Problem 1. For each discrete-time (DT) signal below, do the following.

(i) Sketch \(x(n) \) by hand, i.e. do not use Matlab. Carefully label the plots.

(ii) Calculate its energy, i.e. \(\sum_{n=-\infty}^{+\infty} |x(n)|^2 \). Do not use Matlab.

(iii) Calculate the convolution of the signal with itself. In other words, evaluate the following:
\[x \ast x(n) = \sum_{k=-\infty}^{+\infty} x(k)x(n-k) \]. Do not use Matlab.

(iv) Find the smallest number \(L \) which satisfies the following inequality for every integer \(n \):
\[|x(n)| \leq L \).

(v) Find the smallest number \(M \) which satisfies the following inequality for every integer \(n \):
\[|x \ast x(n)| \leq M \).

a. \(x(n) = 4^{-|n|} \).

b. \(x(n) = n \cdot [u(n - 1) - u(n - 6)] \).

Here, as usual, \(u(n) \) is the DT unit step.

Hints.

1. Recall that the expression \(\sum_{k=-\infty}^{+\infty} y(k) \) means: \(\lim_{m \to -\infty, p \to +\infty} \left(\sum_{k=m}^{p} y(k) \right) \).

2. In order to compute the convolution for the first signal, it could be helpful to consider two cases: \(n < 0 \) and \(n \geq 0 \), and in each case, to sketch both \(x(k) \) and \(x(n-k) \) as functions of \(k \).

3. The numbers \(L \) and \(M \) in parts (iv) and (v) are the global maxima of the signals \(|x(n)| \) and \(|x \ast x(n)| \), respectively.