1.4 Fast Fourier Transform (FFT) Algorithm

Fast Fourier Transform, or FFT, is any algorithm for computing the \(N \)-point DFT with a computational complexity of \(O(N \log N) \). It is \textit{not} a new transform, but simply an efficient method of calculating the DFT of \(x(n) \).

If we assume that \(N \) is even, we can write the \(N \)-point DFT of \(x(n) \) as

\[
X^{(N)}(k) = \sum_{n \text{ is even: } n=2m, m=0, \cdots, \frac{N}{2}-1} x(n)e^{-j\frac{2\pi k}{N}n} + \sum_{n \text{ is odd: } n=2l+1, l=0, \cdots, \frac{N}{2}-1} x(n)e^{-j\frac{2\pi k}{N}n}
\]

\[
= \sum_{m=0}^{\frac{N}{2}-1} x(2m)e^{-j\frac{2\pi k}{N}2m} + \sum_{l=0}^{\frac{N}{2}-1} x(2l+1)e^{-j\frac{2\pi k}{N}(2l+1)} \tag{1.31}
\]

We make the following substitutions:

\[
x_0(m) = x(2m), \text{ where } m = 0, \cdots, \frac{N}{2} - 1,
\]

\[
x_1(l) = x(2l+1), \text{ where } l = 0, \cdots, \frac{N}{2} - 1.
\]

Rewriting Eq. (1.31), we get

\[
X^{(N)}(k) = \sum_{m=0}^{\frac{N}{2}-1} x_0(m)e^{-j\frac{2\pi k}{N}m} + e^{-j\frac{2\pi k}{N}} \sum_{l=0}^{\frac{N}{2}-1} x_1(l)e^{-j\frac{2\pi k}{N}l}
\]

\[
= X_0^{(\frac{N}{2})}(k) + e^{-j\frac{2\pi k}{N}} X_1^{(\frac{N}{2})}(k), \tag{1.32}
\]

where \(X_0^{(\frac{N}{2})}(k) \) is the \(\frac{N}{2} \)-point DFT of the even-numbered samples of \(x(n) \) and \(X_1^{(\frac{N}{2})}(k) \) is the \(\frac{N}{2} \)-point DFT of the odd-numbered samples of \(x(n) \). Note that both of them are \(\frac{N}{2} \)-periodic discrete-time functions.

We have the following algorithm to compute \(X^{(N)}(k) \) for \(k = 0, \cdots, (N-1) \) :

1. Compute \(X_0^{(\frac{N}{2})}(k) \) for \(k = 0, \cdots, \frac{N}{2} - 1 \).
2. Compute \(X_1^{(\frac{N}{2})}(k) \) for \(k = 0, \cdots, \frac{N}{2} - 1 \).
3. Perform the computation (1.32) with \(N \) complex multiplications and \(N \) complex additions.

Actually, it is possible to use fewer than \(N \) complex multiplications. Let

\[
W_N = e^{-j\frac{2\pi}{N}}.
\]
Sec. 1.4. Fast Fourier Transform (FFT) Algorithm

The following remarks apply to the FFT:

\[X(0) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} = x(0) \]

Therefore,

\[X_N(k) = X_2(k) + W_N^k X_2(k) \]

for \(k = 0, \ldots, N/2 - 1 \),

\[X_N(k) = X_2(k) - W_N^k X_2(k) \]

for \(k = N/2 \), \(\ldots, N - 1 \).

Then

\[W_N^k = e^{-j2\pi k/N} = \begin{cases} 1 & \text{if } k \equiv 0 \pmod{N} \\ e^{-j2\pi k/N} & \text{otherwise} \end{cases} \]

Fig. 1.36. The FFT algorithm.

Figure 1.37 illustrates the recursive implementation of the FFT supposing that \(N = 2^M \). There is a total of \(M = \log_2 N \) stages of computation, each requiring \(3N/2 \) complex operations. Hence, the total computational complexity is \(O(N \log N) \). We see that the process ends at a 1-point DFT.

The following remarks apply to the FFT:

Actually, slightly fewer if we do not count multiplications by \(\pm 1 \) and \(\pm j \).
Figure 1.37. The recursive implementation of the FFT supposing that $N = 2^M$. There is a total of $M = \log_2 N$ stages of computation, each requiring $\frac{3}{2}N$ complex operations. Hence, the total computational complexity is $O(N \log N)$.

1. For large N, the FFT is much faster than the direct application of the definition of DFT, which is of complexity $O(N^2)$.

2. The particular implementation of the FFT described above is called *decimation-in-time radix-2 FFT*.

3. The number of operations required by an FFT algorithm can be approximated as $CN \log N$, where C is a constant. There are many variations of FFT aimed at reducing this constant—e.g., if $N = 3^M$, it may be better to use a radix-3 FFT.

4. Note that

$$\left\{ \frac{1}{N} \text{DFT}[x^*(n)] \right\}^* = \left\{ \frac{1}{N} \sum_{n=0}^{N-1} x^*(n)e^{-j(\frac{2\pi k}{N})n} \right\}^* = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{j(\frac{2\pi k}{N})n}$$

which is the IDFT of $x(n)$. Thus, the FFT can also be used to compute the IDFT.
Example 1.26. The 8-point FFT is depicted in Fig. 1.38. The values of the twiddle factors are:

\[
W_2 = e^{-j\frac{2\pi}{2}} = -1,
\]

\[
W_4 = e^{-j\frac{2\pi}{4}} = -j,
\]

\[
W_8 = e^{-j\frac{2\pi}{8}}.
\]
Figure 1.39. The FFT reduces the number of operations required to calculate the DFT by reducing $A^{(N)}$ to two $A^{(\frac{N}{2})}$ that is only half the size of $A^{(N)}$. This operation is repeated with every recursion until we reach the 1-point DFT.
Recall that the DFT is a matrix multiplication (Fig. 1.35). One stage of the FFT essentially reduces the multiplication by an $N \times N$ matrix to two multiplications by $\frac{N}{2} \times \frac{N}{2}$ matrices. This reduces the number of operations required to calculate the DFT by almost a factor of two (Fig. 1.39).

Another interpretation of FFT involves analyzing the matrix

$$A_{k,L} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{-j \frac{2\pi k L}{N}} \\ 1 & -e^{-j \frac{2\pi k L}{N}} \end{pmatrix},$$

where k and L are nonnegative integers such that $k < 2^L$. Note that

$$\langle A_{k,L} x, A_{k,L} y \rangle = (A_{k,L} y)^H (A_{k,L} x) = y^H A_{k,L}^H A_{k,L} x = y^H \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{-j \frac{2\pi k L}{N}} \\ e^{j \frac{2\pi k L}{N}} & -e^{-j \frac{2\pi k L}{N}} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & \frac{e^{-j \frac{2\pi k L}{N}}}{2} \\ 1 & -e^{-j \frac{2\pi k L}{N}} \end{pmatrix} x = y^H \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} x = y^H x = \langle x, y \rangle,$$

i.e., multiplication by $A_{k,L}$ preserves distances and angles — roughly speaking, it is a rotation or reflection. Continuing the matrix decomposition of Fig. 1.39 further until we get the full FFT, it can be shown that FFT consists of $\frac{N}{2} \log N$ multiplications by 2×2 matrices of the form $\sqrt{2} A_{k,L}$, each operating on a pair of coordinates. Therefore, FFT breaks down the multiplication by the DFT matrix A into elementary planar transformations.

1.4.1 Fast Computation of Convolution

Consider a linear system described by

$$y = Sx,$$ \hspace{1cm} (1.33)

where x is the $N \times 1$ input vector, representing an N-periodic input signal; S is an $N \times N$ matrix; and y is the $N \times 1$ output vector, representing an N-periodic output signal. What conditions must the matrix S satisfy in order for the system to be time-invariant, i.e., invariant to circular shifts of the input vector?

Note that a circular shift by one sample is

$$\begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{pmatrix} \rightarrow \begin{pmatrix} x(-1) = x(N - 1) \\ x(0) \\ x(1) \\ \vdots \\ x(N-2) \end{pmatrix}.$$

9 The same conclusion can be reached by examining an FFT diagram such as Fig. 1.38.
Let the first column of S be

$$h = \begin{pmatrix} h(0) \\ h(1) \\ h(2) \\ \vdots \\ h(N-1) \end{pmatrix}.$$

Note that when

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

then $y = h$,

and when

$$x = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

then y is the second column of S, which therefore, in order for S to be invariant to circular shifts, must be equal to:

$$\begin{pmatrix} h(N-1) \\ h(0) \\ h(1) \\ \vdots \\ h(N-2) \end{pmatrix}.$$

Similarly, when

$$x = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

then y is the third column of S, etc.

Thus, the matrix S must have the following structure:

$$S = \begin{pmatrix} h(0) & h(N-1) & h(N-2) & \cdots & h(1) \\ h(1) & h(0) & h(N-1) & \cdots & h(2) \\ h(2) & h(1) & h(0) & \cdots & h(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h(N-1) & h(N-2) & h(N-3) & \cdots & h(0) \end{pmatrix}.$$
This is called a *circulant matrix*. We can then write Eq. (1.33) as

\[
y(n) = \sum_{m=0}^{N-1} x(m)h(n - m)
\]

\[
y(n) = \sum_{m=0}^{N-1} x(m)h((n - m) \text{ mod } N) \quad \quad \quad (1.34)
\]

\[
y(n) = x \oplus h(n) = x \otimes h \quad \quad \quad (1.35)
\]

Eq. (1.35) is called a *circular convolution* or a *periodic convolution*. Note that formula (1.34) works even when \(x \) or \(h \) are non-periodic. Observe the following:

- For \(y(0) \), the sum of the indices of \(x \) and \(h \) is always 0 mod \(N \) for every term.

\[
y(0) = x(0)h(0) + x(1)h(N - 1) + x(2)h(N - 2) + \cdots + x(N - 1)h(1)
\]

- For \(y(1) \), the sum of the indices of \(x \) and \(h \) is always 1 mod \(N \) for every term.

\[
y(1) = x(0)h(1) + x(1)h(0) + x(2)h(N - 1) + \cdots + x(N - 1)h(2)
\]

This is true for all \(y(k) \), \(k = 0, 1, \cdots, N - 1 \).

What are the eigenvectors of \(S \)? Let us try

\[
g_k = \begin{pmatrix}
\frac{1}{N} e^{j \frac{2 \pi k}{N} 1} \\
\frac{1}{N} e^{j \frac{2 \pi k}{N} 2} \\
\vdots \\
\frac{1}{N} e^{j \frac{2 \pi k}{N} (N-1)}
\end{pmatrix}, \text{ where } k = 0, 1, \cdots, N - 1.
\]

We have:

\[
y(n) = h(n) \oplus g_k
\]

\[
y(n) = \sum_{m=0}^{N-1} h(m)g_k(n - m)
\]

\[
y(n) = \sum_{m=0}^{N-1} h(m) \frac{1}{N} e^{j \frac{2 \pi k}{N} (n - m)}
\]

\[
y(n) = \left\{ \sum_{m=0}^{N-1} h(m) e^{-j \frac{2 \pi k m}{N}} \right\} \frac{1}{N} e^{j \frac{2 \pi k}{N} n}
\]

\[
y(n) = H(k) \frac{1}{N} e^{j \frac{2 \pi k}{N} n}
\]

DFT of \(h \)
Hence we have that
\[Sg_k = H(k)g_k \]
where \(g_k \) is the \(k \)-th eigenvector and \(H(k) \) gives the corresponding eigenvalue. Therefore,
\[
S \left(\begin{array}{cccc}
g_0 & g_1 & \cdots & g_{N-1}
\end{array} \right) = \left(\begin{array}{cccc}
g_0 & g_1 & \cdots & g_{N-1}
\end{array} \right) \left(\begin{array}{cccc}
H(0) & & & \\
& H(1) & & 0 \\
& & \ddots & \\
0 & & & H(N-1)
\end{array} \right).
\]

Then \(S \) can be written as:
\[
S = B \left(\begin{array}{cccc}
H(0) & & & \\
& H(1) & & 0 \\
& & \ddots & \\
0 & & & H(N-1)
\end{array} \right) A,
\]
where the DFT matrix \(A \) is:
\[
A = NB^H = \left(\begin{array}{c}
g_0^H \\
g_1^H \\
\vdots \\
g_{N-1}^H
\end{array} \right).
\]

Complex exponentials are the eigenvectors of circulant matrices. They diagonalize circulant matrices. Thus, for any \(x \in \mathbb{C}^N \),
\[
Sx = B \left(\begin{array}{cccc}
H(0) & & & \\
& H(1) & & 0 \\
& & \ddots & \\
0 & & & H(N-1)
\end{array} \right) Ax.
\]

Let us compare two algorithms for computing the circular convolution of \(x \) and \(h \).

Algorithm 1 Directly perform the multiplication \(Sx \). This has computational complexity \(O(N^2) \).

Algorithm 2
1. Represent \(x \) in the eigenbasis of \(S \), i.e., the Fourier basis,
\[
X = Ax.
\]
 This step can be done with FFT whose complexity is \(O(N \log N) \).
Step 1 | Step 2 | Step 3
--- | --- | ---
N-point DFT \(x(n) \rightarrow X(k) \) | \(Y(k) = X(k)H(k) \) | N-point IDFT \(Y(k) \rightarrow y(n) = x \circledast h(n) \)
N-point DFT \(h(n) \rightarrow H(k) \) |

Figure 1.40. An illustration of the FFT implementation of the circular convolution.

2. Compute the representation of \(y \) in the eigenbasis of \(S \):

\[
Y = \begin{pmatrix}
H(0) & 0 & \cdots & 0 \\
H(1) & & & \\
0 & & \ddots & \\
& & & H(N-1)
\end{pmatrix} \mathbf{X}.
\]

This computation has complexity \(\mathcal{O}(N) \).

3. Reconstruct \(y \) from its Fourier coefficients:

\(y = B\mathbf{Y} \).

This has complexity \(\mathcal{O}(N \log N) \), if done using the FFT.

This algorithm is summarized in Fig. 1.40. Its total complexity is \(\mathcal{O}(N \log N) \).

(Note that the second algorithm does not necessarily perform better for any matrix.)

Example 1.27. This example explores the relationship between the convolution and the circular convolution. Let \(x \) and \(h \) be \(N \)-periodic signals, and let

\[
x_z = \begin{cases}
x(n), & 0 \leq n \leq N - 1 \\
0, & \text{otherwise}
\end{cases}
\]

\[
h_z = \begin{cases}
h(n), & 0 \leq n \leq N - 1 \\
0, & \text{otherwise}
\end{cases}
\]

If we let

\[
y_z(n) = x_z * h_z(n)
\]

\[
y(n) = x \circledast h(n)
\]

then \(y(n) \) can be expressed as

\[
y(n) = \begin{cases}
y_z(n) + y_z(N + n), & n = 0, 1, \cdots, N - 2 \\
y(N - 1), & n = N - 1
\end{cases}
\]
Note that the overlap of $y_z(n)$ and $y_z(N+n)$ causes temporal aliasing in the resulting $y(n)$. This is the main difference between convolution and circular convolution.

$$y_z(n) = x_z * h_z(n)$$

(a) Convolution

$$y(n) = x \otimes h(n)$$

(b) Circular convolution

Fig. 1.41 illustrates the effect of temporal aliasing. To remove or minimize the effect of temporal aliasing, we could zero-pad x and h so that the temporal replicas are spread further apart, and thus, overlapping would not occur.