
Dealer: Application-aware Request Splitting for Interactive
Cloud Applications

Mohammad Hajjat† Shankaranarayanan P N† David Maltz‡

Sanjay Rao† Kunwadee Sripanidkulchai⋆
†Purdue University, ‡Microsoft Corporation, ⋆NECTEC Thailand

ABSTRACT

Deploying interactive applications in the cloud is a challenge due to
the high variability in performance of cloud services. In this paper,
we present Dealer– a system that helps geo-distributed, interactive
and multi-tier applications meet their stringent requirements on re-
sponse time despite such variability. Our approach is motivated
by the fact that, at any time, only a small number of application
components of large multi-tier applications experience poor per-
formance. Dealer abstracts application structure as a component
graph, with nodes being application components and edges cap-
turing inter-component communication patterns. Dealer contin-
ually monitors the performance of individual component replicas
and communication latencies between replica pairs. In serving any
given user request, Dealer seeks to minimize user response times
by picking the best combination of replicas (potentially located
across different data-centers). While Dealer does require modifi-
cations to application code, we show through integration with two
multi-tier applications that the changes required are modest. Our
evaluations on two multi-tier applications using real cloud deploy-
ments indicate the 90%ile of application response times could be
reduced by a factor of 3 under natural cloud dynamics compared to
conventional data-center redirection techniques which are agnostic
of application structure.

Categories and Subject Descriptors

C.4 [Performance of systems]: Design studies; Reliability, avail-
ability, and serviceability; Modeling techniques; C.2.3 [Computer

communication networks]: Network operations—Network man-

agement; Network monitoring

Keywords

Cloud Computing, Interactive Multi-tier Applications, Request Redi-
rection, Geo-distribution, Service Level Agreement (SLA), Perfor-
mance Variability

1 Introduction

Cloud computing promises to reduce the cost of IT organizations by
allowing them to purchase as much resources as needed, only when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

needed, and through lower capital and operational expense stem-
ming from the cloud’s economies of scale. Further, moving to the
cloud greatly facilitates the deployment of applications across mul-
tiple geographically distributed data-centers. Geo-distributing ap-
plications, in turn, facilitates service resilience and disaster recov-
ery, and could enable better user experience by having customers
directed to data-centers close to them.

While these advantages of cloud computing are triggering much
interest among developers and IT managers [40, 21], a key chal-
lenge is meeting the stringent Service Level Agreement (SLA) re-
quirements on availability and response times for interactive appli-
cations (e.g. customer facing web applications, enterprise applica-
tions). Application latencies directly impact business revenue [13,
9]– e.g., Amazon found every 100ms of latency costs 1% in sales [9].
Further, the SLAs typically require bounds on the 90th (and higher)
percentile latencies [29, 12].

Meeting such stringent SLA requirements is a challenge given
outages in cloud data-centers [1, 10], and the high variability in the
performance of cloud services [44, 33, 23]. This variability arises
from a variety of factors such as the sharing of cloud services across
a large number of tenants, and limitations in virtualization tech-
niques [44]. For example, [33] showed that the 95%ile latencies
of cloud storage services such as tables and queues is 100% more
than the median values for four different public cloud offerings.

In this paper, we argue that it is critically important to design
applications to be intrinsically resilient to cloud performance vari-
ations. Our work, which we term Dealer, is set in the context
of geo-distributed, multi-tier applications, where each component
may have replicas in multiple data-centers. Dealer enables appli-
cations to meet their stringent SLA requirements on response times
by finding the combination of replicas –potentially located across
multiple data-centers– that should be used to serve any given re-
quest. This is motivated by the fact that only a small number of
application components of large multi-tier applications experience
poor performance at any time.

Multi-tier applications consist of potentially hundreds of com-
ponents with complex inter-dependencies and hundreds of different
transactions all involving different subsets of components [28]. De-
tailed knowledge of the components involved in every single type
of transaction is hard to obtain. Instead, Dealer abstracts applica-
tion structure as a component graph, with nodes being application
components and edges capturing inter-component communication
patterns. To predict which combination of replicas can result in
the best performance, Dealer continually monitors the performance
of individual component replicas and communication latencies be-
tween replica pairs.

Operating at a component-level granularity offers Dealer several
advantages over conventional approaches that merely pick an ap-



(a) Thumbnails application architecture
and data-flow. The application is com-
posed of a Front-End (FE), Back-End (BE),
and two Business-Logic components BL1

(creates thumbnail) and BL2 (creates Gray-
scale, rotating images).

(b) StockTrader architecture and data-flow.
Components include a front-end (FE), Busi-
ness Server (BS), Order Service (OS) (han-
dles buys/sells), Database (DB), and a Con-
fig Service (CS) that binds all components.
The precise data-flow depends on transac-
tion type.

Figure 1: Applications Testbed.

0

5000

10000

15000

20000

T
ot

al
T

im
e(

1)

T
ot

al
T

im
e(

2)

U
pl

oa
d(

1)

U
pl

oa
d(

2)

F
E

-B
E

(1
)

F
E

-B
E

(2
)

B
E

-B
L(

1)

B
E

-B
L(

2)

B
L1

(1
)

B
L1

(2
)

B
L-

B
E

(1
)

B
L-

B
E

(2
)

D
ow

nl
oa

d(
1)

D
ow

nl
oa

d(
2)

D
el

ay
 (

in
 m

se
c)

Figure 2: Box plot for total response time, and contribut-

ing processing and communication delays for Thumbnail

application.

propriate data-center to serve user requests [26, 39, 45, 35]. Mod-
ern web applications consist of many components, not all of which
are represent in each data-center, and the costs are extremely high
to over-provision each component in every data-center to be able
to handle all the traffic from another data-center. Dealer is able
to redistribute work away from poorly performing components by
utilizing the capacity of all component replicas that can usefully
contribute to reducing the latency of requests.

While much of the Dealer design is independent of the particu-
lar application, integrating Dealer does require customization us-
ing application-specific logic. First, stateful applications have con-
straints on which component replicas can handle a given request.
While Dealer proposes desired split ratios (or probabilities with
which a request must be forwarded to different downstream compo-
nent replicas), the application uses its own logic to determine which
component replicas can handle a given request. Further, application
developers must properly instrument their applications to collect
the per-component performance data needed for Dealer. However,
in our experience, the work required by application developers is
modest.

We have evaluated Dealer on two stateful multi-tier applica-
tions on Azure cloud deployments. The first application is data-
intensive, while the second application involves interactive trans-
action processing. Under natural cloud dynamics, using Dealer

improves application performance by a factor of 3 for the 90th

and higher delay percentiles, compared to DNS-based data-center-
level redirection schemes which are agnostic of application struc-
ture. Overall, the results indicate the importance and feasibility of
Dealer.

2 Performance and Workload Variability

In this section, we present observations that motivate Dealer’s de-
sign. In §2.1, we characterize the extent and nature of the vari-
ability in performance that may be present in cloud data-centers.
Our characterization is based on our experiences running multi-tier
applications on the cloud. Then, in §2.2, we characterize the vari-
ability in workloads of multi-tier applications based on analyzing
web server traces of a large campus university.

2.1 Performance variability in the cloud

We measure the performance variability with two applications. The
first application, Thumbnail [18] involves users uploading a picture
to the server (FE) and getting back either a thumbnail (from BL1) or
a rotated image (from BL2). The second application, StockTrader

[3], is an enterprise web application that allows users to buy/sell
stocks, view portfolio, etc. Figure 1(a) and Figure 1(b) respectively

show the component architecture and data-flow for each applica-
tion.

We ran each application simultaneously in two separate data-
centers (DC1 and DC2), both located in the United States, and
subjected them to the same workload simultaneously. More de-
tails of how we configured the deployments are presented in §5.1.
We instrumented each application to measure the total response
time, as well as the delays contributing to total response time. The
contributing delays include processing delays encountered at in-
dividual application components, communication delay between
components (internal data-center communication delays), and the
upload/download delays (Internet communication delays between
users and each data-center).
We now present our key findings:

Performance of component replicas in multiple data centers is

not correlated: Figure 3 shows a two hour snapshot from an ex-
periment comparing the latency of database(DB) transactions for
StockTrader across two consecutive days. The figure shows that the
DB latency for DC1 on Day1 is significantly higher than on Day2,
and has more prominent variation. The figure also shows that on
Day1, the DB in DC2 performed significantly better than the DB
in DC1 on the same day. This illustrates that the performance of
similar components across multiple data-centers is not correlated.
Further investigation revealed that the performance variability was
due to high load on the data-center during a 9 day period [15]. Our
interaction with the cloud providers indicated that during this pe-
riod, different subsets of databases were impacted at different time
snapshots.

Figure 3: Comparing the latency of DB transactions in DC1 and DC2

across two consecutive days. The curve for DC2 Day2 is very similar to

DC2 Day1 and is therefore omitted.

All application components show performance variability: Fig-
ure 2 considers the Thumbnail application and presents a box plot
for the total response time (first two) and each of the individual
contributing delays for each data-center. The X-axis is annotated



Figure 4: Short-term variability in workload for three components in a multi-tier web-service deployed in a large campus network. The peak and

average rates are computed during each 10 minutes window and the peak-to-average ratio over each window is plotted as a function of time.

with the component or link whose delay is being measured and the
number in parenthesis represents the data-center to which it belongs
(DC1 or DC2). For example, BL-BE(1) represents the delay be-
tween the Business-Logic (BL) and the Back-End (BE) instances,
at DC1. The bottom and top of each box represent the 25th and
75th percentiles, and the line in the middle represents the median.
The vertical line (whiskers) extends to the highest datum within
3*IQR of the upper quartile, where IQR is the inter-quartile range.
Points larger than this value are considered outliers and shown sep-
arately.

The figure shows several interesting observations. First, there is
significant variability in all delay values. For instance, while the
75%ile of total response time is under 5 seconds, the outliers are
almost 20 seconds. Second, while the median delay with DC1 is
smaller than DC2, DC1 shows significantly more variability. Third,
while the Internet upload delays are a significant portion of total
response time (since the application involves uploading large im-
ages), the processing delays at BL, and the communication delays
between the BE and BL show high variability, and contribute sig-
nificantly to total response times. Our experiments indicate that the
performance of the application components vary significantly with
time, and is not always correlated with the performance of their
replicas in other data-centers.

2.2 Workload Dynamics

We now show the nature and extent of short-term variability in
workload for multi-tier applications and the implications on cloud
deployments.

While cloud computing allows for dynamic invocation of re-
sources during peak periods, starting up new server instances takes
several minutes (typically 10 minutes) in many commercial cloud
deployments today. Further, besides the time to provision new in-
stances, it may take even longer to warm up a booted server, e.g., by
filling its cache with relevant data to meet its SLA. Therefore, ap-
plications typically maintain margins (i.e., pools of servers beyond
the expected load [30, 20, 41]) to handle fluctuations in workload.

To examine workload variability and margin requirements for
multi-tier applications, we collect and study the workload of a web-
service in a large campus network. In the service, all requests en-
ter through a front-end, which are then directed to different down-
stream components based on the type of request (e.g., web, mail,
department1, department2, etc.). Figure 4 illustrates the variabil-
ity in workload for the front-end and two downstream components.
While the peak-to-average ratio is around 1.5 for the front-end, it is
much higher for each of the other components, and can be as high
as 3 or more during some time periods. The figure indicates that
a significant margin may be needed even in cloud deployments to
handle shorter-term workload fluctuations.

Furthermore, the figure not only illustrates the need for margins
with cloud deployments, but also shows the heterogeneity in mar-
gin that may be required for different application tiers. While the

margin requirement is about 50% for the front-end, it is over 300%
for the other components during some time periods. In addition,
the figure also illustrates that the exact margin required even for
the same component is highly variable over time.

The high degree of variability and heterogeneity in margins make
it difficult to simply over-provision an application component on
the cloud since it is complicated to exactly estimate the extent of
over-provisioning required, and over-provisioning for the worst-
case scenario could be expensive. Moreover, failures and regular
data-center maintenance actions make the application work with
lower margins and render the application vulnerable to even mod-
est workload spikes.

3 Dealer Design Rationale

In this section, we present the motivation behind Dealer’s design,
and argue why traditional approaches don’t suffice. Dealer is de-
signed to enable applications meet their SLA requirements despite
performance variations of cloud services. Dealer is motivated by
two observations: (i) in any data-center, only instances correspond-
ing to a small number of application components see poor perfor-
mance at any given time; and (ii) the latencies seen by instances
of the same component located in different data-centers are often
uncorrelated.

Dealer’s main goal is to dynamically identify a replica of each
component that can best serve a given request. Dealer may choose
instances located in different data-centers for different components,
offering a rich set of possible choices. In doing so, Dealer consid-
ers performance and loads of individual replicas, as well as intra-
and inter-data-center communication latencies.

Dealer is distinguished from DNS-based [26, 39, 45] and server-
side [35] redirection mechanisms, which are widely used to map
users to appropriate data-centers. Such techniques focus on alle-
viating performance problems related to Internet congestion be-
tween users and data-centers, or coarse-grained load-balancing at
the granularity of data-centers. Dealer is complementary and tar-
gets performance problems of individual cloud services inside a
data-center. There are several advantages associated with the Dealer

approach:
• Exploit heterogeneity in margins across different components: In
large multi-tier applications with potentially hundreds of compo-
nents [28], only a few services might be temporarily impacted in
any given data-center. Dealer can reassign work related to these
services to other replicas in remote data-centers if they have suf-
ficient margins. For instance, Dealer could tackle performance
problems with storage elements (e.g., a blob) by using a replica in
a remote data-center, while leveraging compute instances locally.
Complete request redirection, however, may not be feasible since
instances of other components (e.g., business-logic servers) in the
remote data-center may not be over-provisioned adequately over
their normal load to handle the redirected requests. In fact, Fig-
ure 4 shows significant variation in workload patterns of individual



Figure 5: System overview

components of multi-tier applications, indicating the components
must be provisioned in a heterogeneous fashion.

• Utilize functional cloud services in each data-center: Dealer

enables applications to utilize cloud services that are functioning
satisfactorily in all data-centers, while only avoiding services that
are performing poorly. In contrast, techniques that redirect entire
requests fail to utilize functional cloud services in a data-center
merely due to performance problems associated with a small num-
ber of other services. Further, the application may be charged for
the unutilized services (for example, they may correspond to al-
ready pre-paid reserved compute instances [2]). While Dealer does
incur additional inter data-center communication cost, our evalua-
tions in §5.5.4 indicate these costs are small.

• Responsiveness: Studies have shown that DNS-based redirection
techniques may have latencies of over 2 hours and may not be well
suited for applications which require quick response to link fail-
ures or performance degradations [34]. In contrast, Dealer targets
adaptations over the time-scale of tens of seconds.

4 System Design

In this section we present the design of Dealer. We begin by pre-
senting an overview of the design, and then discuss its various com-
ponents.

4.1 System Overview

Consider an application with multiple components {C1..Cl}. We
consider a multi-cloud deployment where the application is de-
ployed in d data-centers, with instances corresponding to each com-
ponent located in every one of the data-centers. Note that there
might be components like databases which are only present in one
or a subset of data-centers. We represent all replicas of component
Ci in data-center m as Cim.

Traffic from users is mapped to each data-center using standard
mapping services used today based on metrics such as geograph-
ical proximity or latencies [39]. Let Uk denote the set of users
whose traffic is mapped to data-center k. We refer to data-center
k as the primary data-center for Uk, and to all other data-centers
as the secondary data-centers. The excess capacity of each compo-
nent replica is the additional load that can be served by that replica
which is not being utilized for the primary traffic of that data-center.
Traffic corresponding to Uk can use the entire available capacity of
all components in data-center k, as well as the excess capacity of
components in all other data-centers.

For each user group Uk, Dealer seeks to determine how appli-
cation transactions must be split in the multi-cloud deployment. In
particular, the goal is to determine TFim,jn, that is the number
of user transactions that must be directed between component i in
data-center m to component j in data-center n, for every pair of
<component,data-center > combinations. In doing so, the objec-

tive is to ensure the overall delay of transactions can be minimized.
Further, Dealer periodically recomputes how application transac-
tions must be split given dynamics in behavior of cloud services.

Complex multi-tier applications may have hundreds of different
transactions all involving different subsets of application compo-
nents. Detailed knowledge of the components involved in every
single type of transaction is hard to obtain. Instead, Dealer dynam-
ically learns a model of the application that captures component
interaction patterns. In particular, Dealer estimates the fraction of
requests that involve communication between each pair of appli-
cation components, and the average size of transactions between
each component pair. In addition, Dealer estimates the process-
ing delays of individual components replicas, and communication
delays between components, as well as the available capacity of
component replicas in each data-center, (i.e., the load each replica
can handle). We will discuss how all this information is estimated
and dynamically updated in the later subsections.

4.2 Determining delays

There are three key components to the estimation algorithms used
by Dealer when determining the processing delay of components
and communication delays between them. These include: (i) pas-
sive monitoring of components and links over which application
requests are routed; (ii) heuristics for smoothing and combining
multiple estimates of delay for a link or component; and (iii) ac-
tive probing of links and components which are not being utilized
to estimate the delays that may be incurred if they were used. We
describe each of these in turn:

Monitoring: Monitoring distributed applications is a well studied
area, and a wide range of techniques have been developed by the re-
search community and industry [22, 27, 7] that can be used for mea-
suring application performance. Of these techniques, X-Trace [27]
is the most suitable for our purposes, since it can track application
performance at the granularity of individual requests. However, in-
tegrating the monitoring code with the application is a manual and
time consuming process. To facilitate easy integration of X-Trace

with the application, we automate a large part of the integration
effort using Aspect Oriented Programming (AOP) techniques [5].
We write an Aspect to intercept each function when it is called and
after it returns, which constitutes the pointcuts. We record the re-
spective times inside the Aspect. The measured delay values are
then reported periodically to a central monitor. A smaller reporting
time ensures greater agility of Dealer. We use reporting times of
10 seconds in our implementation, which we believe is reasonable.

Smoothing delay estimates: It is important to trade-off the agility
in responding to performance dips in components or links with po-
tential instability that might arise if the system is overly aggressive.
To handle this, we use a weighted moving average (WMA) scheme.
For each link and component, the average delay seen during the last
W time windows of observation is considered. The weighted av-
erage of these values is then computed according to the following
formula:

D(t) =

PW
i=1(W − i + 1) ∗ D(t − i) ∗ N(t − i)

PW
i=1(W − i + 1) ∗ N(t − i)

(1)

Briefly, the weight depends on the number of samples seen dur-
ing a time window, and the recency of the estimate (i.e., recent
windows are given a higher weight). D(t) is the delay seen by a
link/component in Window t, and N(t) is the number of delay sam-
ples obtained in that window (to ensure higher weight for windows
with more transactions). The use of WMA ensures that Dealer re-
acts to prolonged performance episodes that last several seconds,
while not aggressively reacting to extremely short-lived problems
within a window. W determines the number of windows for which



a link/component must perform poorly (well) for it to be avoided
(reused). Our empirical experience has shown choosing W values
between 3 and 5 are most effective for good performance.

Probing: Dealer uses active probes to estimate the performance
of components and links that are not currently being used. This en-
ables Dealer to decide if it should switch transactions to a replica of
a component in a different data-center, and determine which replica
must be chosen. Probe traffic is generated by test-clients using ap-
plication workload generators (e.g., [8]). We restrict active probes
to read-only requests that do not cause changes in persistent appli-
cation state. While this may not accurately capture the delays for
transactions involving writes, we have found the probing scheme to
work well for the applications we experiment with. We also note
that many applications tend to be read-heavy and it is often more
critical to optimize latencies of transactions involving reads.

To bound probes’ overhead, we limit the probe rate to 10% of
the application traffic rate. Dealer biases the probes based on the
quality of the path. In particular, the probability Pi that a path is
probed is given as:

Pi =
CRi

P

j CRj

(2)

Here, CRi is the compliance ratio– the fraction of requests that use
a given path with a response time lower than its SLA. The intuition
is that a path that has generally been good might temporarily suf-
fer poor performance. Biasing the probing ensures that such a path
is likely to be probed more frequently, which ensures Dealer can
quickly switch back to it when its performance improves. Also,
Dealer probes 5% of the paths at random to ensure more choices
can be explored. In the initialization stage, Dealer probes paths in a
random fashion. As an enhancement, Dealer can bias probing dur-
ing the initialization phase based on coarse estimates of link delays.
Such coarse estimates can be obtained based on the size of transac-
tions exchanged between components (obtained through monitor-
ing application traffic) and the bandwidth between data-centers.

While probing may add a non-negligible overhead on applica-
tions, we are investigating ways to restrict our use of active prob-
ing to only measuring inter-data-center latency and bandwidth. The
key insights behind our approach are to (i) use passive user-generated
traffic to update component processing delays and inter-component
link latencies 1; and (ii) limit active probes to measuring inter-data-
center latency and bandwidth. These measurements can then be
combined, along with passive measurements on transaction sizes
observed between components, to estimate the performance of any
combination. Further, rather than having each application mea-
sure the bandwidth and latency between every pair of data-centers,
cloud providers could provide such services in the future, amortiz-
ing the overheads across all applications. We leave further explo-
ration of this as future work.

4.3 Determining transaction split ratios

In this section, we discuss how Dealer uses the processing delays
of components and communication times of links to compute the
split ratio matrix TF. Here, TFim,jn is the number of user trans-
actions that must be directed between component i in data-center
m to component j in data-center n, for every <component, data-
center > pair. In determining the split ratio matrix, Dealer consid-
ers several factors including i) the total response time; ii) stability
of the overall system; and iii) capacity constraints of application
components.

In our discussion, a combination refers to an assignment of each
component to exactly one data-center. For e.g., in Figure 5, a map-

1We expect each data-center to continually receive some traffic
which would ensure such passive observations are feasible.

ping of C1 to DC1, C2 to DCk, Ci to DCm and Cj to DCm rep-
resents a combination. The algorithm iteratively assigns a fraction
of transactions to each combination. The split ratio matrix is easily
computed once the fraction of transactions assigned to each combi-
nation is determined. We now present the details of the assignment
algorithm:

Considering total response time: Dealer computes the mean de-
lay for each possible combination like in [28]. It is the weighted
sum of the processing delays of nodes and communication delay of
links associated with that combination. The weights are determined
by the fraction of user transactions that traverse that node or link.
Specifically, consider a combination where component i is assigned
to data-center d(i). Then, the mean delay of that combination is:

X

i

X

j

fij ∗ Did(i),jd(j) (3)

Here, Did(i),jd(j) denotes the communication delay between com-
ponent i in data-center d(i), and component j in data-center d(j).
When i = j, D represents the processing delay of component i.
Further, fij denotes the fraction of transactions that involve an in-
teraction between application components i and j, and fii denotes
the fraction of transactions that are processed at component i. The
fractions fij may be determined by monitoring the application in
its past window like in § 4.2. Once the delays of combinations are
determined, Dealer sorts the combinations in ascending order of
mean delay such that the best combinations get utilized the most,
thereby ensuring a better performance.

Ensuring system stability: To ensure stability of the system and
prevent oscillations, Dealer avoids abrupt changes in the split ra-
tio matrix in response to minor performance changes. To achieve
this, Dealer limits the maximum fraction of transactions that may
be assigned to a given combination. The limit (which we refer to
as the damping ratio) is based on how well that combination has
performed relative to others, and how much traffic was assigned to
that combination in the recent past. In particular, the damping ratio
(DR) for each combination is calculated periodically as follows:

DR(Li, t) = W (Li,t)
P

k
W (Lk,t)

, where

W (Li, t) =
PW−1

ℓ=0 Rank(Li, t − ℓ) ∗ Req(Li, t − ℓ)

(4)

Here, Rank(L, t) is the ranking of combination L at the end of
time window t (the lower the value of mean delay, the higher the
ranking). Req(L, t) is the number of requests sent on combination
L during t. The algorithm computes the weight of a combination
based on its rank and the requests assigned to it in each of the last
W windows. Similar to §4.2, we found that W values between 3
and 5 results in the best performance.

Honoring capacity constraints: In assigning transactions to a com-
bination of application components, Dealer ensures the capacity
constraints of each of the components is honored as described in
Algorithm 1. Dealer considers the combinations in ascending order
of mean delay (line 8). It then determines the maximum fraction of
transactions that can be assigned to that combination without satu-
rating any component (lines 9-11). Dealer assigns this fraction of
transactions to the combination, or the damping ratio, whichever is
lower (line 12). The available capacities of each component and
the split ratio matrix are updated to reflect this assignment (lines
14-16). If the assignment of transactions is not completed at this
point, the process is repeated with the next best combination (lines
17-18).



Algorithm 1 Determining transaction split ratios.

1: procedure COMPUTESPLITRATIO()
2: Let C[i, m] be the capacity matrix, with each cell (i, m) corre-

sponding to capacity of component Cim (component i in data-center
m), calculated as in §4.4

3: Let AC[i, m] be the available-capacity matrix for Cim Initialized
as AC[i, m] ← C[i, m]

4: Let T [i, j] be the transaction matrix, with each cell (i, j) indicat-
ing the number of transactions per second between application compo-
nents i and j

5: Let Ti be the load on each component (
P

j Tji)

6: Let FA be fraction of transactions that has been assigned to combi-
nations. Initialized as FA ← 0

7: Goal: Find TF [im, jn]: the number of transactions that must be
directed between Cim and Cjn

8: Foreach combination L, sorted by mean delay values
9: For each Cim in L

10: fi ←
AC[i,m]

Ti

11: minf ← min∀i(fi)
12: ratio = min(minf , DR(L, t))
13: Rescale damping ratios if necessary
14: For each Cim in L
15: AC[i, m] ← AC[i, m] − ratio ∗ Ti

16: TF [id(i), jd(j)] ← TF [id(i), jd(j)] + ratio ∗ Tij , ∀i, j
17: FA ← FA + ratio
18: Repeat until FA = 1

19: end procedure

Algorithm 2 Dynamic capacity estimation.

1: procedure COMPUTETHRESH(T,D)
2: if D > 1.1 ∗ DelayAtThresh then

3: if T <= Thresh then
4: LowerThresh ← 0.8 ∗ T
5: ComponentCapacity ← Thresh
6: else

7: Thresh ← unchanged
8: ComponentCapacity ← Thresh
9: end if

10: else if D <= DelayAtThresh then
11: if T >= Thresh then
12: Thresh ← T
13: ComponentCapacity ← T + 5%ofT
14: else
15: Thresh ← unchanged
16: ComponentCapacity ← Thresh
17: end if

18: end if
19: end procedure

4.4 Estimating capacity of components

We now discuss how Dealer determines the capacity of compo-
nents in terms of the load each component can handle. Typically,
application delays are not impacted by an increase in load up to
a point which we term as the threshold. Beyond this, application
delays increase gradually with load, until a breakdown region is en-
tered where vastly degraded performance is seen. Ideally, Dealer

must operate at the threshold to ensure the component is saturated
while not resulting in degraded performance. The threshold is sen-
sitive to transaction mix changes. Hence, Dealer relies on algo-
rithms for dynamically estimating the threshold, and seeks to oper-
ate just above the threshold.

Dealer starts with an initial threshold value based on a conser-
vative stress test assuming worst-case load (i.e., transactions that
are expensive for each component to process). Alternately, the
threshold can be obtained systematically (e.g., using knee detec-
tion schemes [37]) or learnt during boot-up phase of an applica-

Algorithm 3 Integration with stateful applications.

Original code:

procedure SENDREQUEST(Component cmp, Request req)
Replica replica ← cmp.Replica
replica.Send(req)

end procedure

With Dealer:

procedure SENDREQUEST(Component cmp, Request req)
Replica replica ← metaData[req.ID][cmp]
if replica is null then ⊲ Not in meta-data.

replica ← GetDealerReplica(cmp) ⊲ Use Dealer suggestion.

if cmp is stateful then ⊲ Cmp is stateful but its information

has not been propagated yet in meta-data.

metaData[req.ID][cmp] ← replica
end if

end if

replica.Send(req)
end procedure

tion in the data-center, given application traffic typically ramps up
slowly before production workloads are handled. Since the ini-
tial threshold can change (e.g., due to changes in transaction mix),
Dealer dynamically updates the threshold using Algorithm 2. The
parameter DelayAtThresh is the delay in the flat region learnt in
the initialization phase, which is the desirable levels to which the
component delay must be restricted. At all times, the algorithm
maintains an estimate of Thresh, which is the largest load in recent
memory where a component delay of DelayAtThresh was achieved.
T and D represent the current transaction load on the component,
and the delay experienced at the component respectively. The al-
gorithm strives to operate at a point where D is slightly more than
DelayAtThresh, and T slightly more than thresh. If Dealer oper-
ated exactly at thresh, it would not be possible to know if thresh

has increased, and hence discover if Dealer is operating too con-
servatively.

The algorithm begins by checking if the delay is unacceptably
high (line 2). In such case, if T ≤ Thresh, (line 3) the threshold
is lowered. Otherwise (line 6), the threshold remains unchanged
and the component capacity is lowered to the threshold. If D is
comparable to DelayAtThresh (line 10), it is an indication the com-
ponent can take more load. If T ≥ Thresh (line 11), then the
threshold is too conservative, and hence it gets increased. Further,
ComponentCapacity is set to slightly higher than the threshold to
experiment if the component can absorb more requests. If however
T < Thresh, (line 14), then ComponentCapacity is set to Thresh

to allow more transactions be directed to that component.
We note that the intuition behind the choice of parameters is to

increase the load the component sees by only small increments
(5%) but back-off more aggressively (by decreasing the load in
each round by 20%) in case the delay starts increasing beyond the
desired value. We believe the choice of parameters is reasonable;
however, we defer testing the sensitivity of the algorithm to these
parameters as a future work. Finally, while component delays were
used as a mean of estimating if the component is saturated, one
could also use other metrics such as CPU, memory utilization and
queues sizes.

4.5 Integrating Dealer with applications

We integrated Dealer with both Thumbnail and StockTrader, and
we found that the overall effort involved was small. Integrating
Dealer with applications involves: i) adding logic to re-route re-
quests to replicas of a downstream component across different data-
centers; and ii) maintaining consistent state in stateful applications.



Re-routing requests. To use Dealer, application developers need
to make only a small change to the connection logic – the code
segment inside a component responsible for directing requests to
downstream components. Dealer provides both push and pull API’s
for retrieving split ratios (§4.3). Instead of forwarding all requests
to a single service endpoint, the connection logic now allocates re-
quests to downstream replicas in proportion to the split ratios pro-
vided by Dealer.

Integration with stateful applications. While best practices em-
phasize that cloud applications should use stateless services when-
ever possible [6, 4], some applications may have stateful compo-
nents. In such cases, the application needs to affinitize requests to
component replicas so that each request goes to the replicas that
hold the state for processing the request. Integrating Dealer with
such applications does not change the consistency semantics of the
application. Dealer does not try to understand the application’s
policy for allocating requests to components. Instead, it proposes
the desired split ratios to the application, and the application uses
its own logic to determine which replicas can handle a request.

In integrating Dealer with stateful applications, it is important to
ensure that related requests get processed by the same set of state-
ful replicas due to data consistency constraints. For instance, the
StockTrader application involves session state. To integrate Dealer,
we made sure all requests belonging to the same user session use
the same combination, and Dealer’s split-ratios only determine the
combination taken by the first request of that session. StockTrader

persists user session information (users logged in, session IDs, etc.)
in a database. We modified the application so that it also stores the
list of stateful replicas for each session. We also note that some web
applications maintain the session state in the client side through
session cookies. Such information could again be augmented to
include the list of stateful replicas.

To guarantee all requests within the same session follow the
same combination, the application must be modified to propagate
meta-data (such as a unique session ID and the list of stateful repli-
cas associated with it) along all requests between components. Many
web applications (such as StockTrader) use SOAP and RESTful
services that provide Interceptors which can be easily used to prop-
agate meta-data with very minimal modifications. In the Stock-

Trader application, we used SOAP Extensions [16] to propagate
meta-data. In other cases where Interceptors cannot be used, end-
point interfaces can be changed or overloaded to propagate such
data.

The propagated meta-data is used by components to guide the
selection of downstream replicas. Algorithm 3 illustrates this. A
component initiating a request must first check if the downstream
component is stateful (by examining the meta-data), and if it is, it
picks the replica specified in the meta-data. Otherwise, it picks the
replica suggested by Dealer. If a downstream stateful component
is visited for the first time, it picks the replica that Dealer suggests
and saves this information into the meta-data which gets propagated
along requests to the front-end.

While handling such state may require developer knowledge, we
found this required only moderate effort from the developer in the
applications we considered. As future work, we would like to inte-
grate Dealer with a wider set of applications with different consis-
tency requirements and gain more experience with the approach.

5 Experimental Evaluation

In this section, we evaluate the importance and effectiveness of
Dealer in ensuring good performance of applications in the cloud.
We begin by discussing our methodology in §5.1. We then evaluate
the effectiveness of Dealer in responding to various events that oc-

cur naturally in a real cloud deployment (§5.2). These experiments
both highlight the inherent performance variability in cloud envi-
ronments, and evaluate the ability of Dealer to cope with them. We
then evaluate Dealer using a series of controlled experiments which
stress the system and gauge its effectiveness in coping with extreme
scenarios such as sharp spikes in application load, failure of cloud
components, and abrupt shifts in application transaction sizes.

5.1 Evaluation Methodology

We study and evaluate the design of Dealer by conducting experi-
ments on Thumbnail and StockTrader (introduced in §2).

Cloud testbed and application workloads: All experiments were
conducted on Microsoft Azure by deploying each application si-
multaneously in two data-centers located geographically apart in
the U.S. (North and South Central). In all experiments, application
traffic to one of the data-centers (referred to as DCA) is controlled
by Dealer, while traffic to the other one (DCB) was run without
Dealer. The objective was to not only study the effectiveness of
Dealer in enhancing performance of traffic to DCA, but also en-
sure that Dealer did not negatively impact performance of traffic to
DCB .

Application traffic to both data-centers was generated using a
Poisson arrival process when the focus of an experiment is primar-
ily to study the impact of cloud performance variability. Further-
more, to study the impact of workload dynamics, we also use real
campus workload traces (described in §2.2) and conduct experi-
ments that involve abrupt changes of the rate of the Poisson process.
In Thumbnail, we set the transaction mix (fraction of requests to
BL1 and BL2) according to the fraction of requests to Component1
and Component2 in the trace. Another key workload parameter that
we did vary was the size of pictures uploaded by users. Requests
in Thumbnail had an average upload size of 1.4 MB (in the form of
an image) and around 3.2 (860) KB download size for BL1 (BL2)
transactions. StockTrader, on the other hand, had a larger variety
of transactions (buying/selling stocks, fetching quotes, etc.) with
relatively smaller data size. To generate a realistic mix of trans-
actions, we used the publicly available DaCapo benchmark [24],
which contains a set of user sessions, with each session consisting
of a series of requests (e.g., login, home, fetch quotes, sell stocks,
and log out). A total of 66 PlanetLab users, spread across the U.S.,
were used to send requests to DCA. Further, another set of users
located inside a campus network were used to generate traffic to
DCB .

Application Deployments: Applications were deployed with enough
instances of each component so that they could handle typical loads
along with additional margins. We estimated the capacities of the
components through a series of stress-tests. For instance, with an
average load of 2 req

sec
and 100% margin (typical of real deploy-

ments as shown in §2), we found empirically that 2/5/16 instances
of FE/BL1/BL2 components were required. Likewise, for Stock-

Trader, handling an average load of 1 req

sec
(0.25 session

sec
) required

1/2/1 instances of FE/BS/OS.

In StockTrader, we deployed the DB in both data-centers and
configured it in master-slave mode. We used SQL Azure Data
Sync [14] for synchronization between the two databases. We note
that Dealer can be integrated even if the application uses shard-
ing or has weaker consistency requirements (§4.5) – the choice of
master-slave is made for illustration purposes. While reads can oc-
cur at either DB, writes are made only at the master DB (DCB).
Therefore, transactions involving writes (e.g., buy/sell) can only
occur through the BS and OS instances in DCB . Thus, the BS
component would see a higher number of requests (by ≈ 20%)
than the FE and therefore requires higher provisioning than FE.



 0

 0.2

 0.4

 0.6

 0.8

 1

 3000  4000  5500  7500 10000  17000

CD
F

Delay in msec [log scale]

Without Dealer
With Dealer

Figure 6: CDF of total response time under natural cloud dynamics.

Further, each component can only connect to its local CS and DB
to obtain communication credentials of other components. Finally,
all requests belonging to a user session must use the same set of
components given the stateful nature of the application.
Comparison with existing schemes: We evaluate Dealer against
two prominent load-balancing and redirection techniques used to-
day:
• DNS-based redirection: Azure provides Windows Azure Traffic

Manager (WATM) [19] as its solution for DNS-based redirection.
WATM provides Failover, Round-Robin and Performance distribu-
tion policies. Failover deals with total service failures and sends
all traffic to the next available service upon failure. Round-robin
routes traffic in a round-robin fashion. Finally, Performance for-
wards traffic to the closest data-center in terms of network latency.
In our experiments, we use the Performance policy because of its
relevance to Dealer. In WATM, requests are directed to a single
URL which gets resolved through DNS to the appropriate data-
center based on performance tables that measure the round trip
time (RTT) of different IP addresses around the globe to each data-
center. We believe WATM is a good representative of DNS-based
redirection schemes for global traffic management. However, its
redirection is based solely on network latency and is agnostic to
application performance. We therefore compare Dealer with an-
other scheme that considers overall application performance.
• Application-level Redirection: We implemented a per-request load-
balancer, that we call Redirection, which re-routes each request as a
single unit, served completely by a single data-center. Redirection

re-routes requests based on the overall performance of the appli-
cation, calculated as the weighted average of total response time
(excluding Internet delays) across all transactions. If it finds the
local response time of requests higher than that of the remote data-
center, it redirects clients to the remote data-center by sending a
302 HTTP response message upon receiving a client request. It
re-routes requests as long as the remote data-center is perform-
ing better, or until capacity limits are reached remotely (limited
by the capacity of lowest margin component). Similar to Dealer,
re-routing in Redirection does not depend on transaction types. We
use the same monitoring and probing infrastructure described in
§4.2.

5.2 Dealer under natural cloud dynamics

In this section, we evaluate the effectiveness of Dealer in respond-
ing to the natural dynamics of real cloud deployments. Our goal
is to explore the inherent performance variability in cloud environ-
ments and evaluate the ability of Dealer to cope with such variabil-
ity.

We experiment with Thumbnail and compare its performance
with and without Dealer. Ideally it is desirable to compare the two

0 5 10 15 20 25 30 35 40 45

5000

10000

20000

40000

80000

160000

Run number

De
la

y 
in

 m
se

c 
[L

og
 s

ca
le

]

(a) With Dealer.

0 5 10 15 20 25 30 35 40 45

5000

10000

20000

40000

80000

160000

Run number

De
la

y 
in

 m
se

c 
[L

og
 s

ca
le

]

(b) Without Dealer.

Figure 7: Box-plots of total response time under natural cloud dy-

namics.

schemes under identical conditions. Since this is not feasible on
a real cloud, we ran a large number of experiments alternating be-
tween the two approaches. The experiment was 48 hours, with each
hour split into two half-hour runs; one without activating Dealer,
and another with it. Traffic was generated using a Poisson process
with an average request rate of 2 req

sec
to each data-center.

Figure 6 shows the CDF of the total response time for the whole
experiment. Dealer performs significantly better. The 50th, 75th,
90th, and 99th percentiles with Dealer are 4.6, 5.4, 6.6 and 12.7
seconds respectively. The corresponding values without Dealer are
4.9, 6.8, 43.2 and 90.9 seconds. The reduction is more than a factor
of 6.5x for the top 10 percentiles.

Figure 7 helps understand why Dealer performs better. The fig-
ure shows a box-plot of total response time for each run of the ex-
periment. The X-axis shows the run number and the Y-axis shows
the total response time in milliseconds. Figure 7(a) shows the runs
with Dealer enabled, and 7(b) shows the runs with Dealer disabled
(i.e., all traffic going to DCA stay within the data-center). In both
figures, runs with the same number indicate that the runs took place
in the same hour, back to back. The figures show several interesting
observations:
• First, without Dealer, most runs had a normal range of total re-
sponse time (median ≈ 5 seconds). However, the delays were
much higher in runs 13-16 and 43-48. Further investigation showed
these high delays were caused by the BL instances in DCA, which
had lower capacity to absorb requests during those periods, and
consequently experienced significant queuing. Such a sudden dip



in capacity is an example of the kind of event that may occur in the
cloud, and highlights the need for Dealer.

Figure 8: Fraction of Dealer traffic sent from DCA to DCB .

• Second, Dealer too experienced the same performance problem
with BL in DCA during runs 13-16 and 43-48. However, Dealer

mitigated the problem by tapping into the margin available at DCB .
Figure 8 shows the fraction of requests directed to one or more
components in DCB by Dealer. Each bar corresponds to a run
and is split according to the combination of components chosen by
Dealer. Combinations are written as the location of FE, BE, BL1

and BL2 components2 respectively, where A refers to DCA and B
to DCB . For example, for run 0 around 9% of all requests handled
by Dealer used one or more components from DCB . Further, for
this run, 5% of requests used the combination AAB, while 1%
used ABA, and 3% used ABB. Further, most requests directed to
DCB during the problem take the path AAB, which indicates the
BL component in DCB is used.

• Third, we compared the performance when runs 13-16 and 43-48
are not considered. While the benefits of Dealer are not as pro-
nounced, it still results in a significant improvement in the tail. In
particular the 90th percentile of total response time was reduced
from 6.4 to 6.1 seconds, and the 99th percentile was reduced from
18.1 to 8.9 seconds. Most of these benefits come from Dealer’s
ability to handle transient spikes in workload by directing transac-
tions to the BL replica in DCB . There were also some instances of
congestion in the blob of DCA which led Dealer to direct transac-
tions to the blob of DCB .

• Finally, Figure 7(a) shows that the performance is not as good in
run 8. Further inspection revealed that the outliers during this run
were all due to the high upload delays of the requests directed to
DCB . This was likely due to Internet congestion between the users
and DCB . We note that such performance problems are not the fo-
cus of Dealer, and should rather be handled by schemes for Global
Traffic Management such as DNS-based redirection [45, 26].

5.3 Reaction to changes in transactions size

Multi-tier applications show a lot of variability not only in request
rates but also in the mix and size of transactions, as we discussed in
§2. In this section, we evaluate the effectiveness of Dealer in adapt-
ing to changes in transactions size using the Thumbnail application.
Using the same configuration described earlier, we change the size
of images that users upload to DCA from 860 KB to 1.4 MB during
time 400 to 800, and reduce it back to 860 KB after that. Figure 9
shows the total response time, comparing the performance with and
without Dealer. The performance without Dealer is significantly
affected even by a moderate increase in image size. Further, al-
though the problem lasted for only 400 seconds (6.6 minutes), it

2Since all transactions in this experiment were of type BL1, we

drop the 4th tuple.

Figure 9: Performance under varying transaction size (Thumbnail).

took the application without Dealer around 960 seconds (16 min-
utes) to recover after transaction sizes returned to normal due to the
large build-up of queues. However, the performance with Dealer

is good as the application could dynamically direct transactions to
DCB .

5.4 Dealer vs. DNS-based redirection

Global Traffic Managers (GTM) are used to route user traffic across
data-centers to get better application performance and cope with
failures. We conducted an experiment with the same setup men-
tioned in §5.2 to compare Dealer against WATM (§5.1). Figure 10
shows that Dealer achieves a reduction of at least 3x times in total
response time for the top 10 percentiles. Like before, we found the
BL instances had lower capacity in some of the runs leading to a
higher total response time in GTM. Since the GTM approach only
takes into account the network latency and not the application per-
formance, it was unable to react to performance problems involving
the BL instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 3000  4000  5500  7500 10000  17000

CD
F

Delay in msec [log scale]

GTM
Dealer

Figure 10: CDF of total response time for GTM vs. Dealer (Thumb-

nail).

5.5 Dealer vs. application-level redirection

In this section, we evaluate the effectiveness of Dealer in adapting
to transient performance issues and compare its performance with
application-level redirection described in §5.1.

5.5.1 Reaction to transient performance problems

We present our evaluation of Dealer’s response to performance
variation in the cloud by deploying StockTrader at both data-centers,
using the master-slave mode as described in §5.1. We emulate a
performance degradation in the database (DB) at DCA using the
traces we collected during the DB performance issue in §2.1 by
taking a 10 minutes period with high DB latency and using the cor-
responding data points to induce delay at the DB.

Figure 11 shows that during the period of performance degra-
dation at the DB (9-18th and 27-36th min), the average response
time of Dealer is significantly better than that of Redirection. Fig-
ure 11(b) shows that Dealer takes ABB and switches requests over



Figure 11: Performance of Dealer vs. Redirection using traces col-

lected during the DB performance issue. A combination (FE, BS, OS)

is represented using the data-center (DCA or DCB) to which each com-

ponent belongs. 20% of transactions perform DB writes (combination

ABB), hence we exclude them for better visualization.

to the BS and OS at DCB to avoid the high latency at DB. Simi-
larly, Figure 11(c) shows the path (BBB) taken by Redirection and
how this scheme switches a fraction of the requests entirely to the
data-center, DCB . The fraction of traffic redirected to BBB in (c)
is less than the fraction of traffic sent through ABB in (b). This is
because Dealer is able to better utilize the margin available at the
BS by switching a larger fraction of requests to the BS in DCB . On
the other hand, Redirection is constrained by the available capac-
ity at the FE (DCB) and hence is not able to completely utilize the
margin available at the BS (DCB).

5.5.2 Reaction to transient component overload

In this section, we evaluate Thumbnail under natural cloud settings
using a real workload trace from §2. We use two intervals, each
around 30 minutes long, and replay them on DCA and DCB si-
multaneously. The two intervals are about 4 hours away from each
other, allowing us to simulate realistic load that may be seen by
data-centers in different time-zones. We ran the experiment in a
similar fashion to §5.2 for 5 hours alternating between Dealer and
Redirection. We subjected BL1 and BL2 to the same request rate
seen by Component1 and Component2. A total of 55 VM’s were
used to deploy the application in both data-centers. We picked the
margin for each component as the average peak-to-average ratio
during each interval. Margins ranged between 190% and 330%.

Figure 12 shows that the 90th(99th) percentiles for Dealer were
11.9 (14.4) seconds, compared to 13.3 (19.2) seconds for Redirection–
a reduction of over 10.5% in response times for the top 10 per-
centiles. Further investigation revealed that this was due to a short-
term overload affecting the BL1 replica in DCA. Dealer was able to
mitigate the problem by splitting requests to BL1 between its repli-
cas in both data-centers. Redirection, on the other hand, could not
re-direct all excess traffic to DCB since BL2 did not have sufficient
capacity in the remote data-center to handle all the load from DCA.
Figure 13 shows that at times 400-500, BL1 in DCA experienced
a surge in request rate exceeding its available margin. At the same
time, BL1(BL2) in DCB had a request rate that is lower(higher)
than its average. These results highlight the importance and effec-
tiveness of Dealer’s fine-grained component level mechanism in
adapting to transient overload of individual components.

5.5.3 Reaction to failures in the cloud

Applications in the cloud may see failures which reduce their mar-
gins, making them vulnerable to even modest workload spikes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5500  7500  10000  17000

CD
F

Delay in msec [log scale]

Dealer
Redirection

Figure 12: CDF of total response time of Dealer vs. Redirection using

real workload trace under natural spikes and transaction mix changes

(Thumbnail). Latencies with both schemes are higher than Figure 6 be-

cause transactions to BL2 involve heavier processing (image rotation).

Figure 13: Request rate for each component in both data-centers.

BL2 in DCA not shown for better visualization.

Figure 14: Performance of Dealer vs. Redirection using real workload

trace with cloud failures (Thumbnail).

Failures can happen due to actual physical outages or due to main-
tenance and upgrades. For example, Windows Azure’s SLA states
that a component has to have 2 or more instances to get 99.95%
availability [17] as instances can be taken off for maintenance and
upgrades at any time.

In Figure 14, we reproduced the case of a single fault-domain
failure at time 300 affecting BL2 instances in DCB

3. The combi-
nation AABA represents requests which were served by FE, BE,
BL2 at DCA and BL1 at DCB . For the same reasons described
in §5.5.2, Dealer maintained a significantly lower response time
during the surge in workload (130% lower). The results show that
Dealer is effective in handling failures in the cloud.

3This involved bringing 4 BL2 VM’s offline since Azure deploys
each component’s VMs on 2 or more fault-domains.



5.5.4 Inter data-center bandwidth costs

A potential concern arises due to wide-area traffic that Dealer in-
troduces in re-routing requests across data-centers. In this section,
we compute the cost percentage increase for Thumbnail and Stock-

Trader based on the experiments described in §5.5.1 and §5.5.2.
We consider the bandwidth, storage and compute (small instances)

costs based on Microsoft Azure tariffs in January, 2012. The band-
width cost is based on all transactions exiting each data-center (in-
coming transactions do not incur bandwidth costs in Azure). The
average size of each request in Thumbnail (StockTrader) is 1.5MB
(2 KB). StockTrader uses SQL Azure DB (Web Ed.) and Thumb-

nail uses Azure blobs for storage. We calculate the storage cost for
Thumbnail based on the number of storage transactions and stor-
age size consumed. The cost of the DB and compute instances is
normalized to the duration of the experiments.

The cost percentage increase for Thumbnail and StockTrader were
found to be 1.94% and 0.06% respectively. This shows that the cost
introduced due to inter data-center bandwidth is minimal, even for
data-intensive applications such as Thumbnail. We have repeated
our calculations using the Amazon EC2 pricing scheme [2], and we
have found similar results. Finally, we note that in our evaluations
we assume compute instances in both data-centers cost the same.
However, in practice, application architects are likely to provision
reserved instances in each data-center [2] (i.e., instances contracted
over a longer period for a lower rate). Under such scenarios, Dealer

has the potential to incur lower costs than Redirection by leveraging
reserved instances in each data-center to the extent possible.

6 Related Work

Several researchers have pointed out the presence of performance
problems with the cloud (e.g., [44, 33, 23]). In contrast, our focus
is on designing systems to adapt to short-term variability in the
cloud.

The cloud industry already provides mechanisms to scale up or
down the number of server instances in the cloud (e.g., [36, 11]).
However, it takes tens of minutes to invoke new cloud instances
in commercial cloud platforms today. Recent research has shown
the feasibility of starting new VMs at faster time scales [32, 43].
For instance, [32] presents a VM-fork abstraction which enables
the cloning of a VM into multiple replicas on-the-fly. While such
schemes are useful for handling variability in performance due to
excess load on a component, they cannot handle all types of dy-
namics in the cloud (e.g., problems in blob storage, network con-
gestion, etc.). Further, ensuring the servers are warmed up to serve
requests after instantiation (e.g., by filling caches, running checks,
copying state, etc.) demands additional time. In contrast, Dealer

can enable faster adaptation at shorter time-scales, and is intended
to complement solutions for dynamic resource invocation.

DNS-based techniques [26, 39, 45] and server-side redirection
mechanisms [35] are widely used to map users to appropriate data-
centers. However, such techniques focus on alleviating perfor-
mance problems related to Internet congestion between users and
data-centers, and load-balance user traffic coarsely at the granular-
ity of data-centers. In contrast, Dealer targets performance prob-
lems of individual cloud components inside a data-center, and may
choose components that span multiple data-centers to service an in-
dividual user request. This offers several advantages in large multi-
tier applications (with potentially hundreds of components [28])
where possibly only a small number of components are temporar-
ily impacted. When entire user requests are redirected to a remote
data-center as in [26, 39, 45, 35], not all components in the remote
data-center may be sufficiently over-provisioned to handle the redi-
rected requests. Further, redirecting entire user requests does not

utilize functional resources in the local data-center that have al-
ready being paid for. For instance, the local data-center may have
underutilized reserved instances [2], while the remote data-center
might require the use of more expensive on-demand instances. The
cost could be substantial over a large number of components. Fi-
nally, studies have shown that the use of DNS-based redirection
techniques may lead to delays of more than 2 hours and thus may
not be suitable for applications which require quick response to
failures [34]. We note that [35] does mention doing the redirec-
tion at the level of the bottleneck component; however, Dealer is
distinguished in that it makes no a priori assumption about which
component is the bottleneck, and dynamically reacts to whichever
component or link performs poorly at any given time.

Several works [38, 42, 46] study utility resource planning and
provisioning for applications. [38] studies resource planning for
compute batch tasks by building predictive models in shared com-
puting utilities. Further, [42, 46] build analytic models for han-
dling workload variability (changing transaction mix and load) in
multi-tier applications. For example, [42] aims at handling peak
workloads by provisioning resources at two levels; predictive pro-
visioning that allocates capacity at the time-scale of hours or days,
and reactive provisioning that operates at time scales of minutes.
While such techniques are complementary to Dealer, their focus is
not applications deployed in public clouds. Dealer not only deals
with workload variability, but also handles all types of performance
variability (e.g., due to service failures, network congestion, etc.)
in geo-distributed multi-tier applications, deployed in commercial
public clouds. Dealer provides ways to avoid components with
poor performance and congested links via re-routing requests to
replicas in other data-centers at short time scales.

Other works [31, 25] study the performance of multi-tier appli-
cations. [31] tries to control the performance of such applications
by preventing overload using self-tuning proportional integral (PI)
controller for admission control. Such a technique can be inte-
grated with Dealer to control the load directed to each component
replica. Further, [25] combines performance modeling and profil-
ing to create analytical models to accomplish SLA decomposition.
While SLA decomposition is outside the scope of Dealer, compo-
nent profiling may be incorporated with Dealer to capture compo-
nent’s performance as a function of allocated resources (e.g., CPU)
to achieve performance prediction.

7 Conclusions and Future Work

In this paper, we have shown that it is important and feasible to ar-
chitect latency-sensitive applications in a manner that is robust to
the high variability in performance of cloud services. We have pre-
sented Dealer, a system that can enable applications to meet their
SLA requirements by dynamically splitting transactions for each
component among its replicas in different data-centers. Under nat-
ural cloud dynamics, the 90th and higher percentiles of application
response times were reduced by more than a factor of 3 compared
to a system that used traditional DNS-based redirection. Further,
Dealer not only ensures low latencies but also significantly out-
performs application-level redirection mechanisms under a range
of controlled experiments. Integrating Dealer with two contrasting
applications only required a modest level of change to code.

As future work, we plan to explore and gain more experience
integrating Dealer with a wider set of cloud applications with var-
ious consistency constraints. Further, we intend to study ways for
reducing probing overhead by limiting active probes to measuring
inter-data-center bandwidth and latency only. Finally, we will eval-
uate the performance of Dealer under scale and explore more cloud
infrastructures (such as Amazon EC2 and Google App Engine).



8 Acknowledgments

This material is based upon work supported in part by the National
Science Foundation (NSF) under Career Award No. 0953622 and
NSF Award No. 1162333, and was supported by cloud usage cred-
its from Microsoft Azure under NSF/Microsoft’s Computing in the
Cloud program. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF or Microsoft.
Finally, we thank the reviewers and our shepherd, Prashant Shenoy,
for their feedback which helped us improve the paper.

9 References

[1] Amazon cloud outage.
http://aws.amazon.com/message/2329B7/.

[2] Amazon EC2 pricing.
http://aws.amazon.com/ec2/pricing/.

[3] Apache, Project Stonehenge. http://wiki.apache.org/
incubator/StonehengeProposal.

[4] Architecting for the Cloud: Best Practices.
http://jineshvaria.s3.amazonaws.com/public/

cloudbestpractices-jvaria.pdf.

[5] Aspect Oriented Programming. http://msdn.microsoft.
com/en-us/library/aa288717%28v=vs.71%29.aspx.

[6] Coding in the Cloud. Use a stateless design whenever possible.
http://www.rackspace.com/blog/coding-in-the-cloud-rule-3-use-a-
stateless-design-whenever-possible/.

[7] Event Tracing for Windows (ETW). http://msdn.
microsoft.com/en-us/library/aa363668.aspx.

[8] Grinder Load Testing Framework.
http://grinder.sourceforge.net/index.html.

[9] Latency - it costs you. http://highscalability.com/latency-everywhere-
and-it-costs-you-sales-how-crush-it.

[10] Microsoft Live outage due to DNS corruption.
http://windowsteamblog.com/windows_live/b/

windowslive/archive/2011/09/20/

follow-up-on-the-sept-8-service-outage.aspx.

[11] Microsoft Windows Azure.
http://www.microsoft.com/windowsazure/.

[12] Response Time Metric for SLAs.
http://testnscale.com/blog/performance/

response-time-metric-for-slas.

[13] Slow pages lose users. http://radar.oreilly.com/2009/
06/bing-and-google-agree-slow-pag.html.

[14] SQL Azure Data Sync. http:
//social.technet.microsoft.com/wiki/contents/

articles/sql-azure-data-sync-overview.aspx.

[15] SQL Azure Performance Issue.
http://cloudfail.net/513962.

[16] Using SOAP Extensions in ASP.NET. http://msdn.
microsoft.com/en-us/magazine/cc164007.aspx.

[17] Windows Azure SLA.
http://www.microsoft.com/windowsazure/sla/.

[18] Windows Azure Thumbnails Sample.
http://code.msdn.microsoft.com/windowsazure/

Windows-Azure-Thumbnails-c001c8d7.

[19] Windows Azure Traffic Manager (WATM).
http://msdn.microsoft.com/en-us/gg197529.

[20] AHMAD, F., ET AL. Joint optimization of idle and cooling power in
data centers while maintaining response time. ASPLOS 2010.

[21] ARMBRUST, M., ET AL. Above the Clouds: A Berkeley View of
Cloud Computing. Tech. rep., EECS, University of California,
Berkeley, 2009.

[22] BARHAM, P., ET AL. Magpie: Online modelling and
performance-aware systems. In HOTOS 2003.

[23] BARKER, S., AND SHENOY, P. Empirical evaluation of
latency-sensitive application performance in the cloud. In MMSys

2010.

[24] BLACKBURN, S. M., AND ET AL. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA 2006.

[25] CHEN, Y., IYER, S., LIU, X., MILOJICIC, D., AND SAHAI, A.
SLA decomposition: Translating service level objectives to system
level thresholds. In ICAC’07.

[26] DILLEY, J., ET AL. Globally distributed content delivery. Internet

Computing, IEEE (2002).

[27] FONSECA, R., PORTER, G., KATZ, R., SHENKER, S., AND

STOICA, I. X-trace: A pervasive network tracing framework. In
NSDI 2007.

[28] HAJJAT, M., ET AL. Cloudward bound: Planning for beneficial
migration of enterprise applications to the cloud. SIGCOMM 2010.

[29] HASTORUN, D., ET AL. Dynamo: amazons highly available
key-value store. In In Proc. SOSP (2007).

[30] HONG, Y.-J., ET AL. Dynamic server provisioning to minimize cost
in an iaas cloud. In ACM SIGMETRICS, 2011.

[31] KAMRA, A., MISRA, V., AND NAHUM, E. Yaksha: A self-tuning
controller for managing the performance of 3-tiered web sites. In
IWQOS 2004.

[32] LAGAR-CAVILLA, ET AL. SnowFlock: rapid virtual machine
cloning for cloud computing. In ACM EuroSys, 2009.

[33] LI, A., YANG, X., KANDULA, S., AND ZHANG, M. CloudCmp:
comparing public cloud providers. In IMC 2010.

[34] PANG, J., ET AL. On the responsiveness of DNS-based network
control. In IMC 2004.

[35] RANJAN, S., KARRER, R., AND KNIGHTLY, E. Wide area
redirection of dynamic content by Internet data centers. In
INFOCOM 2004.

[36] RIGHTSCALE INC. Cloud computing management platform.
http://www.rightscale.com.

[37] SATOPAA, V., ET AL. Finding a ’Kneedle’ in a Haystack: Detecting
Knee Points in System Behavior. In SIMPLEX Workshop, 2011.

[38] SHIVAM, P., BABU, S., AND CHASE, J. Learning application
models for utility resource planning. In ICAC’06.

[39] SU, A., ET AL. Drafting behind Akamai. SIGCOMM 2006.

[40] SYMANTEC. 2010 State of the Data Center Global Data. http:
//www.symantec.com/content/en/us/about/media/

pdfs/Symantec_DataCenter10_Report_Global.pdf.

[41] URGAONKAR, B., AND SHENOY, P. Cataclysm: Handling extreme
overloads in internet services. In PODC 2004.

[42] URGAONKAR, B., SHENOY, P., CHANDRA, A., AND GOYAL, P.
Dynamic provisioning of multi-tier internet applications. In ICAC

2005.

[43] VRABLE, M., ET AL. Scalability, fidelity, and containment in the
potemkin virtual honeyfarm. In ACM SOSP, 2005.

[44] WANG, G., AND NG, T. S. E. The impact of virtualization on
network performance of Amazon EC2 data center. In IEEE

INFOCOM 2010.

[45] WENDELL, P., ET AL. DONAR: decentralized server selection for
cloud services. In SIGCOMM 2010.

[46] ZHANG, Q., CHERKASOVA, L., AND SMIRNI, E. A
regression-based analytic model for dynamic resource provisioning
of multi-tier applications. In ICAC’07.


