
Application-specific configuration selection in the
cloud: impact of provider policy and potential of

systematic testing

Mohammad Hajjat†, Ruiqi Liu⋆, Yiyang Chang†, T. S. Eugene Ng⋆, and Sanjay Rao†

†Purdue University, ⋆Rice University

Abstract—Provider policy (e.g., bandwidth rate limits, virtu-
alization, CPU scheduling) can significantly impact application
performance in cloud environments. This paper takes a first
step towards understanding the impact of provider policy and
tackling the complexity of selecting configurations that can best
meet the cost and performance requirements of applications.
We make three contributions. First, we conduct a measurement
study spanning a 19 months period of a wide variety of
applications on Amazon EC2 to understand issues involved in
configuration selection. Our results show that provider policy
can impact communication and computation performance in
unpredictable ways. Moreover, seemingly sensible rules of thumb
are inappropriate – e.g., VMs with latest hardware or larger VM
sizes do not always provide the best performance. Second, we
systematically characterize the overheads and resulting benefits
of a range of testing strategies for configuration selection. A key
focus of our characterization is understanding the overheads of a
testing approach in the face of variability in performance across
deployments and measurements. Finally, we present configura-
tion pruning and short-listing techniques for minimizing testing
overheads. Evaluations on a variety of compute, bandwidth and
data intensive applications validate the effectiveness of these
techniques in selecting good configurations with low overheads.

I. Introduction

The performance of applications in public cloud envi-

ronments is influenced by policy decisions made by cloud

providers such as (i) bandwidth rate-limits, imposed on virtual

machines (VMs) to control network utilization; (ii) VM pack-

ing decisions, which determine how many VMs are packed

into a given physical machine; and (iii) CPU scheduling

policies, which determine when and how often a VM must

run, and whether all virtual CPUs (vCPUs) of a VM with

multiple vCPUs should run concurrently.

Cloud providers typically support multiple configuration

options (e.g., VM sizes). Further, modern cloud datacenters

(DCs) exhibit significant hardware heterogeneity in terms of

multiple models of CPU, disk, network interface, and mem-

ory [12], [19]. Policy decisions may be made at the granularity

of individual configurations (VM size and hardware). For

instance, rate limit and CPU scheduling policies are often

different across VM sizes.

While cloud provider policy is likely to significantly impact

application performance for a given configuration, there is

little public documentation about policies. The choice of

configuration (both VM size and hardware) for an application

affects not only its performance, but also its cost – ideally, de-

velopers would like configurations that meet their performance

requirements at acceptable costs.

This paper seeks to shed light on the interplay among

provider policy, configuration choice, and application per-

formance. To this end, we perform an extensive measure-

ment study on Amazon EC2 over multiple applications. Our

measurements span a 19 months period from 2012 to 2014,

and include bandwidth-intensive applications in inter-DC and

intra-DC settings, a variety of compute- intensive applica-

tions, Cassandra [8] (a popular key-value store) and MPI-Fast

Fourier Transform (a network and CPU intensive application).

Our measurement approach has been guided by pragmatic

constraints. First, academic budget constraints have led us

to be selective in terms of the configuration space to test,

rather than exploring all provider offerings. Our measurement

study has already cost several thousand dollars. Second, we are

required to adopt a black-box approach in interpreting our find-

ings given limited support from the cloud provider. We have

attempted to circumvent this to the extent possible through

information publicly available on provider forums (e.g., [2],

[3]), and by conducting numerous auxiliary measurements that

allow us to better explain our findings.

Findings: Our measurement study reveals that cloud provider

policy indeed impacts the relative performance of different

configurations in surprising ways. Specifically:

• Different rate limiting policies are employed across hardware

generations even within VMs of the same size, potentially

because of the complexity of updating policy for older hard-

ware. Larger VM sizes may not necessarily see higher rate

limits since they may be provisioned with more conservative

statistical multiplexing assumptions.

• VM packing policies, and their interaction with hardware

features (e.g., hyper-threading) can lead to significant diversity

in inter-DC TCP throughput across different receiver CPU

types of the same VM size.

• The relative performance of configurations for CPU intensive

apps is only partially explained by compute resources (CPU

model, RAM). In some cases, larger VM size performs con-

sistently worse than smaller VM size, potentially due to the

interaction between CPU type and CPU scheduling policy.

Systematic configuration selection: Motivated by these find-

Virtual CPU RAM Net perf Hourly cost
Small 1 vCPU / 1 ECU 1.7 GB Low $0.044

Medium 1 vCPUs / 2 ECUs 3.75 GB Low $0.087
Large 2 vCPUs / 4 ECUs 7.5 GB Moderate $0.175

Extra large 4 vCPUs / 8 ECUs 15 GB High $0.350

TABLE I
GENERAL PURPOSE VMS (M1) IN EC2.

CPU Speed Cache Release Cores Hyper
(GHz) (MB) -threading

A E5430 2.66 12 Q4 2007 4 No
B E5645 2.40 12 Q1 2010 6 Yes
C E5507 2.26 4 Q1 2010 4 No
D E5-2650 2.00 20 Q1 2012 8 Yes

TABLE II
CPU TYPES (ALL INTEL(R) XEON) FOUND IN AMAZON AWS

DCS (NORTHERN VIRGINIA AND CALIFORNIA).

ings, and using data that we collected, we systematically

evaluate strategies for configuration selection across a range

of applications. Our evaluations seek to characterize (i) the

effectiveness of the techniques in choosing configurations that

could best meet the performance and cost requirements of an

application; and (ii) the costs that the techniques incur.

The strategies we evaluate include (i) PerConfig, a technique

that inspects all configurations; (ii) iPrune, a technique which

conservatively prunes options for each configuration dimen-

sion (e.g., VM Size, CPU type) in an iterative fashion based

on aggregate performance of all configurations which involve

that option; and (iii) Nearest neighbor (NN), a technique which

short-lists potentially better performing configurations for an

application based on the performance testing results of other

applications that fall within the same general class. NN could

then be combined with PerConfig or iPrune to test the short-

listed configurations and pick the best among them.

Evaluations confirm the effectiveness of our techniques

while keeping overheads acceptable. iPrune reduces the num-

ber of tests by 40%−70% across a wide range of applications

while picking configurations that perform within 5% of the

best. NN when tested on a mix of CPU-intensive applications

as well as a distributed CPU and communication-intensive

application, selects a configuration that performs within 20%

of the best with no testing on the target application; accuracies

improve to within 6% of the best when the technique short-

lists 4 configurations and is combined with PerConfig to pick

the final configuration.

Our contributions in this paper include (i) a deeper under-

standing of how cloud provider policy impacts performance

of cloud configurations; (ii) our extensive measurements of a

real-cloud deployment, and the insights gleaned - we intend

to release our data under an open source license to the

wider community; and (iii) our techniques, and a systematic

characterization of their overheads and accuracies, which

represent an important first step towards application-specific

configuration selection in cloud environments.

II. Measurement methodology

Our study is conducted in the context of Amazon EC2

public cloud. We mainly use US-East (N. Virginia) and US-

West (N. California) regions for our measurements. We use the

general purpose M1 VMs in our experiments (summarized in

Table I) since they were widely used as the standard instances

throughout our study. While Amazon started offering M3

instances as the standard recently (late January 2014), M1

instances continue to be supported and used widely, and our

methodology is generic and can be extended to other instance

types as well. There are four CPU types that we could find

in both regions for all VM sizes, summarized in Table II.

We consistently refer to the CPU types by the abbreviations

A, B, C, and D throughout the paper. When convenient,

we abbreviate VM sizes as S, M, L and X denoting small,

medium, large, and extra large, respectively.

Amazon uses the notion of EC2 compute units (ECU) as

an attempt to provide each VM a consistent and predictable

amount of CPU capacity [4] regardless of which CPU it runs

on. One ECU provides the equivalent CPU capacity of a 1-

1.2 GHz 2007 Opteron or 2007 Xeon processor. There is no

public documentation available on what an ECU translates to

on different CPU types and how Amazon allocates VMs to

physical processors. However, our experiments with dedicated

instances in §III-A indicate that the number of large VMs that

may be assigned to B, C and D processors is equal to the

number of cores on these processors.

It is relatively straight-forward to obtain the CPU infor-

mation of an instantiated VM using the Linux command

/proc/cpuinfo. However, we found information about

many other hardware features, such as memory, disk and net-

work interface is not exposed in virtualized EC2 environments,

and a variety of commands that we tried such as lshw and

dmesg commands did not give us sufficient information to

infer more details about other hardware information. Hence,

in this paper, we focus on CPU information.

We use iperf to measure TCP throughput between VMs

inside a single DC, and across DCs in two different geographic

regions. The window size in iperf is set to 16 MB (recom-

mended in [17], and which we experimentally confirmed to

result in the best throughput), and we sufficiently increase the

OS send and receive buffer sizes. We study CPU intensive

applications using the SPEC CPU2006 benchmark suite which

consists of 29 widely used applications (12 integer intensive

and 17 floating point intensive). These applications include

gcc, video compression, Go game player and chess player,

path-finding in 2D maps, protein sequence analysis, etc. We

measure the time for single-threaded executions per core.

We refer to a configuration as a unique combination of

choices that could be made by a user. For CPU intensive apps,

we consider every <Size, CPU> combination, where Size can

be either S, M, L or X, and CPU can be A, B, C or D. For iperf,

we consider every <Size, SrcCPU, DstCPU> combination.

E.g., SAD denotes a configuration of small VM sizes where

the source and destination CPUs are of type A and D, respec-

tively. For each configuration, we test multiple deployments

to get a statistically sound measure of performance with that

configuration. Further, we collect multiple measurements from

each deployment since the performance of each deployment

can vary depending on various factors.

For CPU intensive apps, we obtain 10 deployments for

each configuration and conduct 3 complete runs each. Small

2

0

200

400

600

800

1000
A

A
B

A
C

A
D

A
A

B
B

B
C

B
D

B
A

C
B

C
C

C
D

C
A

D
B

D
C

D
A

A
B

A
C

A
D

A
A

B
B

B
C

B
D

B
A

C
B

C
C

C
D

C
A

D
B

D
C

D
D

D
A

A
B

A
C

A
A

B
B

B
C

B
A

C
B

C
C

C

B
a
n
d
w

id
th

 (
M

b
p
s
)

 Small Medium Large

(a) Intra-DC measurements

0

40

80

120

160

200

A
A

B
A

C
A

D
A

A
B

B
B

C
B

D
B

A
C

B
C

C
C

D
C

A
D

B
D

C
D

A
A

B
A

C
A

D
A

A
B

B
B

C
B

D
B

A
C

B
C

C
C

D
C

A
D

B
D

C
D

D
D

A
A

B
A

C
A

A
B

B
B

C
B

A
C

B
C

C
C

B
a
n
d
w

id
th

 (
M

b
p
s
)

 Small Medium Large

(b) Inter-DC measurements
Fig. 1. iperf’s measured TCP throughput across different configurations. The bottom and top of each boxplot represent the 25

th and 75
th

percentiles, and the line in the middle represents the median. The vertical line (whiskers) extends to the highest datum within 3*IQR of the
upper quartile (covers 99.3% of the data if normally distributed), where IQR is the inter-quartile range. CPU type D was not available in
one of the DCs for small VMs, and in both DCs for large VMs.

VMs need 24 to 29 hours to finish a single run of all CPU

intensive apps; M, L and X VMs need 8 to 10 hours. Our

iperf experiments are more expensive since they involve a

much larger set of configurations, and inter-DC bandwidth

must also be paid for. Hence, we focus our explorations on S,

M and L VMs, and restrict ourselves to combinations where

the source and destination VM sizes are the same (i.e., a

total of 48 possible configurations). We run iperf in both

intra-DC and inter-DC settings. In each setting, we use 32

deployments for each configuration (i.e., 48×32 deployments

in total). We obtained 6 iperf measurements every hour for

each deployment, each measurement lasting sufficiently long

to obtain steady state TCP throughput. Finally, with both

CPU intensive apps and iperf, we were unable to collect data

for a small number of configurations due to the difficulty of

obtaining a CPU of desired type at the time of the experiment

and do not include them in our analysis (e.g., XA and XC

with CPU intensive apps experiments).
Our measurements started in late 2012. The insights gleaned

from initial results guided our large-scale systematic data

collection in mid 2013, which provides the primary data used

in most of our analysis. Since then, we have been collecting

data at a smaller scale on an ongoing basis (most recently

in mid 2014), which have helped reconfirm our observations.

We have also collected substantial auxiliary data – e.g., UDP

loss rate, traceroute data, and measurements using tools like

lmbench [18] – to shed deeper light on our findings.

III. Measurement Results

A. Impact of policy on intra-DC throughput

Figure 1(a) shows the variability in TCP throughput with

iperf across different configurations for intra-DC traffic. Each

boxplot includes all measurements of all deployments of a

given configuration, whose name is annotated on the X-axis.
Figure 1(a) shows that for almost all S configurations, the

TCP throughput is limited to under 300 Mbps. While Amazon

no longer provides official documentation for the rate limits

employed, our measurements are consistent with anecdotal in-

formation reported on forums [1], [7]. Interestingly, there does

0 10 20 30 40 50 60
Time (s)

400

600

800

1000

1200

1400

1600

Ban
dwi

dth
 (Mb

ps)

M
L

Fig. 2. Rate limit behavior for a typical dedicated M and L VM pair.
VMs in each pair are not co-resident on the same physical host.

exist one S configuration (SAA) which performs extremely

well, and quite comparably to M and L configurations. Further,

we find the corresponding L configuration (LAA) also has a

higher throughput than the other L configurations, which are

limited to about 650 Mbps. We note that A processors are the

oldest generation hardware dating back to 2007. We believe

that Amazon’s rate-limiting policies have evolved since the

initial offerings – it is possible that the new policies were only

employed with later generation hardware, and the overheads

of updating rate-limiting policies on older hardware were not

deemed worthwhile given the management complexity and

overheads associated with policy reconfiguration.

Another surprising observation from Figure 1(a) is that

M VMs achieve higher TCP throughputs than L VMs, with

the median being 35% higher – for all M configurations,

more than 75% of the samples exceed 750 Mbps, while

for all L configurations (except LAA) less than 25% of the

samples exceed 750 Mbps. We repeated the measurements

with multiple parallel TCP connections (2 to 8). The result

showed that for both M and L, the sum of TCP throughputs

across all connections was nearly unchanged when the number

of parallel connections varied between 1 and 8, and M still

performed better than L regardless of the number of parallel

TCP connections. We also repeated our experiments with

L VMs by pinning the iperf process to a single vCPU, to

observe whether L configurations see lower bandwidth owing

to context switch between different vCPUs. We found that

doing so did not change the TCP throughput achieved by L.

Rate limiting under controlled multi-tenancy with dedi-

3

0 500 1000 1500 2000 2500 3000
Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MC (per-VM)
LB (per-VM)
LC (per-VM)
MC (total)
LB (total)
LC (total)

Fig. 3. Per-VM and total throughput of all VMs when all dedicated
VMs packed on same physical CPU are concurrently active as
sources, for different combinations of VM size and CPU type.

cated VMs: To further explore distinctions in rate-limiting

policies used for M and L VMs, we conducted experiments

using dedicated VMs, which are physically isolated at the host

level from VMs that belong to other tenants. Dedicated VMs

however can be aggregated onto the same host if they belong

to the same tenant and the same VM size [2]. Experiments

on dedicated VMs enable us to study rate-limiting policies

without interference from traffic generated by other tenants.

Figure 2 shows typical TCP throughput behaviors of a

pair of M and a pair of L VMs. Each pair consists of

two dedicated VMs that are not co-resident. We adapted a

technique [6] utilizing XenStore [10] to identify if two VMs

are co-resident. The figure shows (i) even without multi-

tenancy, M VMs achieve higher rates than L VMs, and (ii)

L VMs can tolerate higher bursts than M VMs. We repeated

the experiment for several pairs of M and L VMs and different

CPU combinations, and found the trend holds.

Per-host per-tenant rate-limiting policies: We next explore

rate-limiting policies applied to multiple VMs on a single

physical host. To study this, we invoked many M (L) dedicated

VMs back-to-back, leveraging our empirical observation that

Amazon tends to pack a tenant’s dedicated VMs with the

same size onto the same physical host as far as possible. We

found that with different underlying CPU types and VM sizes,

the largest number of VMs packed on a certain machine is

different – e.g., we found up to 6 L VMs on a B CPU, 8 L

VMs on a D CPU, and 4 L or 8 M VMs on a C CPU.

We conducted experiments to measure bandwidths of con-

current iperf TCP connections, whose sources are VMs resi-

dent on the same host and whose sinks are located on different

hosts. We separate the sinks to avoid them being bottlenecks.

Figure 3 shows a CDF of TCP throughputs achieved by one

source VM, as well as the total throughput aggregated across

all source VMs, in terms of different combinations of VM

size and CPU type. Interestingly, the total TCP throughput is

around 2 Gbps for all combinations. Given typical Ethernet

NIC bandwidth is 1 Gbps or 10 Gbps, this points to the use

of rate-limiting policies over the aggregate traffic sourced by

co-resident VMs. Our hypothesis is that rate-limiting policies

are being used over all VMs belonging to the same tenant

on a given physical host, though it is also possible the policy

is being applied on a per-host level regardless of tenant. The

throughput per VM simply depends on the number of VMs

packed on each host, which in turn depends on VM size,

and the number of cores in the sender CPU – thus, the per-

VM throughput for MC is lower than LB, which in turn is

lower than LC. Further, both total throughput and per-VM

throughput are less variable for L compared to M VMs.

Overall, our results suggest that rate-limiting policies are

employed both at per-VM level and at per-host per-tenant

level. The per-VM limit depends on both VM size and

CPU type. Surprisingly, L VMs are limited to lower average

throughputs than M VMs – however, L VMs are afforded

higher burst sizes, and achieve higher rates and less variable

performance with multiple simultaneously active tenants. We

hypothesize more conservative rate-limiting policies are used

with L VMs to ensure more predictable performance under

multi-tenancy, or potentially to ensure more reserved capacity

for handling higher priority or provisioned I/O.

B. Impact of policy on inter-DC throughput

Figure 1(b) shows the variability in TCP throughput with

iperf for inter-DC traffic. Inter-DC throughput is less than

that in intra-DC settings across all configurations, and does

not hit the rate-limiting level, indicating it is impacted by

other factors. Further, based on the observed throughput,

configurations can be roughly separated into three groups.

While S configurations with A/C receiver types are well below

the 120 Mbps threshold, all M and most L configurations see

over 75% of their samples above 120 Mbps. The intermediate

group includes S configurations with B/D receiver types (if

normalized for costs, these S configurations may be considered

better than M and L configurations), and more surprisingly

L configurations with C receiver type. We next seek to

understand the potential causes behind our observations.

Is the network responsible for performance divergence? To

understand this, we collected UDP loss rate and traceroute

data. Our UDP measurements were conducted for a sender

transmitting at 150 Mbps using small VM pairs to multiple

receivers, for both inter- and intra-DC settings. Our measure-

ments show that UDP loss rates with receivers of CPU types

A/C are higher (median loss rate > 2.5%) than loss rates with

receivers of CPU types B/D in both settings (median loss rate

about 0.1%). Surprisingly, the magnitudes of the loss rates for

the same receiver type are similar for both inter- and intra-

DC settings, indicating that the losses do not occur over the

WAN. We note that while UDP loss rates in inter- and intra-

DC settings are similar, TCP throughput is vastly different

because: (i) TCP throughput is inversely proportional to round

trip times (RTT) [13]; and (ii) bandwidth is rate limited to

about 300 Mbps for small VMs.

We have also analyzed traceroute data collected from mul-

tiple sources in the US-West to multiple receivers of different

CPU types in the US-East DC. Since EC2 allows for multi-

path routing, we conducted over 150 traceroute measurements

for each source and receiver pair. For a particular source VM to

destination CPU types of B and C, our results show that all IPs

in the first 8 hops (which included the WAN hops to US-East)

overlapped. Similar results were observed with other sources.

This suggests the divergence in performance is not related to

4

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
% of experiments with high elapsed time

0.0

0.2

0.4

0.6

0.8

1.0

Fra
cti

on
 of

 de
plo

ym
en

ts

SA
SB
SC

Fig. 4. Prevalence of high elapsed time for small VMs. Each curve
corresponds to a different CPU type. Each point shows the fraction
of deployments for which less than a certain % of experiments see
elapsed time > 10ms.

the WAN. Further, our traceroute analysis from sources inside

the US-East DC to multiple receivers of different CPU types

in the same DC indicate that the paths from a common source

to the different receivers largely overlap. This further indicates

that any variation in throughput should relate to issues very

close to the receivers.

Does performance divergence occur due to end hosts? We

analyzed UDP losses on receiver nodes and noticed that

packets are typically dropped in large bursts, with median

losses for A/C receivers greater than 300 packets. Recent

work [24] has shown that mixing delay-sensitive jobs on

the same physical node with several CPU-intensive jobs can

lead to longer than expected scheduling delays, owing to the

scheduling algorithm used in the Xen hypervisor being unfair

to latency-sensitive applications [5], [9]. To evaluate if this is

a factor, we ran experiments on different VM instances which

involved having a process sleep for a short period (1 ms),

and observe the actual elapsed sleep time. We repeated this

experiment systematically over tens of instances for every VM

size and CPU type combination, conducting 600,000 sleep

experiments on each instance. For all instances, the elapsed

time is typically 1 ms, however occasionally much higher

(often multiples of 30 ms, which corresponds to the CPU

allocation time slice in Xen).

Figure 4 shows that for small VMs, A/C CPU types expe-

rience more episodes of high elapsed times than CPU type B.

While 90% of B deployments see high elapsed time in less

than 0.01% of the runs, the corresponding value for C is 0.03%
and is even higher for A. While not shown, medium and large

VMs have fewer episodes of high elapsed time than small

ones across all CPU types (with B/D CPU types continuing

to see fewer episodes than A/C CPU types), which explains

their generally better performance. We believe B/D CPU types

are less affected because both these CPUs support hyper-

threading, which allows two threads to be simultaneously

scheduled on a single core, thus minimizing scheduling delays

for latency-sensitive applications. Further, the number of VMs

per core for B, C and D CPU types is identical (§III-A). These

results indicate that the VM allocation is not customized to

CPU characteristics like hyper-threading, leading to poorer

performance for processors that are not hyper-threaded. Fi-

nally, we believe configurations with LC as receivers perform

worse than those with MC as receivers owing to scheduling

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SA SB SC SD M
A

M
B

M
C

M
D

LA LB LC LD XB XD

R
an

ki
ng

Fig. 5. Distribution of performance ranking of each configuration
across all CPU intensive apps. For each application, the best config-
uration (with lowest execution time) gets a ranking of 1. XA and XC
were not available during the time of the experiment.

policies that impact CPU type C differently from other CPU

types – we explore this further in §III-C.

C. Resource and policy’s impact on CPU intensive apps

We next shift to the CPU intensive apps described in

§II. Figure 5 shows a distribution of performance ranks for

each configuration across all 29 CPU intensive apps (lower

rank is better). Configurations are ranked based on the 90th

percentile execution time of each application among 30 runs

(§II). Though Amazon uses performance benchmarking to

normalize performance of VMs of the same size on different

CPU types [4], the figure shows that performance differences

across different CPU types are strong in reality.

Overall, CPU types B and D are relatively better than A

and C, because B and D have newer micro-architectures and

larger cache sizes. Larger VMs perform better because of their

advantage in memory capacity. However, much variability

exists in the performance of each application across different

configurations that is not captured by the general trends.

For example, the highly resourceful configuration XD is not

ranked in the first 4 places for one fourth of the applications.

As another example, the oldest CPU type A achieves good

performance for the molecular dynamics simulator – MA and

LA are the top 2 configurations. These exception cases suggest

that generic rules of thumb that prefer larger VMs and newer

CPUs are inadequate for configuration selection.

One surprising finding is that MC outperforms LC for all

single threaded CPU intensive integer apps, but other M VMs

do not perform better than their corresponding L VMs. We

initially hypothesized that MC VMs were located on physical

processors with lower memory/cache contention as compared

to LC, but found two pieces of evidence to rule this out. First,

we found LC VMs take 10% more time than MC (measured

over many runs) when doing single threaded multiplication

of two integer constants, an operation that essentially has

no memory access. Second, lmbench results showed that

MC VMs have lower read latency and less variation than

LC counterparts for all levels of the memory hierarchy. If

memory/cache contention were the main explanatory factor,

only latencies of memory and L3 cache (shared across cores)

would be lower and not latencies of L1 cache (private to each

core). In contrast, read latencies are similar for M and L VMs

5

of CPU types A, B and D for all memory hierarchy levels.

The better performance of MC VMs in the experiments above

further suggests that for C CPU type, each vCPU of L VMs

is scheduled slightly less frequently than M VMs.

We also conducted experiments where we launched threads

on two different vCPUs of L VMs and measured the delay

between the time the two threads started running over many

iterations. LC VMs incur higher delay than L VMs of other

types – for LA, LB and LD, > 99.8% iterations have a delay

of less than 0.1ms, while for LC, 3.2% iterations have a delay

of more than 1ms. These results further indicate scheduling

policy discrepancy between LC VMs and other L VMs.

IV. Systematically choosing configurations

We now investigate techniques for systematically choosing

configurations. We formulate a general configuration selection

problem in which the cloud provider allows customers to

choose from arbitrary combinations of CPU types and VM

sizes to best match application performance requirements.

This formulation makes sense from the provider’s perspec-

tive because the provider could monetize its resources more

effectively through differentiated pricing of configurations.

The formulation also matches the recent trend in EC2 of

creating explicit instance families for different processor types,

essentially allowing explicit CPU and VM size selection. We

propose and evaluate two testing techniques that tackle this

general configuration selection problem.

A. Metrics for comparing schemes

Application developers may use a variety of metrics when

comparing configurations (e.g., raw performance, dollar cost,

etc.) Our framework is generic and can use any metric;

however, for concreteness, our evaluations use a metric which

combines both performance and cost, reflecting common con-

siderations of cloud customers. We score each configuration

according to application’s performance and cost (lower scores

are more favorable).

Bandwidth-intensive applications are scored based on the

total dollar cost associated with each unit byte of data transfer.

We consider the cost of VMs needed for testing, in addition

to the cost of bandwidth transfer for inter-DC settings (intra-

DC communication is free). In CPU intensive apps, we use

the total cost (product of the cost per unit time and the

total execution time) of running an application with a given

configuration. Since the score of any given configuration is

itself variable (across deployments and measurements), we

compare configurations based on a desired percentile score: all

our evaluations consider either the median or 90th percentile.

We evaluate the relative error in score achieved by the con-

figuration recommended by a scheme compared to the score

achieved by the best configuration. We use measurements

collected across multiple deployments of all configurations

(§II) as ground truth to determine the best configuration. We

capture testing costs using (i) the number of tests, i.e., the total

number of measurements conducted across all deployments of

all configurations; and (ii) total dollar costs involved across all

Fig. 6. Iterative pruning algorithm.

measurements, computed by considering VM and bandwidth

costs as described above.

B. Schemes for testing configurations

• Per-Configuration Testing (PerConfig). PerConfig is a

strawman approach that exhaustively explores all configura-

tions. For each configuration, PerConfig randomly samples

D deployments from the ground-truth data, and randomly

picks M measurements per deployment. The best performing

configuration is selected from the sampled data.

• Iterative Pruning (iPrune). To reduce testing overheads, we

propose iPrune, which iteratively prunes poor choices in each

dimension and performs more testing with better performing

choices – e.g., the VM size, src-CPU, and dest-CPU are three

dimensions of iperf data, and the choices for the VM size

dimension are S, M or L.

Figure 6 illustrates iPrune. Rather than testing all configu-

rations, iPrune simply ensures there is measurement data for

at least K deployments for each choice along every dimension

d, with M measurements for each deployment. Then a total of

K ×max{|d1|, |d2|, . . . , |dn|} deployments need to be tested

in the first round, where |di| is the total number of choices

along dimension di. Measurements from all deployments that

have choice cx for dimension di are grouped together. For

each dimension, a choice that is clearly worse than another

is dropped. Poor performing choices are eliminated and the

process is repeated with the remaining choices. When no

further pruning is possible, the best configuration is found by

picking the best choice along each dimension.

Figure 7(a) illustrates how iPrune picks the best median

score with iperf. After the first round, L VM sizes are elimi-

nated (higher costs and poorer performance than M), but S and

M VM sizes remain since it is hard to say one choice is better

than another. Likewise, at the end of the first round, options A

and C are eliminated on the Dst-CPU dimension since they are

clearly inferior, but no options are eliminated on the Src-CPU

dimension. No further pruning is possible after the second

round. The remaining data correspond to configurations < S

or M, *, B or D>. Choosing the best option for each dimension

leads to selecting SAD (best median score).

A key aspect of iPrune is that it prunes choices within

a dimension conservatively (Figure 6). It first computes the

6

(a) iPrune.

(b) Picking the best choice along each dimension.

Fig. 7. Contrasting iPrune with an alternative approach for iperf
(inter-DC settings), using ground truth data shown in Fig. 1(b). Each
subfigure shows the final selected configuration, based on median
score. The relative error is 0% in (a) and 70% in (b).

probability that choice C1 performs better than choice C2.

If there are m and n samples for the two choices with

performance samples X1 . . . Xm, and Y1 . . . Yn respectively,

the probability is computed as U

mn
, where U is the number

of times X precedes Y in the combined order arrangement

of the two samples X and Y. We note that the U statistic

is closely related to the Mann Whitney test [14], which is a

non-parametric test of the null hypothesis that two populations

are the same against an alternative hypothesis that a particular

population tends to have larger values than the other. Along

each dimension, we prune those choices that have a high

probability (0.9) of being out-performed by another choice.

A more aggressive approach that merely picks the best

choice from each dimension after the first round would not

work as well as illustrated in Figure 7(b), even with the

ground-truth data. This method picks configuration choice

MDD, which has a median score 70% higher than optimal.

VM size M is selected since the median score of all M
configurations in aggregate is better than the median score

of S configurations. In contrast, iPrune is able to pick S since

it prunes Dst-CPU choices A and C in the first round.

C. Evaluation of schemes

Our evaluations consider various applications:

• Iperf: Figure 8 shows the trade-off between testing overhead

and accuracy in selecting configurations with iperf. For both

schemes, the accuracy improves as the overall number of

measurements increases. Further, iPrune (cluster of lines at

bottom) performs much better than PerConfig. For a target

relative error of 0.05, iPrune lowers the number of tests from

around 3000 to 700 (> 70% reduction), and reduces dollar

costs from $60 to $10 (> 80% reduction). The cost saving

is especially significant for jobs of moderate length, or for

larger-scale applications with high absolute testing costs.

• Cassandra: This is a network-centric, widely used dis-

tributed key-value data store [8]. We run our experiments

using the well-known Yahoo! Cloud Serving Benchmark

(YCSB) [11]. We consider Workload-A consisting of 50%

reads and 50% writes, and Workload-B, which consists of 95%

reads and 5% writes. Each data record consists of 1 KB of data,

split into 10 fields. A read operation reads the whole record,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

Re
lat

ive
 E

rro
r

Tests [READ-workloada-1000]

iPrune, K8
iPrune, K12

PerConfig, D2
PerConfig, D6

Fig. 9. Efficacy of iPrune and PerConfig for Cassandra, using YCSB’s
Workload-A and throughput 1000 ops

sec
. For each choice of parameters

(D/K and M), we calculate the relative error based on 90
th percentile

score. Each point represents the average error for a given choice of
parameters across 200 runs.

while a write operation writes/updates one field at random.

We use 4 CPU types and 3 VM sizes (M, L, and XL) for

a total of 11 configurations (we could not obtain LC). For

each configuration, we obtain ground-truth data by starting 6

deployments (each of 2 nodes) in US-East. Each deployment

is loaded with one million records (i.e., 1 GB of data, across

the two nodes). Further, we disable replication so that we

benchmark the baseline performance of Cassandra. We use a

separate VM (of type c1.xlarge) for workload generation,

and note that it has low utilization throughout the experiments.

Each workload runs for 5 minutes, corresponding to up to

750K operations per run, for each deployment (an operation

is either a read or write). Configurations are scored based on

latency, and compared based on their 90th percentile score.

In general, our data confirm the complexity of configuration

selection - for a range of throughput, performance varies

significantly across processor types. For instance, the instances

with older CPU type A tend to perform better, and L instances

perform worse than M instances for some CPU types.

Figure 9 compares iPrune and PerConfig schemes for Cas-

sandra. iPrune is able to lower the number of tests required

for 5% error target from 1800 to 1000 (> 40% reduction).

Results for other workloads and throughput values show

similar trends, though iPrune’s benefits are more prominent for

higher throughput values when performance difference across

configurations is more significant.

• Other apps: When evaluated on 29 CPU intensive apps

(§II), iPrune achieves higher accuracy with fewer tests than

PerConfig. For up to 100 tests, iPrune reduces relative error

by more than 71% and 33% for the median and 90th percentile

of runs, respectively (figure not shown for lack of space).

V. Short-listing configurations for testing

In contrast to pruning out poor configurations early on as

iPrune does, another approach to save costs is to short-list

good configurations and only test with them. Such an approach

could be particularly valuable for short-running jobs where

quick testing is required.

A. Short-listing based on similar applications

Measurements on CPU intensive apps in Figure 5 show

that the best performing configurations for the same class

of applications tend to be similar. Motivated by this, we

7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1000 2000 3000 4000 5000

Re
lat

ive
 E

rro
r

Number of tests

iPrune, K20
iPrune, K25
iPrune, K30
iPrune, K40

PerConfig, D8
PerConfig, D10
PerConfig, D12
PerConfig, D16

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100

Re
lat

ive
 E

rro
r

Total cost (dollars)

iPrune, K20
iPrune, K25
iPrune, K30
iPrune, K40

PerConfig, D8
PerConfig, D10
PerConfig, D12
PerConfig, D16

Fig. 8. Relative error vs. testing overhead for iPrune and PerConfig in iperf. Each line represents the relative error obtained for a given D
(PerConfig) or K (iPrune) value. For each D and K value, we test the schemes using various number of measurements (M) per deployment.
For each choice of parameters (D and M for PerConfig; K and M for iPrune), we record the resultant number of tests, testing cost and
relative error (in the 90

th percentile score). Each point represents the average relative error across 500 runs for a given choice of parameters.

evaluate a technique called nearest neighbor (NN for short)

for short-listing configurations for a target application. NN

requires the following as inputs: (1) a target application to

choose a configuration for, (2) a set of other applications with

prior configuration performance measurements, (3) a set of

attributes for characterizing applications. The NN technique

comprises the following steps: (i) for each attribute, normalize

the application attribute values to the range of [0,1] to elimi-

nate bias towards attributes with high absolute values; (ii) use

the normalized attribute values to compute distances between

the target application and every other application in the set;

(iii) sort application distances in ascending order and obtain

nearest neighbors; (iv) select top configurations of nearest

applications to get short-listed configurations.

B. Evaluations of NN combined with PerConfig

To select the best configuration for a target application,

we first short-list a set of good configuration candidates with

NN, then use PerConfig or iPrune to test the target appli-

cation on these candidates to pick the best. To characterize

applications, we use objdump to disassemble the executable

files into assembly code and use the counts of different

instructions (e.g., mov|lea and add|sub|inc|dec) as attribute

values. The results reported below are based on NN combined

with PerConfig testing (NN PerConfig for short) with D5M1

(5 deployments per configuration, and 1 measurement per

deployment). Two variants of random selections are used as

the baseline for comparison: randomly picking a configuration

(random configuration) and selecting the best configuration of

a randomly picked application (random application).

We demonstrate how the number of nearest applications

and the number of top configurations affect accuracy of

NN PerConfig. We use Nearest n Top k (NnTk for short)

to denote parameters in NN, which means using the top

k configurations for each of the nearest n applications as

candidates. To compare configurations, we use dollar cost per

used core (e.g., dollar cost for an L VM is $0.175/2) as the

score, and the configuration with the lowest 90th percentile

score for an application as the best one (can easily extend to

other metrics). Relative error as stated in §IV-A is used to

measure effectiveness. The average relative error out of 100

experiments is reported.

Network and compute intensive MPI FFT: MPI FFT is a

distributed computation and communication intensive applica-

tion. We use the CPU intensive apps as the other applications

N1T1 N1T2 N2T1 N2T2 RA RC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
er

ro
r

Fig. 10. Average relative error of NN PerConfig when picking the
best configuration for MPI FFT using 29 CPU intensive apps. RA
means random application selection, RC means random configuration.

in NN PerConfig to get a good-performing configuration

for MPI FFT. As shown in Figure 10, NN PerConfig out-

performs both random strategies. More importantly, picking

Top 2 configurations reduces relative error to 0. The best

configuration for MPI FFT ranks second for its nearest ap-

plication (a biomolecular system simulator), and once the

best configuration is included in the candidate set, a small

number of PerConfig tests can reveal it. Thus, NN PerConfig

can reduce testing costs dramatically compared with basic

PerConfig.

Other apps: Figure 11 shows the average relative error when

only using the nearest application to choose top configuration

candidates (N1Tk) for CPU intensive apps. For more than 60%

of applications, the average relative error of NN PerConfig is

within 1% of N1T1. As the number of configuration candi-

dates increases, the average relative error reduces. We have

also experimented with including more nearest applications,

and found that the average relative error is reduced sharply.

Specifically, using N2T1, the worst case relative error falls

below 2% (the worst case relative error for N1T1 is over 15%).

In contrast, using basic PerConfig to pick the best from all

available configurations needs more than 100 tests to achieve

a relative error less than 2%. NN PerConfig is able to reduce

overhead to 10% of the basic PerConfig overhead by short-

listing configurations.

VI. Related work

Many studies [12], [15], [16], [17], [19], [20], [22], [23],

[25] have observed that application performance can vary

greatly in the cloud. [22] shows how computational load on

physical hosts impacts network performance, but does not

8

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

C
D

F

Top 1

Top 2

Top 4

Top 6

Random app

Random config

Fig. 11. Average relative error of NN PerConfig for 29 CPU intensive
apps using the nearest application and different numbers of top
configurations, compared with random selection strategies.

consider heterogeneity of CPU types and its impact. [12], [19]

observe that CPU heterogeneity partly explains variation in

performance across the same sized VMs, but do not consider

the impact of provider policy. Our work is distinguished in

that we simultaneously consider VM sizes and CPU types

to understand performance variability, and by our focus on

provider policy and configuration selection.

Further, [12], [19] evaluate “trial and error” strategies for

optimizing performance that involve starting exploratory VMs,

and shutting down and replacing VMs with CPU types that do

not perform well. Kingfisher [21] uses heavy weight testing

to profile the cost-performance of different VM sizes (but

it is CPU type-agnostic) and migrates an application from

one configuration to another over time. In contrast, we focus

on systematically determining the best configuration for an

application and reducing the test costs considering a more

general formulation where the cloud provider allows customers

to choose from arbitrary combinations of CPU types and VM

sizes. This approach is advantageous when dealing with state-

ful applications (e.g., Cassandra) that are tricky to migrate,

jobs of moderate length, or when it is desirable to avoid

potentially long convergence time during which performance

could be poor.

VII. Conclusions

Our findings have demonstrated the importance of con-

sidering the interplay among provider policy, configuration

choice, and application performance, and have revealed quite

a few surprises – e.g., larger VM sizes may not necessarily

see higher rate limits; for the same VM size, inter-DC TCP

throughput may be markedly different; VMs with larger VM

size sometimes perform consistently worse than VMs with

smaller VM size; and more. Further, our many auxiliary

experiments are able to shed light on the underlying reasons

for these findings. These measurement results have exposed

the complexity of selecting configurations in cloud settings

and the limitations of simple rules of thumb.

This has motivated us to characterize the extent of testing

required to pick a configuration with a desired performance for

a range of strategies. Our results show the promise of iPrune

and NN techniques in reducing testing overheads without

sacrificing accuracy. While PerConfig might suffice for long-

running jobs with few configuration dimensions, we expect

the need for techniques such as iPrune and NN to be more

critical for jobs of moderate length, or as the number of

configurations grows (e.g., with more hardware dimensions,

or when considering multi-tier applications with hundreds of

application components). For extremely short-running jobs,

techniques like NN that involve no testing are appropriate.

In the future we hope to collaborate with practitioners to

gain experience with our techniques in large-scale production

deployments, and in environments that expose a wider set of

configuration choices, and repeat our experiments on other

cloud platforms.

Acknowledgment

This work was supported in part by the National Science

Foundation (NSF) under Award No. 1162270 and 1162333.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of NSF.

References

[1] Amazon discussion forums, connection speed. https://forums.aws.
amazon.com/thread.jspa?messageID=77314.

[2] Amazon discussion forums, dedicated instances. https://forums.aws.
amazon.com/message.jspa?messageID=529555#529555.

[3] Amazon discussion forums, number of cores of small VM. https://
forums.aws.amazon.com/message.jspa?messageID=530348#530348.

[4] Amazon discussion forums, the attempt to equalize CPU capacity. https:
//forums.aws.amazon.com/thread.jspa?messageID=530539.

[5] Credit-scheduler in Xen. http://wiki.xen.org/wiki/Credit Scheduler.
[6] Digging deeper in EC2. http://goo.gl/bmcI4V.
[7] Serverfault, bandwidth limits for Amazon EC2. http://serverfault.com/

questions/460755/bandwidth-limits-for-amazon-ec2.
[8] The Apache Cassandra project. http://cassandra.apache.org/.
[9] Xen 4.2: New scheduler parameters. http://blog.xen.org/index.php/2012/

04/10/xen-4-2-new-scheduler-parameters-2/.
[10] XenStore Reference. http://wiki.xen.org/wiki/XenStore Reference.
[11] Brian F Cooper et al. Benchmarking cloud serving systems with YCSB.

In SoCC, 2010.
[12] Benjamin Farley et al. More for your money: Exploiting performance

heterogeneity in public clouds. In SoCC, 2012.
[13] Sally Floyd et al. Equation-based congestion control for unicast

applications. In SIGCOMM, 2000.
[14] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric

statistical inference, volume 168. CRC press, 2003.
[15] A. Iosup et al. Performance analysis of cloud computing services for

many-tasks scientific computing. IEEE TPDS, 2011.
[16] K.R. Jackson et al. Performance analysis of high performance computing

applications on the amazon web services cloud. In CloudCom, 2010.
[17] A. Li et al. CloudCmp: comparing public cloud providers. In IMC,

2010.
[18] Larry W McVoy, Carl Staelin, et al. lmbench: Portable tools for

performance analysis. In USENIX ATC, 1996.
[19] Zhonghong Ou et al. Exploiting hardware heterogeneity within the same

instance type of Amazon EC2. In HotCloud, 2012.
[20] Jorg Schad et al. Runtime measurements in the cloud: observing,

analyzing, and reducing variance. In VLDB endowment, 2010.
[21] Upendra Sharma et al. Kingfisher: cost-aware elasticity in the cloud. In

IEEE ICDCS, 2011.
[22] Ryan Shea et al. A Deep Investigation Into Network Performance in

Virtual Machine Based Cloud Environment. In INFOCOM, 2014.
[23] G. Wang et al. The Impact of Virtualization on Network Performance

of Amazon EC2 Data Center. In INFOCOM, 2010.
[24] Yunjing Xu et al. Bobtail: Avoiding long tails in the cloud. In NSDI,

2013.
[25] M. Zaharia et al. Improving mapreduce performance in heterogeneous

environments. In OSDI, 2008.

9

