	0.53	9.6			
3	0.44	0.57	0.51	0.61			
AVERAGE	0.446656567	0.52666667	0.516656567	0.615			
50	0.011547005	0.0057735	0.011547605	0.618027756			
-	10.011.041.040	10.0000.000	10.00 T 1.000 C 010.0	alariyo 177.00			
teasing 2		Meduat Haw					
Sample	Show Frow Rate	Rate	Hast Flow Rate	Slack (zero time)			072
1	0.47	0.51	0.40	0.645		3(65)]	11
2	0.41	0.485	0.40	0.58		A H2D (on)	r
3		-	ł	4			
	0.44	0 505	0.46	0.57		A B 1(cm)	0.615
AVERAGE	0.423333333	0.50133333	0.48	0.535		A B 2(m)	0.585
50	0.015275252	0.61896966	0.017320508	0.618027756		V \$(n')	27
Overall Average	0.435	0.514	0.498333333	0,6		Vitintij	30
Overall SD	0.017606817	0.01593738	0.024013885	0.023021729			
kaangs 1							
	Waxele ngt s	500			mg O3đ	mg 230	
Flow Rate	{nin}		Della è	Della A (blank			50
	429	٩ ١	{baseline}	H2O)	Cer	Car I	
nd /s	zero linta	0.615					
475	5-5 × F (1× 1	0 44666667	0 168333333	0 446656667	0.04453263	0.6445326	
4 75 8 28		0 44666667 0 57666667	0.168533323 0.088533323	0 446636667 0 576636667	0.04453263 0.02336861	0.6445326 0.6213586	
	S-Jw Friw I						
8 28	S-by Frier I Medium Frier 1	0 57668667	0.0883333333	0.576636687	0.02335861	0.0735586	
8 28 12 45	S-by Frier I Medium Frier 1	0 57668667	0.0883333333	0.576636687	0.02335861	0.0735586	
8 28 12 45 Readings 3	5-by Friert Medium Friert Fast Flow	0.57665667 0.51665667	0.0883333333	0.526636567 0.546636567	0.62(3986) 0.62(0141)	0.0223986	
a 2a 12 45	S-Swit-row I Merton: How 1 Hast Flow Wavelengen (only	0.52669667 0.51669667 650	0.0982333323	O 526636567 O 516636567 Della A (blank	0.02335861	0.0735586	
a 2a 12 45 Readings 3 How Rate	S-Jw Frow I Mertium Froe 1 Fast Flow W-welengen (cm), H2/2	0.52669657 0.51669657 950 0	0.0883333333	0.526636567 0.546636567	0.62(3986) 0.62(0141)	0.0223986	
8 28 12 45 Readings 3	S-Swit-row I Merton: How 1 Hast Flow Wavelengen (only	0.52669667 0.51669667 650	0.0982333323	O 526636567 O 516636567 Della A (blank	0.02(3986) 0.02(01411 obg D34	0.0223566 0.0260141 	
a 2a 1245 Readings 3 How Rate Int /s	S-Swith (will Medium How 1 Hast Flow Wavelengen (on), H2/S Res Silm a	0.52669667 0.51669667 650 0 0.585	n pagasasga n pagasasga n pagasasga n paga a	0 576636687 0 516636687 Della A (blank H20)	0.02(3666* 0.02(01411 mg D30 Car	0.0225986 0.0280141 org 030 Car 1	
8 28 12 45 Readings 3 How Rate Inl 75	S-ow Frow I Medium Frow 1 Fast Flow Wavelengen (on), H2:0 Response S-ow Frow 2	0.52666657 0.516666657 950 0.585 0.585 0.4233333	0.088533385 0.008333383 Della A 0.161636667	0 576636667 0 516636667 Della A (blank H2O) 0 473513333	0.02(3686* 0.02(01411 mg 030 Car 0.04(26808	0.0225986 0.0280141 019 030 019 030 0.042790	
a 2a 1245 Readings 3 How Rate bil /s	S-Swith (will Medium How 1 Hast Flow Wavelengen (on), H2/S Res Silm a	0.52669667 0.51669667 950 0 0.585	n pagasasga n pagasasga n pagasasga n paga a	0 576636687 0 516636687 Della A (blank H20)	0.02(3666* 0.02(01411 mg D30 Car	0.0225986 0.0280141 org 030 Car 1	

7 451 Malaine


Appendix E. Membrane Filtration Experiment 1 - Control Samples

Appendix F. Membrane Filtration Experiment 2

Appendix G. Expense Report

Expense Report:					1				
Sendo.	Due Onlered	Catalog -	Iran Besermina	L nit	Quart	Uni	t est	loca	d Cos.
MeMuste -Curi	NO .2	-123 I T21	beomenty Clear Vilass Jud Ecz. (80 ml : 2-1 § - Base Diameter, 1-7 8) Height	գե	1	6	3.9.	j.	3.3.
Skálaste-Ora	S 5 12		Feoretary Clear Glass Juz-Joz, 112 ml, 200 st. Buse Drameter, 200 87 Height	46	1	4	5.25	У	3.25
Skålaste -Can	S 5 12	-031172	beomeny Clear Olass Jac 60a, 180 ml, 26 8° Base Diameter, 3-, 8° Height	46	1	ġ.	355	5	3.55
MeMaste -Can	\$5.2	-1231123	Isconceny Clear Glass Jar Son 250 ml, 2-7 t° Base Diameter, 3-, 2° Height	-şb	1	ŝ,	3,99	5	3,99
MeMaste -Can	\$5.2	75 KA-7.	M. Expuriose bilicore statiest e - seal mt.2.307 Tube. Translavent	գե	1	5	537	é	5,37
MeMuste -Cari	\$5.2	-1231121	Isomeny Clear Glass Jac Joe 60 ml. 2-1 81 Base Diameter, 1-7 81 Height	sti-	1	6	3.0.	5	3.1.
Skåluste-Cita	< 5 <u>.2</u>	-1231122	Issuments Clear Olass Jac 302, 115 art. 2-3 af Base Diameter, 2-5 8f Heidin	են	-		3.25	5	3.25
McMace (Can	< 5 P	JUSTED -	Isameny Clere Olass better 180 mL 2-5 x" Base biometer 3 - X" Height	-14	1	ŝ,	344	5	335
Meldaste -Cari	< 5.12	4231723	beomeany Clear Glass Jac Soci 250 and 257 6° Base Diameter, 35, 2° Height	чĻ.	1	6		44	3.99
MeMarke Care	< 5.12	72 KA 7.	M. Equations filling a Adheory - Sad int 2.5 or Tube. Turnshire at	dij.	1	ς	527	14	5,37
McMarker-Care	95.2	#2:3e4C11	302 11 High-Verlage Wile, 22/WWO.01,111 OD, 17000 MDC, White	n.	1	ŝ,	1.2.	1	7,54
Skálaste -Cari	45.2	e73e71762	Corrosio (dies sam, 39) ad Woven Wile 1 Ich var Mes e 8.023) Wile Diameter, 121 s121 sheet	46	1	\$	7.32	5	7,52
Seguitar Aldrich	548.2	254587-16	Potassium Faligestris (France (19.1)	arach.	1	6	12.70	ۆ	42.70
Sleiduste -Ciri	\$ 20.12	296.0K-L	High-Press the Vacuum Poly enzylence Labring 1, 91 (D. 1977) OD (1977) Well (Press), Wildle	11		4	9.14	3	5.80
Skåluste-Cita	< 201.2	≤ssK25	Push-in Greenment 4" (D. 1, 2" OD-11,6" Tils for 3 5" Dis Panel Hole, preks of 199	P.B.A	1	6	5,66	5	5,56
Skálaste -Can	< 201.2	82%eK14	302 Depice F High-Voltage Wise 20 AA (), 1251 OD 1500 V DC, White	Ű	5	Ň,	1,98	5	- L. S.
Meidaste -Cari	\$ 201.2	Ss%K17	Posh- a Greenster I & ID, 1132" GD, 1 & "LLL fas 346 "Dis Panel Hole, packs 100	p.s.s.	1	ŝ,	362	5	3.52
MeMaste -Can	\$ 2012	7-work by	Insulated Burnel Querks Disconnect Leminal Standary Female, 22(1): XV 0, 25" W X:072" The Jab (preck) of 10	p.a.s.	1	<u>6</u>	2.99	5	2.9
Meåluste -Cité	S20.2	746KM	Insulated Barrel Oursk-Disconnect Leminal Standary Male, 22-18 AW/A, 251 W S (082) This Tak, packs of 10	(2.8.5)	1	6	2.99	1.03	2.79
MAIney (Circ	< NJ - 2	JUSTIS	Issum my Chen Chuss has 22 az 1 Ottomi 3-5-4 Based Kimmera (5-5-8) Height	inen.	1	ŝ,	i in	<u>۲</u>	ŝ ŝe
Neillacte -Cari	1.15.13	305. K.12	Stainlass Steel Rolls - Stele Annenlad (Temper 121 a 10 f)	ndl	1	ŝ.	2\$30	5	28.40
MeMarte Cari	1.15.13	71625.068	Pape Repuie Tane 2° a S 🚖	ndl	1	Б. –	15.00	\$	15.00
McMarter-Can	1.15.13	9728TH	202. F. Haghebechage, Haghel Lee, Witz, Markowski Annaps.	n.	127	4	1768	3	23.50
Skálaste - Can	1.13.3	-1231T27	beomeny Clear Olass Jac 32 as, 10000ml, 3-8-4 Jacse Diameter, os 3-87 Height	Le a	1	4	3.30	3	3,56
Seguitar Aldrech	1.15.13	254587-16	Potassium Falipoteis (Fonate (FC))	11ach	1	۹.	42.70	÷	42.70
Sepúta-Aldricci	2.29.13	1322-123	Milla pers, Sterahl, al Cataoñ systerá	ple	I		176.60	3	-426.40
Seguito-Aldrech	2.201.3	476570	Peti-P.a. editade dish system	بياح	1	6	Sex0	é	. સંદર્ભા
Segurar Aldreich	2.201.3	2355534	Filler namhaacs óg merekid enryses	rle.	1	6	49.30	5	-ab'g0
			Tr. ms/ormer	46	1	ġ.	26,00	5	-26.00
			Air Pame	plu -		<u>6</u>	1200	5	12.00
			An Pump-Tubing	rle	1	6	1.00	Sec.	10
			Witza	بياح	1	λ.	1,00	5	10
						<u> </u>	Goul.	5	350.56

Appendix H. Purchase Request Forms

Order Form 1 (9/6/2012):

										SC #						
					PURCI	HASE RE	EQUE	ST		PO #						
	Vendor Inf	ormatio	on									De	liver 1	o:		
Vendor:	McMaster-Car	r		Ρι	irpose/Speci	fic Bene	fit to t	he Project:		Name:						
Contact:	http://www.mc	master.c	om/	Thes	se materials will b	be used to	help de	velop an ozone) -	Buildin	a:					
Address:	200 New Cante			pro	duction unit. The	0			r	Room:	Ŭ					
	binsville				disinfection of c	ontaminate	ed drink	ting water.		Phone						
		ZIP: 086	91-2343							Email:						
	9) 689-3415 / (6			-						Profe	seor.					
	9) 259-3575 / (6	,		-						11010	3301.			Sp	ecial Sl	hipping
	· · · · ·	03) 003-			1										nstruct	
Account In			• •	ccount #		-			ct Peri			ount				
Fund	Cost Ce	nter	Intern	al Order	G/L Account	\$ Amoun	nt or %	Begin Date	Exp	iration	Bal	ance	Date			
														_		
CATALOG #	4			SCRIPTION							UNIT	QUAN		COST	TOTA	L COST
	r		å		· · ·								-		-	
4231T21					2oz. 60 mL, 2-1/						qty	1	\$	3.01	\$	3.01
4231T22					4oz. 125 mL, 2-3			· · · · · · · · · · · · · · · · · · ·			qty	1	\$	3.25	\$	3.25
4231T72					6oz. 180 mL, 2-5			· · · · · · · · · · · · · · · · · · ·			qty	1	\$ \$	3.55	\$	3.55
4231T23		ECO			Boz. 250 mL, 2-7			· · · · · · · · · · · · · · · · · · ·			qty	1	ծ Տ	3.99 5.37	\$ \$	3.99
7545A471 4231T21					Adhesive / Seal		,				qty	1	ծ Տ	3.01	ծ \$	5.37 3.01
4231121 4231T22					2oz. 60 mL, 2-1/ 4oz. 125 mL, 2-3			· · · · ·			qty qty	1	э \$	3.01	э \$	3.01
4231122 4231T72					60z. 125 mL, 2-5 60z. 180 mL, 2-5			· · · · · · · · · · · · · · · · · · ·			qty	1	э \$	3.55	э \$	3.55
4231T23					Boz. 250 mL, 2-7						qty	1	φ \$	3.99	φ \$	3.99
7545A471		LCO			Adhesive / Seala			· · · · · · · · · · · · · · · · · · ·			qty	1	\$	5.37	\$	5.37
8296K11					/ire, 22AWG, 0.1						ft	4	\$	1.91	\$	7.64
85385T702	2 Corro	sion-Res			Wire Cloth 9x9 M				12" Sh	eet	qty	1	\$	7.52	\$	7.52
REQUISITIC											1 17		<u> </u>		\$	53.50
	ct require animal & car	e approval?	YesN	olf yes, p	lease provide PACUC #	¥:										
Dept. Head	1					Busine	ess Offic	ce Use Only:				Car	d#			
Advisor/PI						Conf#										
	Signature				Date	Trans	חו#									
						Tians	10#					Red	concileo	1:		
Comptroller:						Ref. D	oc#					Red	ceived:			
Chemica	Signature				Date											
Order																
	Signature				Date	Is there	a discoun	nt? Yes No	(Fill out the F	orm 41B)	lf educat	ional dis	count, tra	ck intern	ally.
Order	r i i i i i i i i i i i i i i i i i i i					Hasane Accts, D	quipment esired fo	screening been co or all other account	mpleted? s)?	Yes	No	(Req	uired for	>=\$25,00	0 on Spo	nsored
Placed By:						Hasthe (Require	Request f ad for all	or Waiver of Com single source acqu	petitive E lisitions :	lidding docu ≽=\$10,000).	ment beer	n complete	d? Yes_	N	,	
	Signature				Date			ocumentation from			purchase	(signature	, email, o	ther)?

Order Form 2 (9/18/2012):

										SC #						
					Р	URC	CHASE REC	UEST		PO #						
		Vendor In	format	ion								De	liver	To:	_	-
Vendor:		Sigma-Aldric	1		Purpose/	Spec	cific Benefit	to the Projec	:t:	Name:						
Contact		0	÷	om/united-states.html	Materials to	be us	sed in the const	ruction of summ	er	Buildin	na:					
		3ox 14508			implem	nentat	tion of filters into	o 15 schools.		Room:						
	St. L									Phone						
	мо		ZIP:	63178						Email:						
		325-3010								Profe	ssor.					
		325-5052								11010				5	Special	Shipping
		1 1 1				_	1 1									ctions
Accour				Legacy Account # _		.1.4		Projec			_	count				
Fun	d	Cost C	enter	Internal Orde	r G/L Acco	unt \$	Amount or %	Begin Date	Exp	oiration	Bal	ance	Date	-		
						_										
						_										
L																
CATALC)G #			ITEM DESCRIPTIO	N					_	UNIT	QUAN	UNIT	COS	т тот	AL COST
234087	-1G	<u> </u>	·	Pr	tassium Indigotris	sulfon	ate (1G)	· · · ·			gram	1	\$4'	2.70	¢	42.70
234007	-10			10	assiant inargotine	Sunon					gram		ψτ		Ψ	42.70
REQUIS	ITION	TOTAL													\$	42.70
Does the p	oroject i	equire animal & c	are appro val	? Yes No If ye	s, please provide PACU	C #:										
Dept. He	ead/						Business Off	ice Use Only:				Car	d #			
Advisor	/PI:						Conf#									
		Signature			Date		Trans ID#									
						_						Red	concile	d:		
Comptro	ller:	0			Data		Ref. Doc#					Red	ceived:			
Chem	ical	Signature			Date	_										
Or	der:															
		Signature			Date	_		nt? Yes No _								
0	rder						Accts, Desired f	t screening been com or all other accounts)?							
Placed	By:						(Required for al	for Waiver of Compe single source acquis	sitions	>=\$10,000).						
		Signature			Date		Is there proper of	locumentation from t	he PI ap	proving the	purchase	(signature	, email, e	other)?

Order Form 3 (9/20/2012):

									SC #						
				-	PURCI	HASE REQUE	ST		PO #						
	Vendor	nformat	ion						10#		De	liver 1	Го:		
Vendor:	McMaster-	Carr		Pu	rpose/Speci	fic Benefit to t	he Project:		Name:						
Contact:	http://www.	mcmaster.	com/	Ma	iterials to be use	ed in the constructi	ion of summer		Buildin	g:					
Address:	200 New C	anton Way			implementatio	on of filters into 15	schools.		Room:						
City: Rob	binsville								Phone:						
State: Nev	v Jersey	ZIP: 08	691-2343						Email:						
Phone: (609	9) 689-3415	/ (609) 259	-8900						Profe	ssor:					
Fax: (609	9) 259-3575	/ (609) 689	-3280										Sp	ecial S	Shipping
Account Inf	formation		Legacy Ac	count #									<u>H</u>	Instruc	ctions
Fund		Center	• •	I Order	G/L Account	\$ Amount or %		ct Peri	od iration		ount ance	Date	H		
Tunu	0031	Center	Interna		G/L Account	\$ Amount of 78	Degin Date		anation	Dai	ance	Date			
				1					1						
CATALOG #	:		ITEM DES	CRIPTION						UNIT	QUAN	UNIT	COST	TOT/	AL COST
50375K41		High-Press	ure/Vacuum	Polyethyle	ne Tubing 1/8" I	D, 1/4" OD, 1/16" \	Wall Thicknes	s, White	e	ft	25	\$	0.14	\$	3.50
9600K25		Push-ir	n Grommet 1	/4" ID, 1/2"	OD, 1/16" Thk f	or 3/8" Dia Panel I	Hole, packs of	100		pack	1	\$	5.66	\$	5.66
8296K14		3	02 Degree F	High-Volta	ge Wire 20 AWC	G, .128" OD, 1500	VDC, White			ft	6	\$	1.98	\$	11.88
9600K17		Push-in	Grommet 1/	/8" ID, 11/3	2" OD, 1/16" Thk	k for 3/16" Dia Par	el Hole, packs	s 100		pack	1	\$	3.62	\$	3.62
7060K19	-					, 22-18 AWG, .25'				pack	1	\$	2.99	\$	2.99
7060K81	Insulated					22-18 AWG, .25"			acks of 10	<u> </u>	1	\$	2.99	\$	2.99
4231T25	-	Eco	nomy Clear C	Glass Jar 3	2 oz, 1,000ml, 3-	-3/4' Base Diamete	er, 6-5/8" Heig	ht		item	1	\$	5.56	\$	5.56
REQUISITIO										L		L	-	¢	20.00
			? Yes No	M	blease provide PACUC	н.						_	-	\$	36.20
Does the projec	a require animai o	a care approvar	? res No	II yes, p	blease provide PACOC	#									
Dept. Head/						Business Offi	ce Use Only:	·!			Car	rd #			
Advisor/PI:						Conf#									
	Signature				Date										
						Trans ID#					Red	concile	d:		
Comptroller:						Ref. Doc#					Red	ceived:			
Chemical	Signature			_	Date										
Order:															
	Signature			_	Date	Is there a discour Has an equipment	screening been co	ompleted?							
Order						Has the Request f		npetitive E		ment bee	n complete	d? Yes	N	10	
Placed By:						(Required for all Is there proper d	ocumentation fron	uisitions : n the PI ap	>=\$10,000). proving the	purchase	(signature	ə, email, d	other		
	Signature				Date										

Order Form 4 (1/15/2013):

									SC #						
						PURC	FASE REQUES	Т	P0 #						
		iendor in	formetion								De	liver T	0:		
Vensior:		/dVas.er-C	arr			Pureose/Spec	ific Benefit to th	e Project:	Name:						
Contact	-		iamas"et con	d.	1				Buldin	en:					
Address		60 Year Ce							Room:						
Crty:		Installe							-Thome:						
State:		Jersev	ZIP: 086	91.9343	Please us	se the EEE account	: 2101000-4140240	17 (grant money)	Email						
Phone:			(309) 259-8							MENOIT:					
Fex:			(309) 889.3						11 Ser				5	Special St	hunina
	<u> </u>		i silaj narava.		ļ	· · ·			_				8.	hstrud	
Account				Legacy Acco				Project			ount		Ц.		
Fun	ø	Cost	Cente-	Interna	Orcer	Ø.L Account	S Amount or %	Begin Date	Expiration	Bal	ance	Date	-		
CATALO	6.4			ITEN DESC	RIPTICN					UNIT	QUAN.	UNIT	coar	Тота	L COST
32548										- sour-	1	325		3	
				Stati	비생님님 (이상원님)		led) Temper 127 v 10 Maria a	7.0						3	28,90
74635. 96201				20	Die Jude V	Pipe Repair Type 2 Islama Mask Flag W	r xon. Ne 30 AW8, ≵Amps	-		tion t	20	515		a S	15.0C 29.6C
42311							34' Base Diameter.			lem.	1	55.	_	\$	20.00 5.56
942.011	120		1			32 02 1000ml, 34	3** BASSE LAARPESET.*	s-aro maigh:		IWM		<u>50.</u>	36	\$	9 39
														÷.	-
														ŝ	
REQUISI	THERE I	DOCTA I											1	s	79.06
		no est. In senit é se			18	carete (SEO, C.B.								- 4	7 05.049
and the fit	e e e e e	ine venine é ten	e agigi tacal ki nive	25	Loter becase to	Condition (Coll 1997), 18									
							Business Office	Leo Ochr			Lar	리설		_	
Dept. H Adviso							Canité	1 Coo Only.							
Acivise	877 -1	6 resaure				7.70									
		Co. B. Samples				0.0	Trans ID#				Rec	beioro			
Comptre	alar						Ref. Doo#								
	_	System				- ete					Rec	eved:			
Lher O	n ca Ister, l														
		Constance				"ete	† 1								
							IN THE R A CROCK THE TWO	No. (Figure Processing)	national second the	rimay					
Order Pla	By B						House to an end so service	reachana an Alian Sha							
1	wy	System			-	7636		r Sanger han di Pring Perantak se n han ma Ring enving megandar			r fa ar -aighisi 1	er er er sjondelige	m vitalita		

Order Form 5 (1/15/2013):

									SC #						
						PURC	HASE REQU	IEST	PO #						
	Vendor in	formation									De	Iver	To		
ender:	Some-Attra	h			<u>Purpo</u> ;	e/3pec	ific Benefit b	o the Project;	Rams:						
	Www.sicama		n ted-slates	html					Build no	5:					
deiress: PO									Reem:						
	Louis				Please use the	EEE aco	win": 21010004	14924017 igran.	Phone:						
itater MC		7IP-	63178		тегму)			-	Finall						
hone: 600	-325-3010								Profe	ssor:					
	325-5052												3	pecial Sh	
Account Infe			Lecacy Acc	ountel	· · · ·			Project P						his.ruct	ons
Fund		Center		rnal Order	G/LAcc	cunt S	Amount or %		eriod Expiration		ance	Date			
ATALOG#			ITEM DES	CRIPTION		-				UNIT	QUAN	UNIT	COST	TOTA	. CDS
234387-16				Po	olassium insigol	keul formet a	⊧1G)			gram	1	\$4	2.*0	54	2.70
234367-16				Pc	olasian umi imiligiol	keulifo net.a	⊧1G)			gram		54	2.70	51	270
				Po	kopiterni munetalo	tecifo net.a	⊧11G)			gram			2.70		
EQUISITION						tecifo net.a	⊧11G) 						2.*3	51 5	
EQUISITION	N TOTAL open senal ¢ ne	• appreant * • • •	чіг.		olasian umi limitikgol erusel - Millig J A	keulifo net.a	▶ I1G)					54	2,*3		
EQUISITION Secure page 4 a	oline actory 5 are						Business Office	a Use Only:					2,*3		
EQUISITION Sector page 1	oline actory 5 are		ų,.				Business Office	a Use Oniy:							
EQUISITION Sector property Cept Heart. Advisor (21)	2.0.4019		Vi.		or4- 1912, 3 هـ مربع المربع الم		Business Office Conf#	a Use Only:			Rec				
EQUISITION Sector property Cept Heart. Advisor (21)	ogan wood para Signatus Bignatus	·	¥		ard. MIN, j A		Business Office Conf# Trans IC#	a Use Only:			Rec	d #			
EOUISITIO Dept Heart Advisor®1: Campbolie: Chemical	2.0.4019		¥i.,		or4- 1912, 3 هـ مربع المربع الم		Business Offici Conf# Trans ID# Re1: Dox#				Rec	d #			
EQUISITION Degree papel & Cept Beart Actives/201 Campbolier: Chemisal	2 duferres 2 duferres 2 duferres 2 duferres		ų,,		ard. MIN, j A		Business Office Conf# Trans ID# Ref: Doc#				Rec Rec	crele:	1:	\$	42.7

Order Form 6 (2/12/2013):

	68	endor Infi	ormation											De	liver i	Fo:	
ender:	SI	gna-Abrich				Furp	ose/Sp	ecific Be	enefit te	o the Project:		Rame:					
ontact: 1	http://w	www.skymaa	kinsh.com/u	in tell-slates h	ntmi							Build n					
ddire se i	PO Bo	x 14508										Room:					
ity:	St. Let	JI S				Please usa I	he EEE ;	account: 21	1010004	14924017 igram	. [Phone:					
itate: I	MC		7IP-	63178		money)				-		Fmail					
hone. (666-32	20-3010										Profe	38UI.				
ax: 1	800-32	25-5062														S	secial Shipping
Account	híana	ator	-	Legacy Accu	aunt #					Eroia	t Perio	4	0.00	ount			histructions
Fund		Cos: C	Center		nal Order	Q/LA	occunt I	5 Amoun	ntor%	Begin Date		ration		ance	Date	-	
			1			<u>г т</u>											
ATALOG	5#			ITEM DESC	RIPTION						1		UNIT	QUAN		COST	TOTAL COST
Z35646						ilipore Sterri							pig	4		16 6C	\$426.43
	ED												ole:		\$	36.50	\$38.80
06574 738883						Petri-Fadicult membrahes I			۹				pika	1	\$	30.30	\$90.30
									14					1			
REQUISIT	34 FION TO				Filter	me mbranes, l			1 4	1							
ZISERO	34 FION TO	OTAL No wrat 2 mai	ngger-salt sav	Nr.		me mbranes, l			۹. 								\$90.30
EQUISIT Does the proj Cept. He	74 FION TO path segme and			νμ. 	Filter	me mbranes, l		ani araiyar		s Use Only:					\$		\$90.30
EQUISIT	34 FICON TR part segure parts			чр. 	Filter	me mbranes, l		Busine	ess Office	s Use Only:					\$		\$90.30
EOUISIT	34 FICON TR part segure parts			чр., 	Filter			Busine Conf#	oss Office	kUse Only:				Gur	\$		\$90.30
ECUISIT ECUISIT Past of gray Equil. He Artelent	icon tre pet aques acti (=):	Bigmenare		чр.,	Filter	nembranes.		Busine	oss Office	s Use Only:				Car	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$90.30
ECUIST Control of the second s	FION TO pert arguest (O) - color: Iter:			VP	Filter			Busine Conf#	oss Office	a Use Only:				Car	S.		\$90.30
EOUISIT Control (1977)	icon Tr pet sopre add (a) ter:	a and a na Dgranae Sgranae			Filter	nembranes. - ads. doit. ; e - heto - heto - heto		Busine Conf#	oss Office	s Use Only:				Car	S.		\$90.30
ECUIST Control of the second s	icon Tr pet sopre add (a) ter:	Bigmenare		V/rs	Filter	nembranes.		Busine Conf# Trans I Ke'. Lt	ass Office IC# कर्म					Car	S.		\$90.30
ECUISIT Des Carego Carego Chemico Order Press	34 FION TX path super path super	a and a na Dgranae Sgranae		Ур. 	Filter	nembranes. - ads. doit. ; e - heto - heto - heto		Busine Conf# Trans I Kets arte	iss Office IC# Qu#	en ald mathe Perce			nerdy	Cur Rau Rau	scived:		\$90.30

Order Form 7 (04/01/2013):

								5	6C #							
					PUR	RCHASE REQ	UEST		PO #							
	Ve	endor Ir	formati	on				ľ	0 #		De	liver	To:			
Vendor:		her Scien			Purpose/Sp	ecific Benefit t	to the Project:	٦	Name:							
Contact	http://w	ww.fisher	sci.com/e	comm/servlet/cmstatic					Buildin	na:						
Address									Room:							
	Pittsbu				Please use the EE	E account: 21010	00/414024017 (gran	nt	Phone	:						
	PA	7	ZIP:	15275	money)				Email:							
Phone:	1-800-	766-700	2						Profe	ssor:						
		926-116											T	Spe	cial Sh	ipping
Account		-	-	Legacy Account #	· · · · · · · · · · · · · · · · · · ·								=	In	structio	ons
			Se un des u	• •		¢ Amount or 9/	Project Pe				count	Data	-			
Fund	a	Cost C	enter	Internal Order	G/L Account	\$ Amount or %	Begin Date Ex	cpi	ration	Ба	lance	Date	-			
	_									-						
										-			-			
L									1				4			
CATALO	G #			ITEM DESCRIPTION						UNIT	QUAN	UNIT	CO	ST 1	OTAL	COST
09-720-50	01LC			Petri	Dish Pad 47mm St	erile 150/pk				pk	1	\$60	0.38		\$60	.38
															-	
										<u> </u>	<u> </u>	L				
REQUISI	TION T	OTAL					· · · · · ·	_	1					1	\$	60.38
Does the p	project requ	iire animal & c	are approval?	Yes No If yes,	please provide PACUC #: _			+								
						Business Offic		_				rd #				
Dept. He Advisor						Conf#	ce use Only:					iu π				
Auvisoi		ignature			Date											
	5	ignature			Date	Trans ID#					Re	concile	d:			
Comptrol	ller:					Ref. Doc#						11.				
Chem	S	ignature			Date						Re	ceived:				
	der:															
	S	ignature			Date	Is there a discour	.t? Yes No	(F	ill out the F	Form 41P) If educe	tional dis	scour	t. traci	k interna	llv.
Or	rder					Has an equipment	screening been complete r all other accounts)?									
Placed						Has the Request f	or Waiver of Competitive single source acquisition			iment be	en complet	ed? Yes		_ No		
	S	ignature			Date		ocumentation from the PI			purchase	e (signatur	e, email, c	other)?

Order Form 8 (04/23/2013):

											SC #						
				Ħ	Р	URCH	ASE F	REQUE	ST		PO #						
	Vendor II	nformatie	on										De	liver 1	To:		
Vendor:	McMaster-C	arr		Ρι	urpose/s	Specifi	c Ben	nefit to t	the Project:	<u>:</u>	Name:						
Contact:	http://www.r	ncmaster.c	:om/	Items fo	or the next	version o	of the o	ozone gen	nerator. Investig	gating	Buildin	ia:					
Address:	200 New Ca	nton Wav			0			0	usage. The mu		Room:	<u> </u>	4				
	bbinsville			to find	a suitable		tive to ti eps oxic		t diffuser rock	that	Phone:						
	w Jersey	ZIP: 086	91-2343	-		KCC	,p3 0xic	Jiznig.			Email:	<u>. </u>					
	9) 689-3415 /			-							Profe	seor.					
	9) 259-3575 /	. ,		-							FIDIE	3501.			Sr	ecial S	Shipping
	1 ⁻¹ 1 1	(003) 003-						,								Instruc	
Account In				Account #						ect Per	iod	Ace	count				
Fund	Cost (Center	Intern	nal Order	G/L Acc	count 3	\$ Amo	unt or %	Begin Date	Ex	piration	Bal	lance	Date			
CATALOG	#			SCRIPTION								UNIT	QUAN		COST	TOTA	AL COST
			·														
5236K503				ber Tubing V								ft ft	10	\$ \$	1.40		14.00
5236K501					• •				1/64" Wall Thk			π ft	10	ծ Տ	1.06	•	10.60
5054K808 5041kK532									1.5 mm Wall	1	255	π ft	10 10	ծ Տ	1.77		17.70 12.20
5054K325	-			*					Wall Thk, Blue			ft	25	э \$	1.22	•	27.25
8535T11	- V			Fitting, 1/8" IE				1.5 mm	Wall TIK, Diue	, 		item	-	э \$	4.83		4.83
8534T23	_	Ū		onnect, 1/4" (Ū	_					item	1	\$	8.73	•	8.73
8296K11		U U		re 22 AWG, .		U U		White	-			ft	15	\$	2.01	\$	30.15
REQUISITIO		<u>st tiight t</u>	onago min	<u></u>		10.000						<u> </u>		<u> </u>		\$	125.46
	ct require animal &	care approval?	Yes N	No Ifves	please pro vide	e PACUC #:										÷	
Dept. Head/	/						Busi	iness Offi	ice Use Only:	-			Car	rd #			
Advisor/PI:							Cont	f#									
	Signature				Date		-	ID #									
							- Iran	ns ID#					Red	concile	d:		
Comptroller:							Ref.	Doc#					Re	ceived:			
Chemica	Signature				Date								1.00	Joivou.			
Order	:																
	Signature				Date				nt? Yes No t screening been co								
Order							Accts	s, Desired fo	or all other accoun for Waiver of Com	nts)?						-	
Placed By:							(Requ	uired for all	single source acquiocumentation from	uisitions	>=\$10,000).						-
	Signature			<u> </u>	Date			ere proper d		i i ne Pía	pproving the	purchase	signature	2, email, c	ruer		