ECE 438
Homework 6, due in class Friday, 10/3/2003.

Problem 1. A continuous-time signal $x_c(t)$ is a linear combination of sinusoids of frequencies 250 Hz, 450 Hz, and 1 kHz. The signal $x_c(t)$ is ideally sampled at the rate of 1.5 kHz, and the result (denoted $x_s(t)$ in class and in the notes) is passed through an ideal lowpass filter with cutoff frequency 750 Hz, generating a continuous-time signal $y_c(t)$. What are the frequency components present in the reconstructed signal $y_c(t)$?

Problem 2. The continuous-time signal $x_c(t) = 3\cos(400\pi t) + 5\sin(1200\pi t) + 6\cos(4400\pi t) + 2\sin(5200\pi t)$ is ideally sampled at the rate of 4 kHz generating a discrete-time signal $x(n)$. Find $x(n)$.

Problem 3.

Suppose the continuous-time signal $x_c(t)$ whose spectrum $X_c(f)$ is shown above is ideally sampled with the sampling rate $f_s = 2$ kHz using the ideal sampling scheme discussed in class and illustrated in Fig. 1.44 of the class notes.

(a) Sketch the spectrum $X_s(f)$ of the sampled signal.

(b) Argue that $x_c(t)$ can be perfectly reconstructed from $x_s(t)$ using an ideal bandpass filter. Sketch the frequency response of the filter.

Problem 4. DT interpolation with sinc functions.

In class, we considered the following system for interpolating a DT signal:

In this system, upsampling by a factor of L is followed by an ideal low-pass filter. For this problem, we assume the following frequency response for the ideal low-pass filter:

$$H(e^{j\omega}) = \begin{cases} L, & |\omega| \leq \frac{\pi}{L} \\ 0, & \frac{\pi}{L} < |\omega| \leq \pi \end{cases}$$

(a) Use the inverse DTFT formula to show that the impulse response of the ideal low-pass filter is $h(n) = \text{sinc}\left(\frac{n}{L}\right)$.
Argue that therefore interpolating a DT signal \(x(n) \) can be represented as a convolution of the up-sampled version of \(x(n) \) with a sinc:

\[
x_{\text{int}}(n) = x_u * h(n),
\]

(1)

where \(h(n) = \text{sinc} \left(\frac{n}{L} \right) \),

and where \(L \) is the upsampling factor. Therefore, interpolation is achieved by summing up scaled and shifted sinc functions.

(b) In MATLAB, create the following vector of time points from 0 to 32 seconds:

\[
t = 0:0.05:32
\]

Using this vector, create a sinusoid

\[
s(t) = \sin \left(\frac{\pi}{8} t \right).
\]

Create another signal, \(s_1(n) \), which is the sampling of \(s(t) \) with sampling period 1 second. Create \(s_2(n) \), which is the sampling of \(s(t) \) with sampling period 2 seconds.

Now interpolate \(s_2(n) \), using Eq. (1) with \(L = 2 \).

Step 1. Upsample \(s_2(n) \) by inserting a zero after each sample.

Step 2. Using MATLAB’s `sinc` function, create \(h(n) \):

\[
h = \text{sinc}([-A:A]/L);
\]

where \(A \) is some positive integer. Make sure that the value of \(A \) is large enough, so that the smallest sidelobe of the sinc is small compared to the mainlobe.

Step 3. Using MATLAB’s `conv` function, convolve the upsampled version of \(s_2(n) \) with \(h(n) \), to get \(s_{2\text{int}}(n) \).

Step 4. Truncate \(s_{2\text{int}}(n) \), to make its first sample correspond to \(s(t)|_{t=0} \), and its last sample correspond to \(s(t)|_{t=32} \).

Using `subplot`, display a plot of \(s(t) \) and stem plots of \(s_1(n) \), \(s_2(n) \), and \(s_{2\text{int}}(n) \) in one window. Label the horizontal axes correctly. Make sure that \(s_1(n) \) and \(s_{2\text{int}}(n) \) are similar. Submit your MATLAB code and the printout of the plots. (Use `orient tall` before you print.)

(c) Repeat part (b), with the same vector \(t \) and

\[
s(t) = \begin{cases}
1, & 8 \leq t \leq 24 \\
0, & \text{otherwise}
\end{cases}
\]

Again, submit a plot of \(s(t) \) and stem plots of \(s_1(n) \), \(s_2(n) \), and \(s_{2\text{int}}(n) \), as well as your MATLAB code. Can you notice any dissimilarities between \(s_{2\text{int}}(n) \) and \(s_1(n) \)? If so, write a very brief explanation for these dissimilarities.
Problem 5. DT interpolation with box functions.

One alternative to the scheme considered in Problem 4 would be to convolve with a box function (instead of convolving with a sinc), namely, with

\[h(n) = \begin{cases}
1, & n = 0, 1, \ldots, L - 1 \\
0, & \text{otherwise}
\end{cases} \]

Repeat Parts (b) and (c) of Problem 4 for this new \(h(n) \). You only need to submit the stem plots for the two new signals \(s_{2\text{int}}(n) \). Comment on the differences between the results you get and your results from Problem 4.